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Abstract: Survivors of acute radiation exposure are likely to experience delayed effects that manifest
as injury in late-responding organs such as the heart. Non-invasive indicators of radiation-induced
cardiac dysfunction are important in the prediction and diagnosis of this disease. In this study, we
aimed to identify urinary metabolites indicative of radiation-induced cardiac damage by analyzing
previously collected urine samples from a published study. The samples were collected from male
and female wild-type (C57BL/6N) and transgenic mice constitutively expressing activated protein
C (APCHi), a circulating protein with potential cardiac protective properties, who were exposed to
9.5 Gy of γ-rays. We utilized LC-MS-based metabolomics and lipidomics for the analysis of urine
samples collected at 24 h, 1 week, 1 month, 3 months, and 6 months post-irradiation. Radiation caused
perturbations in the TCA cycle, glycosphingolipid metabolism, fatty acid oxidation, purine catabolism,
and amino acid metabolites, which were more prominent in the wild-type (WT) mice compared to
the APCHi mice, suggesting a differential response between the two genotypes. After combining
the genotypes and sexes, we identified a multi-analyte urinary panel at early post-irradiation time
points that predicted heart dysfunction using a logistic regression model with a discovery validation
study design. These studies demonstrate the utility of a molecular phenotyping approach to develop
a urinary biomarker panel predictive of the delayed effects of ionizing radia-tion. It is important to
note that no live mice were used or assessed in this study; instead, we focused solely on analyzing
previously collected urine samples.

Keywords: metabolomics; radiation-induced cardiac dysfunction; non-invasive indicators; mouse
model; uri-nary metabolites; activated protein C (APCHi); ionizing radiation

1. Introduction

A complex cascade of molecular events is triggered as a consequence of exposure
to ionizing radiation (IR), which impacts metabolic activities and various physiological
functions. Acute radiation syndrome (ARS) usually manifests shortly after exposure as
hematopoietic and gastrointestinal syndrome depending on the dose and type of radi-ation.
Survivors of ARS are likely to experience delayed effects that can manifest as organ injury
to vital organs such as the heart, brain, lungs, and kidneys (also known as the delayed
effects of acute radiation exposure or DEARE) [1–3]. The degree and extent of tissue
damage are heavily dependent on the dose, dose rate, and duration of exposure to IR. The
time-dependent progression of organ injury remains asymptomatic in the latent period
as such a molecular phenotyping approach is attractive for identifying initial molecular
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alterations that are predictive of organ dysfunction before the appearance of gross clinical
symptoms [4–9].

Metabolomics is a promising approach to capturing radiation-induced metabolic
perturbations and identifying early indicators of radiation injuries [10]. In this study, we
leveraged a murine model of radiation exposure to identify bi-omarkers in urine that are
predictive of cardiac dysfunction at early time points post-irradiation. Activated protein
C (APC) is a vitamin-K-dependent natural protein in plasma that has anti-coagulant and
anti-inflammatory properties and is known to improve endothelial function through the
activation of several endothelial cell surface receptors [11]. APC has previously been
shown to have potent radiation mitigative effects in a mouse model of ARS [12]. We used a
transgenic mouse model that constitutively overexpresses APC, hence being termed APCHi
mice [13,14] to show the sex-dependent effects of APC upregulation on radiation-induced
cardiac dysfunction [15]. In this prior study, we found that for a single dose of 9.5 Gy
γ-rays, with hind-leg shielding from radiation to allow long-term survival, the APCHi
genotype had no effect on radiation-induced changes in cardiac function but caused a
more severe increase in radiation-induced cardiac collagen deposition compared to the WT
genotype in female mice, while protecting female mice from a radiation-induced decrease
in cardiac microvascular density. In the current study, we used urine samples obtained
from these same sham-irradiated and irradiated mice to determine whether differences in
radiation-induced cardiac outcomes in APCHi mice are reflected in an altered metabolic
response post-IR.

In previous studies, we have demonstrated IR-induced perturbations in plasma,
plasma-derived extra-cellular vesicles, and tissue samples using LC-MS-based
metabolomics [16–19]. The present study was designed with several objectives: firstly
to identify the metabolic consequences of irradiation and to identify the impact of geno-
type as well as sex on radiation response over time. Additionally, to assess the feasibility
of using urine me-tabolites as predictive biomarkers, we performed correlative analyses
of metabolomics data with heart dysfunction indicators (increased collagen deposition,
reduced capil-lary density, reduced ejection fraction, and/or altered mitral valve E/A ratio)
as deter-mined by histology and cardiac ultrasound at 6 months post-irradiation. We posit
that a metabolomics-based molecular phenotyping approach could be used as a predictive
tool to pre-emptively identify individuals at risk of radiation-induced organ injury. To our
knowledge, this is the first study to develop a urine metabolomics-based prediction model
for radiation-induced cardiac injury using a logistic regression model. The workflow of the
study is illustrated in Figure 1.



