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Abstract: Untargeted metabolomics is an important tool in studying health and disease and is
employed in fields such as biomarker discovery and drug development, as well as precision
medicine. Although significant technical advances were made in the field of mass-spectrometry
driven metabolomics, instrumental drifts, such as fluctuations in retention time and signal intensity,
remain a challenge, particularly in large untargeted metabolomics studies. Therefore, it is crucial to
consider these variations during data processing to ensure high-quality data. Here, we will provide
recommendations for an optimal data processing workflow using intrastudy quality control (QC)
samples that identifies errors resulting from instrumental drifts, such as shifts in retention time
and metabolite intensities. Furthermore, we provide an in-depth comparison of the performance
of three popular batch-effect correction methods of different complexity. By using different evalua-
tion metrics based on QC samples and a machine learning approach based on biological samples,
the performance of the batch-effect correction methods were evaluated. Here, the method TIGER
demonstrated the overall best performance by reducing the relative standard deviation of the QCs
and dispersion-ratio the most, as well as demonstrating the highest area under the receiver operating
characteristic with three different probabilistic classifiers (Logistic regression, Random Forest, and
Support Vector Machine). In summary, our recommendations will help to generate high-quality
data that are suitable for further downstream processing, leading to more accurate and meaningful
insights into the underlying biological processes.

Keywords: metabolomics; quality control; analytical variation; batch effects

1. Introduction

The metabolome is a collection of small molecules (<1500 Da) or metabolites that are
involved in cellular processes, including energy production, signaling, and synthesis of
cellular components. It integrates information from the genome and regulatory processes,
as well as environmental factors such as diet and lifestyle. Because the metabolome reflects
the downstream effects of these factors on cellular function, it is very close to the actual
phenotype of a cell, tissue, or organism. As such, studying the metabolome can provide
valuable insights into disease mechanisms, biomarker discovery, drug development, and
precision medicine [1,2].

The most employed analytical techniques in metabolomics are gas chromatography
(GC) and liquid chromatography (LC) coupled to mass spectrometry (MS), both enabling
the simultaneous assessment of many metabolites in large cohorts [3,4]. Despite significant
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technical advances in the field of mass spectrometry, technical variation still remains a
challenge, in particular in large clinical cohort studies. Multiple factors introduce technical
variation, which is categorizable in pre-analytical and analytical variation (Figure 1).

    Pre-analytical
● Sample collection
● Sample preparation
● Sample storage

    Analytical
● Retention time shift

○ Small leaks in 
chromatographic system

○ Column degradation
○ Sample matrix interaction

● Signal intensity drift
○ Sensitivity drift in MS detection
○ Sample carry-over
○ Contamination build-up
○ Instrument maintenance

Total Variation

Technical VariationBiological Variation

Figure 1. Sources of variation in quantitative metabolomics. The total variation of each data value
is comprised of biological, random, and technical variation. Technical variation can be divided in
pre-analytical and analytical variation. Pre-analytical variation is induced by either poor methodology
or variation in processing during sample collection, preparation or storage. Analytical variation in
sample values originates from the analytical technique itself and is reflected in retention time and
signal intensity shifts.

Pre-analytical variation is introduced by different collection containers, pre-storage
preparation, and sample storage conditions. For example, metabolic profiles of blood
plasma can be affected by different types of anticoagulant-coated tubes [5,6] as well as
different temperatures and time periods of storage due to conversions and degradation
of metabolites [7–9]. However, even when pre-analytical processing is optimal, technical
variation introduced by the analytical platform due to instrumental drifts, can never be
excluded (analytical variations). The instrumental drifts during both GC- and LC-MS
measurements lead to shifts in retention time (RT) [10–16] and signal intensity [17,18],
both of which need to be considered during data preprocessing. RT is widely used for
aligning chromatographic peaks in GC- and LC-MS runs that belong to identical analytes
in different samples [19–21]. External calibration can be incorporated in the metabolome
analysis workflow for analyzing a large number of samples, where RT calibrant runs are
carried out every 30 to 40 sample runs to calibrate sample chromatograms between the
RT calibrant runs [22,23]. This procedure works most of the time, but there are occasional
occurrences, such as small leaks in the chromatography system, minor degradation of
column performance, and interactions between different compounds of the analyzed
sample matrix, where RT shifts may happen in some samples between the RT calibrants.

The occurrence rate of these unexpected RT shift events increases as the number of
analyzed samples increases.

For this task, several alignment algorithms and computer programs are publicly and
commercially available, but due to the high complexity of the metabolome, further improve-
ments of existing approaches as well as manual interventions are still needed [22,24,25].
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We will introduce one strategy to detect and avoid misalignments due to RT shifts in large
studies as part of this review.

Another challenge for large cohorts are significant variations of feature intensities
due to instrument drifts; these effects are usually categorized into intra- and inter-batch
effects. In this regard, a batch is defined as a set of samples processed and analyzed by the
same experimental procedure (same operator and instrument) in an uninterrupted manner.
Since the capacity of certain chromatographic equipment (e.g., columns, liners) is limited,
cohorts with a higher number of samples are typically partitioned into several batches [26].
Intra- and inter-batch effects occur due to multiple reasons, and a significant source of
signal variability is a sensitivity drift over time and across batches in MS detection, as
metabolite quantification relies on the intensities of MS peaks. In GC-MS, instrumental
causes of changes in intensity between batches mainly occur due to instrument mainte-
nance, ageing, and tuning [27,28]. Of course, machine maintenance, such as the exchange
of the liner or column cleaning, is necessary to maintain adequate peak intensities in large
cohorts. Another source of technical variation is the problem of sample carry-over and
contamination build-up, which could differ between batches [17,29,30]. Sample carry-over
is caused by samples containing large amounts of metabolites, from which residuals remain
on the column and may affect metabolite signals in later samples of the sequence run.
Contamination build-up is caused by compounds trapped in the ion source leading to
reduced mass spectral performance. These systemic variations cause detectable differences
between samples, which can lead to false discoveries, as batch effects can be stronger than
inter-phenotype effects, as highlighted in various studies [18,31–33]. Several methods have
been developed to tackle this problem, as batch effects in metabolomic experiments are
impossible to entirely eliminate. The simplest approach is the randomization of samples
within the sequence run. Complete randomization removes the risk of introducing bias,
and the variance observed in each biological sample will be a combination of the biological
and technical variation. However, when the sample size is so large that the measurement
has to be divided into different batches, a blocked approach has to be performed, where
only samples within one batch can be compared, reducing the statistical power [34]. There-
fore, batch-effects need to be eliminated so that samples between batches can be directly
compared. One approach is spiking the samples with labeled internal standards (LIS) as
controls. However, in untargeted metabolomics, where all metabolites are of interest, a
large number of LIS needs to be added to the samples. This would increase the risk of LIS
coeluting with metabolites of interest. Moreover, the added standards may not be represen-
tative for the specific chemical characteristics of the unknowns, and response factors may
differ. Therefore, spiking with LIS is usually avoided in untargeted metabolomics [26]. The
most used and robust methods include the modeling of the above-described batch effects
based on intrastudy quality control (QC) samples [21,26,35].

In this review, we outline the importance of incorporating QC samples into the mea-
surement sequence. The review then compares three different methods for adjusting batch
effects using QC samples. The first method is a simple and easy-to-implement median-
based normalization technique [36], the second method incorporates a regression-based
normalization method using a penalized cubic smoothing spline called Quality Control-
Robust Spline Correction (QC-RSC) [37]. Finally, a recently published normalization
method, Technical variation elimination with ensemble learning architecture (TIGER) [38],
is discussed. Our article provides a comparative evaluation of these three strategies using
two GC-MS and one LC-MS-based data sets previously recorded in our labs [36,39]. At
last, we introduce an effective method for identifying and correcting quantification errors
due to peak misalignment. Overall, this review provides a comprehensive guide for re-
searchers to process and analyze untargeted metabolomics data acquired for high sample
number cohorts.
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2. Intrastudy QC-Samples in Metabolomics