Metabolites 2023, 13, 525 3 of 14Metabolites 2023, 13, x FOR PEER REVIEW  3  of  14 
 

 

 

Figure 1. Flowchart outlines the framework of our metabolomics-based biomarker study aimed at 

predicting radiation-induced heart dysfunction. We utilized a cohort of 33 wild type mice and 34 

APCHi mice, which included both irradiated and sham mice. Out of the 50 mice exposed to radia-

tion and evaluated  for cardiac dysfunction outcomes, 18 mice had normal results while 32 mice 

showed signs of cardiac dysfunction. Models were developed using a training dataset of 25 mice, 

and the test dataset of 25 mice was used to calculate the AUC and evaluate the risk score for radia-

tion-induced heart injury. 

2. Material and Methods 

2.1. Animal Procedures 

Animal purchase, housing, irradiation, and assessment of cardiac function and his-

tology were completed in a prior study [15]. All urine samples used in this study were 

collected from a previous publication, and no live mice were used or assessed. All animal 

work was performed at the University of Arkansas for Medical Sciences (UAMS) under 

approved  IACUC protocols  (#3763 and 3982). A detailed description of  the methods  is 

provided in a previous publication [15]. 

Briefly, male and female WT or APCHi mice on a C57BL/6N background were sub-

jected to partial body irradiation at a single dose of 9.5 Gy (cesium-137 source, Mark 1, 

Model  68A,  JL Shepherd & Associates, San Fernando, CA, USA), with both hind  legs 

shielded from radiation. Sham-irradiated mice received the same treatment but were not 

exposed to radiation. Dosimetry was performed with Gafchromic film (DOSE-MAP, Ash-

land Specialty Ingredients, Wayne, NJ, USA) and an ion chamber (Exradin A20, Standard 

Imaging, Middleton, WI, USA) and electrometer (X4000, Standard Imaging) that are cali-

brated  for  γ-rays once a year. Cardiac dysfunction was defined using previously pub-

lished data based on the following criteria: mitral valve E/A ratio below 1.3 or above 2.3, 

Figure 1. The flowchart outlines the framework of our metabolomics-based biomarker study aimed
at predicting radiation-induced heart dysfunction. We utilized a cohort of 33 wild type mice and
34 APCHi mice, which included both irradiated and sham mice. Out of the 50 mice exposed to
radiation and evaluated for cardiac dysfunction outcomes, 18 mice had normal results while 32 mice
showed signs of cardiac dysfunction. Models were developed using a training dataset of 25 mice, and
the test dataset of 25 mice was used to calculate the AUC and evaluate the risk score for radiation-
induced heart injury.

2. Materials and Methods
2.1. Animal Procedures

Animal purchase, housing, irradiation, and assessment of cardiac function and his-
tology were completed in a prior study [15]. All urine samples used in this study were
collected from a previous publication, and no live mice were used or assessed. All animal
work was performed at the University of Arkansas for Medical Sciences (UAMS) under
approved IACUC protocols (#3763 and 3982). A detailed description of the methods has
been provided in a previous publication [15].

Briefly, male and female WT or APCHi mice on a C57BL/6N background were sub-
jected to partial body irradiation at a single dose of 9.5 Gy (cesium-137 source, Mark 1,
Model 68A, JL Shepherd & Associates, San Fernando, CA, USA), with both hind legs
shielded from radiation. Sham-irradiated mice received the same treatment but were
not exposed to radiation. Dosimetry was performed with Gafchromic film (DOSE-MAP,
Ashland Specialty Ingredients, Wayne, NJ, USA) and an ion chamber (Exradin A20, Stan-
dard Imaging, Middleton, WI, USA) and electrometer (X4000, Standard Imaging) that
are calibrated for γ-rays once a year. Cardiac dysfunction was defined using previously
published data based on the following criteria: mitral valve E/A ratio below 1.3 or above
2.3, ejection fraction ≤40, cardiac collagen content above 25%, or the number of myocardial
capillaries/areas ≤0.0038 [15].
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All urine samples were collected in the morning, between 8 a.m. and 10 a.m. Each
mouse was carefully picked up and held vertically, and their abdomen was briefly stroked.
In that position, the mice released urine, which was collected in an Eppendorf tube and
immediately placed on ice. Within one hour of collection, the samples were centrifuged
at 2700× g for 5 min and the supernatant was flash frozen and stored at −80 ◦C until
metabolomics. Urine samples were collected at 5-time points: 24 h, 1 week, 1 month,
3 months, and 6 months post-irradiation in Eppendorf tubes, centrifuged and aliquoted.
Urine samples were stored at −80 ◦C until LC-MS analysis.