The application of intrastudy QC samples has been recognized as a valuable tool
to significantly improve the validity of large-scale metabolomics studies [21,26,35,40,41].
The QC samples should reflect the aggregated metabolite composition of all biological
samples for a certain study [40–42]. Typically, the best way to prepare QC samples is to mix
all biological test samples in equal amounts [42], because as such, the QCs are closest to
the biological samples in means of composition (same sample matrix and metabolites). If
the amount of material is limited or sample preparation starts before the last sample has
been collected, it is not possible to generate sufficient QCs. To mitigate this, commercially
available QC samples can mimic the composition of the biological samples, although to a
lower accuracy compared to intrastudy QC samples [43–45]. Dunn et al. used commercially
available serum samples, but had to remove 20% of all features, due to differences in
metabolic composition between the commercial QC sample and samples from the study
population. Therefore, preparing intrastudy QC samples from a representative subset of
biological samples is the better solution [44]. Another option is generating intrastudy QCs
from the same sample type but from another biological source. A clear disadvantage in this
case is that the metabolite concentrations and the sample matrix differ from the biological
samples. As a last option, artificial QCs can be created with chemical standards, whereas as
many metabolites from as many metabolite classes as possible are dissolved in a dummy
matrix [46].

There are three major reasons to employ QC samples: The first is the initial equilibra-
tion of the measurement system. Each sequence of samples should start with conditioning
QC samples. In the case of GC-MS and LC-MS, usually the data of the first four to eight in-
jections are not stable [47–49]. This effect occurs especially in the context of preventative
maintenance, after which active sites of the column are not equilibrated or blocked with
the sample matrix. Multiple injections of the QCs prior to the main sample acquisition will
condition the column sufficiently [44,47,50]. The actual number of required conditioning
samples depends on several factors, particularly sample type, chromatographical system,
injection volume, chromatographic column, and mass spectrometric design. It has been
suggested that each laboratory should determine an individual optimal number of con-
ditioning samples by injecting up to 50 intrastudy QC samples until reproducible results
will be acquired [46]. It is to note that the only intention of the conditioning samples is for
column conditioning and not for later batch-effect correction.

The second reason to employ QC samples is the evaluation of measurement precision.
As all QCs are equal in terms of metabolite concentration and sample matrix, quantitative
quality criteria such as the relative standard deviation (RSD) and Dispersion-ratio (D-ratio)
can be determined for quality assessment.

The third and most important reason is the modeling and correction of systemic error.
Since QC samples are measured intermittently throughout the whole sequence run, changes
in instrument performance can be accurately monitored. Data of QCs quantitatively reveal
gradual changes in instrument sensitivity, which is extremely useful for the elimination of
batch variations. For this, it is crucial to include a sufficient number of QCs into the sequence
to maximize the performance of batch-effect correction and lower the risk of overfitting [51].
On the other hand, injecting too many QCs will significantly extend analysis time, which
results in an even more pronounced instrumental drift [26,52]. Kamleh et al. quantitatively
evaluated the effect of QC frequency on the reproducibility of metabolic features. The
number of reproducible features (RSD < 30% and <15%) was only 1.5% and 5% lower
when comparing data corrected with a QC injection every 10th sample with data corrected
with a QC injection every fifth sample [53]. Therefore, one QC sample should be injected
for every third to 10th biological sample [44,53]. Additionally, it is recommended to append
two QCs each at the beginning and end of the sequence to avoid extrapolation during
batch-effect correction in case of injection failure [40]. If both QCs run successfully, only
one of these QCs is used for batch-effect correction, e.g., the first and the last one.



Metabolites 2023, 13, 665 5 of 16

3. Methods to Correct Metabolomics Data for Batch Effects

Besides just detecting gradual changes in instrument sensitivity, QC samples are also
used for the correction of these effects. In general, such a correction is performed as follows:
As batch effects are metabolite specific, each recorded metabolite level needs to be analyzed
and corrected, separately. The QC recordings for each metabolite define a pattern of
instrument-related signal changes as a function of the injection order. Because all biological
samples are flanked by corresponding QCs, it can be assumed that instrument-related
signal alterations in the QCs also apply to the neighboring biological samples. This is the
reason why a mathematical model can be employed to predict batch variation based on
the information of the QCs. The predicted batch variability is then subtracted from the
original data to yield batch-effect-free data. A qualified QC-based correction does not
only account for inter- and intra-batch effects but is also resistant to overfitting. This is
important in order to deter the model from accounting for random variations in the data,
leading to overoptimistic quality measures, but non-usable data. In the following, we
review and compare three often applied correction methods in regard to their effectiveness
for batch-effect removal.