2.2. Chemicals

All LC-MS grade solvents including acetonitrile and water were purchased from
Fisher Optima grade, Fisher Scientific (Pittsburgh, PA, USA). High purity formic acid (99%)
LC–MS grade methanol, dichloromethane, and ammonium acetate were purchased from
Fisher Scientific and HPLC grade 1-propanol, debrisoquine, and 4-nitrobenzoic acid were
purchased from Sigma-Aldrich (Saint Louis, MO, USA). Milli-Q water was obtained from
an in-house Ultrapure Water System by EMD Millipore (Billerica, MA, USA). The Lipidyzer
isotope-labeled internal standards mixture consisting of 54 isotopes from 13 lipid classes
was purchased from SCIEX (Framingham, MA, USA).

2.3. Targeted Metabolomics Analysis

The targeted metabolomics method was developed in-house to quantitate 270 endoge-
nous molecules using a QTRAP® 5500 LC-MS/MS System (SCIEX). For this purpose, 10 µL
of each urine sample was extracted in 50 µL of chilled isopropanol containing internal
standards (debrisoquine 200 ng/mL for positive mode and taurine-d4 200 ng/mL for
negative mode). The samples were vortexed for 1 min and kept on ice for 30 min. The
samples were incubated at −20 ◦C for 2 h for complete protein precipitation. The samples
were centrifuged at 13,000 rpm for 20 min at 4 ◦C. The supernatant was transferred to
an MS vial for LC-MS analysis. Exactly 5 µL of the prepared sample was injected onto a
Kinetex 2.6 µm 100 Å 100 × 2.1 mm (Phenomenex, CA, USA) using a SIL-30 AC autosam-
pler (Shimazdu, Kyoto, Japan) connected with a high flow LC-30AD solvent delivery unit
(Shimazdu) and CBM-20A communication bus module (Shimazdu) online with QTRAP
5500 (SCIEX) operating in positive and negative ion mode. A binary solvent comprising
water with 0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent
B) was used. The extracted metabolites were resolved at a 0.2 mL/min flow rate starting
with 100% of solvent A and holding for 2.1 min and moving to 5% of solvent A over a
time period of 12 min and holding for 1 min and equilibrating to initial conditions over
a time period of 7 min using an autosampler temperature of 15 ◦C and an oven temper-
ature 30 ◦C. The source and gas setting for the method were as follow: curtain gas = 35,
CAD gas = medium, ion spray voltage = 2500 V in positive mode and −4500 V in neg-
ative mode, temperature = 400 ◦C, nebulizing gas = 60 and heater gas = 70. The data
were normalized to the internal standard area and processed using MultiQuant 3.0.3
(SCIEX). To ensure the high quality and reproducibility of the LC-MS data, the column
was conditioned using pooled QC samples initially, and the pooled QC samples were also
injected periodically (after every 10 sample injections) to monitor shifts in signal inten-sities
and retention time.

2.4. Targeted Lipidomics Analysis

Lipids were extracted from 50 µL of urine using the modified Bligh-Dyer method [20].
The frozen urine samples were thawed at room temperature (25 ◦C) for 30 min and vor-
texed; 50 µL of each urine sample was transferred to a borosilicate glass culture tube
(16 × 100 mm). Next, 950 µL of water, 2 mL of methanol, and 900 µL of dichloromethane
were added to all of the samples. The mixture was vortexed for 5 s and 50 µL of the
isotope-labeled internal standards mixture was added to the tube. Over 50 stable isotope
labeled internal standards spanning all 13 lipid classes were added to each sample prior
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to extraction for accurate quantitation. The samples were left to incubate at room tem-
perature for 30 min. Next, another 1 mL of water and 1 mL of dichloromethane were
added to the tube, followed by gentle vortexing for 5 s, and centrifugation at 2500× g at
15 ◦C for 10 min. The bottom organic layer was transferred to a new tube and 1 mL of
dichloromethane was added to the original tube for a second extraction. The combined
extracts were concentrated under nitrogen and reconstituted in 250 µL of the running
solution (10 mM ammonium acetate in 50:50 methanol: dichloromethane) and analyzed
using DI-MS/MS with differential mobility spectrometry (DMS) separation. Quantitative
lipidomics was performed on the Lipidyzer platform consisting of Shimadzu Nexera X2
LC-30AD pumps, a Shimadzu Nexera X2 SIL-30AC autosampler, and a QTRAP® 5500 mass
spectrometer equipped with SelexION® for DMS (SCIEX). The samples were introduced to
the mass spectrometer by flow injection analysis at 8 µL/minute. The urine samples were
analyzed using the direct infusion-tandem mass spectrometry (DI-MS/MS) Lipidyzer plat-
form (SCIEX). Lipid molecular species were measured using multiple reaction monitoring
(MRM) and positive/negative polarity switching. MRM transitions for a total of 1070 lipids
and fatty acids were targeted in the analysis. The data were acquired and processed using
Multiquant 3.0.3 (SCIEX) and Lipidomics Workflow Manager 1.0.5.0 (SCIEX). The results
provided the concentration (µM) and fatty acid composition (mol%) of total lipid classes as
well as individual lipid species.

2.5. Data Processing and Statistical Analysis

A targeted LC-MS-based metabolomics and lipidomics approach was employed to
quantify the abundance of urinary metabolites in both positive and negative modes. The
metabolite intensity was normalized to internal standards and further processed using
advanced data pre-processing techniques including log transformation and Pareto scaling.
Differential expression of each metabolite was calculated using a rigorous statistical analysis
approach, incorporating an unpaired t-test, and considering multiple confounding factors
such as sex and genotype with a significance threshold of p < 0.05. To ensure the robustness
and accuracy of the data, stringent quality control measures were implemented, includ-
ing the application of a 20% coefficient of variation filter criteria [21] and missing value
imputation techniques such as the half min algorithm. Additionally, analytical drift was ef-
fectively corrected using the quality control sample based robust LOESS (locally estimated
scatterplot smoothing) signal correction (QC-RLSC) method, resulting in highly reliable
and accurate data for the identification of biomarkers associated with radiation-induced
cardiac dysfunction.

3. Results
3.1. Radiation Induces a Robust Metabolic Response in the Urine Samples of Mice in a
Time-Dependent Manner

Two groups of mice were utilized in this metabolomics study. The first group consisted
of C57BL6/N WT mice, with a total sample size of n = 33, stratified by sex with n = 20 males
and n = 13 females. These mice were further divided into radiation-exposed (9.5 Gy γ-rays)
and sham-treated subgroups. The second group consisted of transgenic APCHi mice, with
a total sample size of n = 34, also stratified by sex with n = 17 males and n = 17 females.
These mice were also divided into radiation-exposed (9.5 Gy) and sham-treated subgroups.
Longitudinally collected urine samples—(24 h, 1 week, 1 month, 3 months, and 6 months
post-irradiation) were subject to LC–MS-based targeted metabolomic and lipidomic anal-
yses in order to delineate longitudinal metabolic alterations that accompany exposure to
IR. The LC-MS data from the in-house developed targeted metabolomic panel was pre-
processed using MultiQuant 3.0.3 software (SCIEX) which yielded 425 metabolites and
lipid features that were selected for downstream statistical analyses. First, we assessed all
of the mice, combining their genotypes and sex. The urine samples showed dysregulation
of multiple metabolites and lipids at the early time point (24 h); however, most of these
metabolic dysregulations stabilized at the later time points (Supplementary Table S1). Sev-
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eral metabolites showed oscillatory patterns of urinary abundance. For example, urinary
levels of acetyl-CoA and ascorbate showed a significant increase at 24 h after irradiation
but a decrease at 1 month and 3 months, suggesting early changes in energy metabolism
and oxidative stress. We also observed a decline in the levels of cholesterol esters (CEs) and
cysteine while the levels of triacylglycerols (TAGs), ceramide (16:0), sphingomyelin (26:1),
diacylglycerol (DAG 18:1/22:6), hexosyl ceramide (HCER), and amino acid conjugates
(O-Acetylserine, N-Glycyl-L-proline) were upregulated. At 6 months post-irradiation, we
observed a decrease in CER (16:0), oxoglutarate, phenyl propionic acid, n-acetyl alanine,
and TAG. These results suggest that metabolic shifts persist for months after irradiation.