3.1. Median Normalization

The first batch-effect correction method is the simplest to apply and just normalizes
each sample metabolite signal (xi,sample) by the corresponding median signals of neigh-
bouring QCs (xi,QC). Specifically, the three in terms of acquisition time and chronologically
closest QC samples for each biological sample are chosen. The median signal for each
metabolite i is calculated based on these three QC samples (x̄i,QC) and is then applied to
normalize the metabolite signal of the sample (xi,sample). Using the median instead of the
mean makes this approach more robust against outliers or missing (zero) values within the
QCs (Figure 2A).

3.2. Quality Control-Robust Spline Correction

Quality Control-Robust Spline Correction (QC-RSC) is an advanced regression-based
method [37]. For this method, an unweighted cubic spline f is fitted to the QC data (xQC)
as a function of the injection order (tQC), with n being the length of tQC (Equation (1)). In
contrast to non-parametric models, QC-RSC has the advantage of accounting for more com-
plex batch-related variations in metabolite signals. Furthermore, compared to the Quality
Control-Robust LOESS Signal Correction algorithm [44], QC-RSC is computationally more
efficient, by replacing the two-step LOESS QC fitting and piece-wise polynomial regression
stage with a single-step adaptive cubic smoothing spline algorithm.

The spline f minimizes the distance between model fit and QCs under consideration of
a roughness penalty, controlled by the smoothing parameter p (0 < p < 1). The roughness
penalty penalizes the variability in the function f , with p→ 0 resulting in an interpolating
spline and p→ 1 in a linear least squares regression.

p
n

∑
i=1

(xQC(i)− f (tQC(i)))2 + (1− p)
∫
(

d2 f
dt2

QC
)2dx (1)

To avoid overfitting, p is optimized using leave-one-out cross-validation. Each metabo-
lite is then normalized by its own correction function, which removes intra-batch effects.
To remove inter-batch effects, the value is furthermore divided by the median signal of the
metabolite of the intrastudy QC samples (Figure 2B).
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Figure 2. (A) Graphical representation of the median-based normalization. For each sample, the
median of the three nearest pools is calculated for each metabolite i. Then, the metabolite intensity for
metabolite i is divided by the corresponding median x̄i,QC of the pools. (B) Schematic functionality
of the QC-RSC algorithm. For a given metabolite peak, batch effects can be visualized by plotting the
metabolite signal against the injection order. Here, the blue circles represent the biological samples
and the red crosses represent the QC samples with which the unweighted cubic smoothing spline is
fitted (red dashed line). Then, each sample is normalized by multiplication with the correction factor.
The correction factor is the quotient of the median signal of the QCs and the value given by the cubic
smoothing spline at injection order t of the sample to be corrected. (C) Schematic representation of
the TIGER algorithm. The TIGER algorithm can be described in three steps. 1. Variable selection,
2. model construction, and 3. data correction.

3.3. Technical Variation Elimination with Ensemble Learning Architecture

TIGER (Technical variation elImination with ensemble learninG architEctuRe) is the
most sophisticated algorithm for the batch-effect correction discussed here. It is an adapt-
able ensemble learning architecture comprised of several base models [38]. The TIGER
algorithm starts by selecting metabolites highly correlated with the objective metabolite,
which will be the features for the ensemble model. The ensemble model is constructed
for each batch separately and consists by default of n Random Forest (RF) models with
different hyperparameter combinations, chosen from a hyperparameter pool defined by
the user. The Random Forest model is trained on data comprised of error ratios y′ of the
objective metabolite and the raw metabolite signals of the correlated metabolites X. The
error ratio is calculated as follows:

y′ =
y− ȳ

ȳ
(2)

Here, y denotes the raw signal of the objective metabolite and ȳ the median of y across the
whole data set. The model’s performance is evaluated in a K-fold cross validation with a
loss function of L(y, y′),