3.2. Genotype Impacts the Response to Radiation Injury

Next, we asked if radiation response was modulated by genotype; hence we com-
pared the urinary metabolic profiles of the sham and irradiated C57BL6N and APCHi
mice separately (Supplementary Tables S2 and S3). The results indicate that there is a clear
difference in radiation response between WT and APCHi mice at the metabolic level over
time. For example, there was a decrease in the levels of certain compounds such as TAGs
and an increase in the levels of other compounds such as CE, betaine, pyrophosphate,
acetyl-CoA, orotate, pyridoxamine, xanthosine, ascorbate, and amino acid/conjugates
(cysteine, aminoadipate, o-acetylserine, N-acetyl glutamine, and 3-methylamino-l-alanine)
at 24 h post-irradiation in the WT mice, many of which were persistent throughout the
6-month follow-up period of the study. In contrast, APCHi mice showed fewer metabolic
perturbations at this time point, suggesting they have better recovery mechanisms. This is
illustrated in the raindrop plot (Figure 2) of temporal changes in the metabolic response of
both genotypes. The differences between WT and APCHi mice seen at 24 h but also later
time points do not exclude the possibility that APCHi mice are more resistant to radiation
and/or have better recovery mechanisms.
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Figure 2. Raindrop illustration of metabolites altered in urine at different time points in Wild Type
(Panel A) and APCHi (Panel B) mice. The colors of each circle represent fold change, with red
representing an increase and blue representing a decrease. The size of the circle represents the level
of statistical significance, with larger circles indicating greater statistical significance.
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3.3. Sex Impacts the Response to Radiation Injury

Next, we sought to investigate the effect of radiation on urinary metabolic profiles
considering sex as a biological variable. A Venn diagram detailing the unique biomarkers
of radiation response specific to each group, comparing radiation to sham, dependent
and independent of sex and genotype, 24 h and 1 week after irradiation, is shown in
Figures 3 and 4.
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In the female mice, we observed upregulation of acetyl-CoA and pyrophosphate,
key intermediates in the citric acid cycle or TCA cycle. Furthermore, we observed a
downregulation of acetylphosphate and oxoglutarate, indicating a decrease in energy
production, and changes in the levels of lipids such as DAG and a decrease in others such
as N-acetylornithine and TAG.

In contrast, in the male mice, we observed a decrease in methylphenylacetate levels
at 24 h post-irradiation, together with an increase in LCER (16:0) and several amino acids
and conjugates. After one month, we observed an increase in ascorbate, CE, indole-3-
carboxylic acid, cysteine, N-acetylglutamine, and oxoglutarate. At the 3-month time point,
we observed an increase in ADP, LCER, and cysteine levels.

These findings suggest that the energy metabolism pathways and amino acid metabolism
pathways are affected differently between female and male mice upon irradiation. The
upregulation of TCA cycle intermediates in the female mice suggests increased energy pro-
duction and the increase in certain amino acids and conjugates, such as cysteine, suggests
increased protein synthesis and repair.

3.4. Prediction Model for Radiation-Induced Cardiac Dysfunction

We used the urinary metabolomics data to determine whether urine metabolite profiles
may serve as predictors of late radiation effects in the heart. For all the mice included
in this study, at 6 months after irradiation, cardiac ultrasound and histological staining
were used to measure ejection fraction, mitral valve E/A, cardiac collagen deposition, and
myocardial capillary density. Those results were published previously [15]. We defined
heart dysfunction if any one of the following conditions was satisfied: (1) mitral valve
E/A below 1.3 or above 2.3 (for this parameter, both low and high extreme values are an
indication of cardiac dysfunction); (2) ejection fraction ≤40; (3) cardiac collagen content
above 25% as an indicator of myocardial radiation fibrosis; or (4) the number of myocardial
capillaries/areas ≤0.0038, a common manifestation of adverse myocardial remodeling in
the irradiated heart [22]. Test statistics for heart dysfunction were determined as a binary
outcome (yes vs. no) (Supplementary Table S4).

A logistic regression model was developed to relate urinary metabolite profiles at
1 week and 1 month after irradiation to heart dysfunction (yes or no) at 6 months. To focus
on the effect of radiation exposure, we combined the both genotypes and the sex of the
mice. Therefore, our study included a cohort of 50 mice who were exposed to ra-diation
and had their cardiac dysfunction outcomes measured. Among them, 18 mice showed
normal results while 32 mice displayed signs of cardiac dysfunction. The data were split
into a training and testing set in a 1:1 ratio.

The logistic regression model demonstrated high predictive accuracy for heart dys-
function with an area under the curve (AUC) greater than 0.8 using a test valida-tion study
design. Cross-validation was conducted to calculate true positive rates and false positive
rates, and a receiver operating characteristic (ROC) curve was constructed to estimate the
model’s performance (Figure 5a,b). The models were trained and tested using a discovery
set, resulting in an AUC of 0.917 and 0.908 for the 1-week and 1-month models, respectively.
These models were then used to generate risk scores, which were calculated as linear
combinations of the concentrations of the selected metabolites. The performance of these
models was evaluated on subsets of 1-week and 1-month post-irradiation data, with AUC
values indicating high predictive accuracy for heart dysfunction.

The five metabolites that were found to fit the regression model (Table 1) at 1 week (SM
(22:0), homocysteine, TAG56:7-FA20:4, palmitoleic acid (FFA C16:1), and SM (24:0)) and the
1-month model (anthranilic acid, TAG54:4-FA16:0, CE (22:6), spermidine, and mesaconic
acid) are involved in the structural integrity of the cell membrane, inflammation, energy
production, and cellular growth regulation and could have implications for heart function
or injury. However, it is important to note that the mechanistic role of these metabolites
should be further validated with more research.
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Figure 5. Urinary metabolite predictors of cardiac dysfunction. The prediction of cardiac dysfunction
using urinary metabolite predictors developed through logistic regression modeling. A cohort
of 50 mice, including 33 wild-type and 34 APCHi mice exposed to radiation, had their cardiac
dysfunction outcomes measured, with 18 mice showing normal results and 32 mice displaying
signs of cardiac dysfunction. The data were split into a 1:1 ratio for training and testing sets. The
1-week model panel included SM(22:0), homocysteine, TAG56:7-FA20:4, FFA(16:1), and SM(24:0),
while the 1-month model panel consisted of anthranilic acid, TAG54:4-FA16:0, CE(22:6), spermidine,
and mesaconic acid. Cross-validation was used to calculate true positive rates and false positive
rates, and a ROC curve for training set (Panel a) and testing set (Panel b) was drawn to estimate the
model’s performance.

Table 1. Fold Changes and Test Statistics of Key Metabolites in the 1-Week and 1-Month Regres-
sion Models.

1 Week Regression Model

Name p-Value FDR Fold Change Log2(FC)

FFA(16:1) 0.00031 0.067 0.493 −1.020
Homocysteine 0.00083 0.081 0.375 −1.415
TAG56:7-FA20:4 0.00114 0.081 1.883 0.913
SM(24:0) 0.00056 0.079 2.385 1.254
SM(22:0) 0.00003 0.011 2.314 1.211

1 Month Regression Model

Name p-Value FDR Fold Change Log2(FC)

TAG54:4-FA16:0 0.00077 0.327 2.094 1.067
Spermidine 0.00709 0.511 0.670 −0.578
CE(22:6) 0.00929 0.511 2.981 1.576
Anthranilic acid 0.03527 0.511 0.660 −0.601
Mesaconic acid 0.22154 0.595 1.392 0.477

4. Discussion

Exposure to non-lethal doses of IR can trigger complex cellular responses, leading to
alterations in metabolomic profiles that are dependent on the type and dose of radiation.
This occurs in part, due to the production of reactive oxygen species that interact with
cellular components such as proteins and lipids, leading to inflammatory and cellular
repair responses [23–28].
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The availability of urinary biomarkers for predicting radiation-induced cardiac in-
jury has important clinical implications. Urine collection is a non-invasive procedure
that is ideal for delineating individuals at risk of radiation-induced organ injury in a ra-
diological scenario. Urine tests, are routinely used in the clinic to diagnose an array of
patho-physiologies including urinary tract infections, kidney disease, and bladder can-
cer among others. Our findings highlight the potential of using urinary metabolomic
biomarkers to identify patients at risk of radiation-induced cardiac injury, allowing for
early intervention and personalized treatment strategies. Understanding the biological
effects of radiation exposure is especially important in today’s world due to a variety of
factors such as the increased use of radiation in medical treatments, occupational exposure,
and the potential risk of radiological incidents or accidents [29–31]. The discovery of
urinary biomarkers for radiation-induced cardiac injury has the potential to improve the
safety and efficacy of radiation therapy, improve radiation protection for nuclear industry
workers, and contribute to the development of countermeasures in the event of a radio-
logical emergency. Furthermore, research into radiation-induced injury has far-reaching
implications for understanding the mechanisms of tissue damage and repair, as well as
identifying novel therapeutic targets for a variety of diseases.