L(ŷ, y′) =
1
K

K

∑
k=1

∣∣∣ŷ(k) − y′(k)
∣∣∣

y′(k)
(3)

where ŷ(k) is the predicted error ratio and y′(k) the actual error ratio of the kth CV fold. Based
on the loss function, the base model will receive a weight, such that high-performing models
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have high weights and under-performing models have low weights, but its information is
still considered.

wi =
exp(−L(ŷi, y′))

∑i
n exp(L(ŷi, y′)

(4)

Here, n is the number of all base models, and i is the ith base model. For the actual data
correction, the base models are retrained on the whole data set. The error ratios y′ and
metabolite signals X are used to train the RF model. Hence, the RF model will also predict
error ratios, which need to be converted back to metabolite signals. The final result of the
algorithm is the weighted sums of all base models (Figure 2C).

By selecting only a small set of features and the RF algorithm, TIGER’s base models
are of moderate complexity, thus mitigating the risk of capturing random noise in addition
to the technical variation. Moreover, an ensemble learning architecture is employed, further
improving the models’ robustness and lowering the risk of overfitting by considering the
output from strong as well as weak models. Altogether, the TIGER algorithm prioritizes
robustness and high generalization over high complexity, making this a valuable method
even for data with small sample sizes or data with a high degree of noise.

4. Evaluation of Batch-Effect Correction Methods
4.1. Evaluation Metrics

To evaluate the performance of the different batch-effect correction methods, we
employed three different quantitative quality criteria, namely the RSD and D-ratio for each
metabolite, as well as the Euclidean distance of QCs after the principal component analysis
(PCA). The RSD is a widely used metric, which is calculated for each metabolite i within
the QCs by dividing the standard deviation σi,QC by the arithmetic mean m̄i,QC. This leads
to a unitless and standardized measure comparable among all detectable metabolites.

RSDi,QC =
σi,QC

m̄i,QC
· 100% (5)

A typically accepted RSD threshold for metabolites in biomarker discovery should be
below 20% for LC-MS and below 30% for GC-MS [18,33,44,47,48]. However, only observing
the RSD may result in over-optimistic results, as batch-effect correction methods remove the
batch effects based on the QCs. This way, an over correction of the data, which could lead
to the removal of the biological variation, would not be detected. Thus, we additionally
applied the relation of the statistical dispersion of the QCs to the dispersion of the biological
test samples to evaluate the normalization performance [54,55]. The D-ratio is calculated by
dividing the technical variation by the total observed variation; this is the sum of technical
and biological variation. Here, the variance of the QCs (σ2

i,QC) approximates the technical
variation, and the variance of the biological test samples (σ2

i,sample) approximates the overall
biological variation [46].

D-ratioi ≈

√
σ2

i,QC√
σ2

i,sample + σ2
i,QC

· 100% (6)

A D-ratio close to 0% would be a perfect measurement, where the technical variance is
zero and all observed variance originates from the biological variation. On the other hand,
a D-ratio of 100% would be the worst possible measurement, where there is no biological
variation and only noise is detected. A metabolite, where σ2

i,sample � σ2
i,QC with a D-ratio

below 50%, is preferred [55].
Another method to visually evaluate batch-effect-removal is the PCA. By plotting the

first two principal components, the clustering of batches and the removal of those can be
observed. High quality data show tightly clustered QC data points at the origin of the PCA
and equally distributed sample points around the QCs. The Euclidean distance between
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the centroid of the QCs, and each QC sample point can be calculated to quantitatively
assess the effect of the batch-effect correction on the QCs itself.

d(CQC, xi,QC) =
√
(CQC,PC1 − xQC,PC1)2 + (CQC,PC2 − xQC,PC2)2 (7)

Here, d(CQC, xi,QC), represents the Euclidean distance between the centroid of all QC
samples CQC and each individual QC sample xi,QC in the PCA. Each sample point as well
as the centroid have two coordinates, which are denoted as the principal components PC1
and PC2, respectively. The Euclidean distance of QCs is frequently used to evaluate the
analytical variability [30]. These three performance measures provide an in-depth picture
for evaluating the batch-effect correction methods.

4.2. Comparison of Batch-Effect Correction Methods

To provide recommendations on which method to choose, we evaluated all of the
three above highlighted batch-effect correction methods and performed RSD, D-ratio, and
a PCA. Furthermore, the methods were applied to normalize GC-MS and LC-MS data sets
to evaluate differences in measurement techniques.

All batch-effect correction methods reduced the technical error in each tested data
set, as demonstrated by the reduced RSD as compared to the raw data (Figure 3A) . Here,
TIGER performed best for each data set with a reduction of the median RSD by more than
60%. QC-RSC reduced the median RSD by more than 50% and the median normalization by
more than 40% for each data set. Furthermore, all methods were able to reduce the D-ratio
(Figure 3B) . Again, TIGER performed best by reducing the median D-ratio by 71%, 64%,
and 43% for GC-MS 1 and 2 data and the LC-MS data, respectively. For the GC-MS 1 data,
QC-RSC performed better than the median normalization, with a reduction of the D-ratio
by 41% compared to 27%. For GC-MS data 2 and the LC-MS data, QC-RSC and the median
normalization performed equally good by reducing the D-ratio by approximately 50%.
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Figure 3. Comparison of normalization methods. A total of 140 metabolic features are present in
GC-MS data 1, 25 in GC-MS data 2, and 42 in the LC-MS data. (A) Distribution of RSD of QC samples
before and after normalization. (B) Distribution of D-ratio before and after normalization. Outliers
are shown as black dots.
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To further evaluate the different methods, we performed a PCA. As described in the
previous chapter, we expected all QC samples to cluster tightly together after removing
the batch effects, while we expected all biological samples to be distributed across the plot.
Figure 4 depicts the PCA plots for the raw data and the batch-effect correction methods.
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Figure 4. PCA plots of different normalization methods for (A) GC-MS data 1, (B) GC-MS data 2, and
(C) LC-MS data. QCs are represented as crosses and biological samples as dots, which are partially
transparent. Box plots show the euclidean distance of the QCs to its centroid within the PCA plots.
Outliers are shown as black dots.

The PCA of the raw data clearly partitioned the QCs into the underlying batches for
every data set, with GC-MS 1 having the most substantial batch effects. After batch-effect
correction, all methods resulted in similar plots with tightly clustered QC samples at the
origin of the PCA plot scores and equally distributed biological samples. Therefore, all
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methods were able to eliminate batch effects regardless of the analytical technique and
led to a small analytical variation relative to the biological variation. To quantitatively
analyze the PCA plots, we calculated the Euclidean distance between each QC sample point
and its corresponding centroid (Figure 4). The Euclidean distance was reduced with all
batch-effect correction methods for each data set compared to the raw data. Here, QC-RSC
and the median normalization perform similarly for all data sets with a median euclidean
distance of approximately 1.2 for GC-MS 1, 0.75 for GC-MS 2, and 0.13 for LC-MS data. The
TIGER normalization achieves the lowest distance, which is slightly better than QC-RSC
and median normalization. All methods were able to reduce the technical error without
overfitting and keeping the biological variation intact by reducing both RSD and D-ratio of
the QC samples. Additionally, the removal of batch effects could be observed in the PCA
plots and by calculating the Euclidean distances of the QCs. For all quality criteria, TIGER
outperformed all other methods.

However, it is important to note, that the previously described evaluation criteria
are all based on the same QCs used to fit and train the batch-effect correction methods.
This could lead to overoptimistic results; furthermore, it does not measure the impact of
the batch-effect correction on the biological samples. For this purpose, different machine
learning classifiers were trained to classify persons into Parkinson’s disease or healthy
control groups based on a published cerebrospinal fluid metabolomics data set to test
the power of these algorithms in terms of biological information [36]. Before training the
machine learning classifiers, the three batch-effect correction methods had been applied
to normalize the data based on intermittently recorded QCs. The stratification perfor-
mance of these classifiers indicates whether a batch-effect correction method reduces or
increases the predictability of phenotypes by interfering biological information. After
correction for batch effects by the three methods, we at first removed metabolites that
were not accepted by our quality criteria (RSD < 30% and D-ratio < 50%). For the median
normalization, 52 metabolites passed the quality acceptance criteria (37.1% of all detected
metabolites), 66 for QC-RSC (47.1% of all detected metabolites), and 103 for TIGER (73.6%
of all detected metabolites).