Urinary metabolomics has evolved as one of the most promising biomarker plat-forms
since urine is one of the most accessible fluids and has a quite stable matrix compared to
other bio-fluids [32]. Lipidomic analysis of urine may provide further insights into our
understanding of various biological processes, particularly those related to cardiovascular
disease. Lipidomics enables the in-depth investigation of lipids, which are essential cellular
components that act as signaling molecules, energy sources, and structural building blocks.
Lipidomic analysis in the context of cardiovascular disease can help identify specific
lipid signatures, providing insights into disease mechanisms, progression, and potential
therapeutic targets. Herein, we collected urine samples at various time points and used LC-
MS-based targeted metabolomic and lipidomic analyses to identify longitudinal metabolic
changes that follow exposure to IR. Our working hypothesis was that urinary metabolite
profiles may depend on sex, and genotype and may predict the development of cardiac
radiation injury. At 6 months post-irradiation in WT mice, a persistent decrease in certain
ceramides, oxoglutarate, phenyl propionic acid, n-acetyl alanine, and TAGs was observed,
indicating that metabolic shifts persist months after the initial exposure to radiation and
can lead to the development of late radiation toxicities to tissues or organs.

While plasma APC levels were not measured in this study, our study also found that
genotype plays a significant role in determining the response to radiation injury. The
irradiated WT mice showed persistent changes in several metabolites, including those
associated with fatty acid metabolism. Upregulation of free fatty acids may contribute to
inflammation and oxidative stress, which are known to play a role in both radiation toxicity,
oxidative stress [33], and cardiac dysfunction [34]. Similarly, changes in SM and ceramides
may reflect an effect of IR on cell membrane function [35]. On the other hand, the APCHi
mice exhibited fewer pronounced metabolic perturbations, suggesting that the APCHi mice
are more resilient to IR injury and have better recovery mechanisms.

Our analysis also revealed that the response to IR is affected by sex. Specifically,
the upregulation of L-carnitine observed only in female mice at 24 h post-IR might have
been related to estrogen levels [36]. On the other hand, dysregulation of L-acetyl carni-
tine was specific to male mice. Carnitines are involved in the mitochondrial oxidation of
fatty acids, and radiation-induced dysregulation in carnitines can perturb mitochondrial
function [37–39]. The downregulation of these carnitines may indicate a decrease in mito-
chondrial function or accelerated aging [37,40,41]. Homocysteine was observed as a specif-
ically perturbed metabolite in female mice at the 1-month time point. Homocysteine has
been implicated in oxidative stress and has been found to correlate with cardiovascular
disease [42–44]. Altogether, our findings suggest that sex plays a significant role in the
response to IR. Further research is needed to understand the underlying mechanisms of
these sex differences.
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Currently, only a limited number of radiological and clinical parameters are used to
identify IR-exposed individuals at high risk of heart abnormalities, and novel approaches
for early detection and prediction are needed. We developed a statistical regression model
to relate urine metabolomics data (1 week and 1-month post-IR) to late outcomes of cardiac
dysfunction (6 months).

One of the primary goals of this study was to identify a urinary metabolomic pattern
that could predict late radiation-induced cardiac changes. We used logistic regression as our
prediction model to accomplish this. Logistic regression is a popular statistical technique
for predicting the relationship between a binary outcome (in this case, the presence or
absence of radiation-induced cardiac dysfunction) and a set of predictor variables (urinary
metabolites in our study). This method was chosen for its ease of use, interpretability,
and robustness in dealing with potential confounding factors such as genotype and sex.
Furthermore, by incorporating variable selection techniques such as stepwise regression
or LASSO, logistic regression allows us to identify the most significant predictor variables
(metabolites), allowing us to create a parsimonious and easily interpretable model.