Next, we selected the metabolic features to train the model on using recursive feature
elimination (RFE). This method trains the model on the full number of features and assigns
each feature an importance metric. The least important features are removed, and the pro-
cess is repeated until a pre-defined number of features will be reached. Here, ten features
were selected for each corrected data set by RFE, resulting in three sets of features. Citra-
malate, pyroglutamate, tryptophan, urea, and glycine were present in all three feature sets
and, finally, were used to train the classification models. Here, we focus on three popular
probabilistic classifiers, namely boosted Logistic Regression (LogitBoost), Random Forest
(RF), and radial kernel Support Vector Machine (svmRadial). For the optimal evaluation
of the classifiers, we performed a double repeated cross-validation (CV) approach with
two loops. The outer loop generates 100 random splits of training and hold-out sets. The
inner loop is used to tune the models’ hyperparameters on the training data by maximizing
the Area under the Receiver Operating Characteristic curve (AUROC) with repeated CV
(10 repeats, 5 folds). The model with the highest AUROC in the CV then predicts the
patients’ class of the hold-out set. The results of the predictions is shown in Figure 5. Based
on the ROC curve evaluation, the models trained on the TIGER corrected data reached
the highest AUROC for each classifier (0.979± 0.021 for LogitBoost, 0.969± 0.009 for RF,
0.958± 0.016 for svmRadial), followed by the models trained on the data corrected with
QC-RSC (0.963± 0.019 for LogitBoost, 0.893± 0.025 for RF, and 0.889± 0.026 for svmRadial).
The worst performance was observed for the classifiers trained on the median-corrected
data (0.760± 0.008 for LogitBoost, 0.841± 0.011 for RF, and 0.820± 0.021 for svmRadial).

In summary, TIGER performed best for the batch-effect correction in our evaluation
reflected in the lowest RSD, D-ratio, and median Euclidean distance of QC samples in the
PCA. This was also the reason why many more metabolites passed our predefined quality
criteria and remained in the data set for further analysis. In addition, the performance of
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machine learning classifiers trained on the data set corrected with TIGER demonstrated
the best performance, emphasizing that this batch-effect correction method captures the
inter-phenotype information present in the data in the most optimal way. All in all, we
recommend using TIGER as the preferred method for the batch effect correction due to the
minor loss of metabolic information. On the other hand, QC-RSC is in the advantage for the
normalization of very large cohorts, as the computation costs of TIGER are relatively high.

LogitBoost Random Forest svmRadial

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

1 − Specificity

S
en

si
tiv

ity

Median

QC−RSC

TIGER

Final Predictions on Hold−out Set

Figure 5. Results of machine learning classifier on corrected data sets. The performance of three
probabilistic classifiers were evaluated on predicting the phenotype based on the metabolic signature
of CSF samples. The classes of Parkinson’s disease and the healthy control had to be predicted. For
all three classifiers, the models trained on the TIGER-corrected data achieved the highest AUROC
(0.979± 0.021 for LogitBoost, 0.969± 0.009 for RF, and 0.958± 0.016 for svmRadial), followed by
the models trained on data corrected by QC-RSC (0.963± 0.019 for LogitBoost, 0.893± 0.025 for
RF, and 0.889± 0.026 for svmRadial). The models trained with the median-corrected data demon-
strated the worst performance (0.760± 0.008 for LogitBoost, 0.841± 0.011 for RF, and 0.820± 0.021
for svmRadial).

5. Advanced Strategies to Further Improve Metabolite Quantification and
Chromatogram Alignment

A prerequisite for the successful application of the above discussed batch-effect cor-
rection algorithms is an accurate chromatogram alignment and picking of quantification
peaks. The correct alignment of metabolite features across measurements is crucial for
an accurate quantification in the context of every metabolomics’ analysis. RT shifts of
molecular features within- and between batches can result in wrong alignments of metabo-
lite features, especially for closely eluting metabolites with similar or even identical mass
spectra, such as isomers. In the following, we present a strategy to screen and to correct
for quantification errors due to metabolite feature misalignments. We take advantage
of the fact that EI ionization generates highly reproducible fragmentation patterns for a
certain metabolite. We assume that an increased or decreased metabolite amount in the
sample affects all fragment ions equally, and that the same applies for a potential drop
in instrument sensitivity over time. Hence, the ratio of a pair of fragment ion intensities
must be identical for a certain metabolite over all measurements and independent of the
sample or instrument condition. As a demo data set, we chose a previously published
GC-MS-based metabolomics data set that was recorded for CSF samples in the context of
Parkinson’s disease [36].