Logistic regression has several advantages over other prediction models found in the
literature. In some cases, machine learning techniques such as support vector machines
(SVM), random forests, or deep learning approaches, for example, may provide better
predictive performance. However, these methods frequently necessitate larger sample sizes,
are more computationally intensive, and can be less interpretable, making understanding
the underlying biological mechanisms difficult. Furthermore, the use of these methods may
result in overfitting, especially when dealing with a large number of predictor variables
in comparison to the number of samples. In our study, logistic regression provided an
appropriate balance of model complexity, interpretability, and predictive performance.

The prediction model was based on five markers with high sensitivity, specificity,
and AUC. The pathway analysis showed that several of these metabolites are closely
linked with fatty acid oxidation and mitochondrial metabolism. Our panel also contained
TAGs, the main energy storage resource in mammals, with a central role in the balance of
lipid handling and signaling mechanisms. TAG dynamics are profoundly altered in both
pathologically stressed hearts and diabetics [45]. In addition, spermidine was identified,
a polyamine essential for the proper function of many metabolic processes and cellular
function, including the activation of autophagy, DNA stability, transcription, translation
and apoptosis [46]. Mesaconic acid, a biomarker of isovaleric academia may have been
formed from the metabolism of methylsuccinic acid in urine [47]. Lastly, palmitoleic acid
was included in the 1-week prediction model. Palmitoleic acid (FFA C16:1) plays a role in
cell functions such as growth and proliferation but also endoplasmic reticulum stress [48].
Palmitoleic acid is also postulated to have anti-thrombotic effects [49]. Exposure to 9.5 Gy
of X-rays resulted in only mild signs of cardiac toxicity, which is one limitation of our
study. In order to better understand the full spectrum of effects, future research should
include multiple radiation doses. Further studies with large animal models such as non-
human primates (NHPs) as well as clinical cohort studies are needed to test potential for
clinical translation. However, the findings from our study provide a proof of concept of
using a molecular phenotyping approach for preemptively identifying at-risk individuals
as a ground-work for future clinical trials and to further investigate the implications of
this study.

5. Conclusions

In conclusion, our study demonstrates longitudinal genotype and sex specific changes
in urine metabolites after exposure to IR and shows the potential of utilizing metabolomics
as a high-throughput, cost-effective approach for biomarker discovery to predict radiation-
induced heart dysfunction. The lipidomic analysis presented in this study has provided
important insights into the role of lipid metabolism in predicting radiation-induced cardiac
injury. Further validation studies with larger sample sizes will be essential in develop-
ing a robust biomarker panel for early prediction of cardiac dysfunction and radiation
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injury. The methods for early prediction of cardiac dysfunction presented here may also
be incorporated into future research involving the combination of radiomics and other
“omics-approaches” for improved accuracy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13040525/s1, Table S1: List of dysregulated metabolites
following exposure to 9.5 Gy of Gamma-radiation, 24 h, 1 week, 1 month, 3 month and 6 months
post-irradiation. Table S2A: List of dysregulated metabolites for female, male, Wild type and APCHi
mice following exposure to 9.5 Gy of Gamma-radiation, 24 h post-irradiation showing penotype
dependent response of radiation. Table S2B: List of dysregulated metabolites for female, male, Wild
type and APCHi mice following exposure to 9.5 Gy of Gamma-radiation, 1 week post-irradiation
showing penotype dependent response of radiation. Table S2C: List of dysregulated metabolites for
female, male, Wild type and APCHi mice following exposure to 9.5 Gy of Gamma-radiation, 1 month
post-irradiation showing penotype dependent response of radiation. Supplementary Table S2D:
List of dysregulated metabolites for female, male, Wild type and APCHi mice following exposure
to 9.5 Gy of Gamma-radiation, 3 months post-irradiation showing penotype dependent response
of radiation. Supplementary Table S2E: List of dysregulated metabolites for female, male, Wild
type and APCHi mice following exposure to 9.5 Gy of Gamma-radiation, 6 months post-irradiation
showing penotype dependent response of radiation. Supplementary Table S3A: List of dysregulated
metabolites for female mice following exposure to 9.5 Gy of Gamma-radiation, 24 h, 1 week, 1 month,
3 month and 6 months post-irradiation. Supplementary Table S3B: List of dysregulated metabolites
for male mice following exposure to 9.5 Gy of Gamma-radiation, 24 h, 1 week, 1 month, 3 month and
6 months post-irradiation. Supplementary Table S3C: List of dysregulated metabolites for wildtype
mice following exposure to 9.5 Gy of Gamma-radiation, 24 h, 1 week, 1 month, 3 month and 6 months
post-irradiation. Table S3D: List of dysregulated metabolites for APCHi mice following exposure
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