Within this data set, gluconic acid elutes at 25.65 min and the peak integrals of fragment
ions 205, 305, and 333 were automatically assigned for quantification (Figure 6A). However,
two coeluting compounds produce ion chromatographic signals on SIC 205 at 25.5 and
25.88 as well (Figure 6B). Due to the close elution of these metabolites, there is a substantial
risk of picking the wrong peaks of this SIC for integration during automatic data processing.
Integrating the wrong peak of this SIC results in either lower or higher log-fold changes
of ion ratios, which can be indicative for a misalignment if laying outside the determined
outlier threshold (Figure 6C). In such a case, outlier values can either be removed from
the data set or imputed based on the quantification of the other metabolite ions (here
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305 and 333). Depending on the type of missing values, different imputation methods
should be chosen for optimal results. Here, the values are missing at random (MAR), due to
suboptimal data preprocessing. Therefore, we chose the Random Forest imputation method
that performed best for MAR [56,57]. For a detailed evaluation of imputation methods with
further types of missing values, we refer the reader to the paper of Wei et al. [57]. By taking
advantage of this approach, we identified 48 falsely picked peaks for gluconic acid out of
600 total measurements (Figure 6D). The imputation of metabolite signals based on the
other metabolite ions decreased the RSD for this metabolite by 12%.
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Figure 6. Identification of quantification errors in chromatograms of gluconic acid. (A) Mass spectrum.
(B) Selected ion chromatogram of mass 205. (C) Distribution of quantification ion ratios. Vertical
dotted lines depict the threshold of accepted values, which is calculated by the median signal
intensity ± three times the MAD. (D) Box plots of raw metabolite signals and imputed signals, based
on outlier detection.

6. Conclusions and Future Directions

In this article, we reviewed and evaluated three popular algorithms suited for the
elimination of mass spectrometric noise based on intermittently measured QC samples
in metabolomics studies with a high number of samples. Furthermore, we introduced
a strategy to improve chromatogram alignment and peak picking in GC-MS data. To
increase the quality of large metabolomics studies, an optimal workflow should include
the following steps: 1. Preparation of adequate QCs is essential for bigger cohorts. 2. The
sequence run should start with five to ten QC samples solely for equilibration of the
analytical system. 3. The sequence of sample measurements should be random and at
least one QC sample should be measured in-between three to seven samples. In addition
there should be two QC samples at the sequence beginning and end. 4. For high sample
numbers, the sample blocks between QCs should be increased to avoid an unnecessary
extension in analysis time. For lower sample numbers, the sequence should contain at
least eight QCs (without the conditioning QCs). After data acquisition, the peak picking,
integration and mapping of metabolites should be verified. For this, we propose an easy-to-
implement method to check the quantification of metabolites based on log-fold changes
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of the quantification ions’ intensities. To advise which method to employ for the batch
effect removal, we evaluated three different methods: a median-based approach, QC-RSC,
and TIGER. Although all three methods significantly removed batch effects and drifts
in instrument sensitivity, TIGER always outperformed the other two methods. For this
reason and despite the high computational cost of this algorithm, we advise using TIGER.
Many more metabolites passed the quality criteria (RSD < 30% and D-ratio < 50%), and
overall separation between tested phenotypes was more evident, as highlighted in the
better performance of employed machine learning classifiers.

Untargeted metabolomics is an important tool for biomarker discovery, drug develop-
ment, and precision medicine. These fields rely heavily on large data sets to provide the
needed statistical power. Here, the machine learning approach with an ensemble learning
architecture has been proven to be the most promising tool for batch-effect correction.
Therefore, the performance of batch-effect correction could be further improved by apply-
ing deep learning approaches. Furthermore, this could enable the comparison of untargeted
metabolomic studies between instruments, which opens the possibility of mining large
databases across studies. Potentially, this could lead to the identification of biological
mechanisms or biomarkers that would otherwise be hidden in smaller individual studies.
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