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Abstract: Dietary sugar reduction is one therapeutic strategy for improving nonalcoholic fatty liver
disease (NAFLD), and the underlying mechanisms for this effect warrant further investigation.
Here, we employed metabolomics and metagenomics to examine systemic biological adaptations
associated with dietary sugar restriction and (subsequent) hepatic fat reductions in youth with
NAFLD. Data/samples were from a randomized controlled trial in adolescent boys (11–16 years,
mean ± SD: 13.0 ± 1.9 years) with biopsy-proven NAFLD who were either provided a low free-
sugar diet (LFSD) (n = 20) or consumed their usual diet (n = 20) for 8 weeks. Plasma metabolomics
was performed on samples from all 40 participants by coupling hydrophilic interaction liquid
chromatography (HILIC) and C18 chromatography with mass spectrometry. In a sub-sample (n = 8
LFSD group and n = 10 usual diet group), 16S ribosomal RNA (rRNA) sequencing was performed on
stool to examine changes in microbial composition/diversity. The diet treatment was associated with
differential expression of 419 HILIC and 205 C18 metabolite features (p < 0.05), which were enriched
in amino acid pathways, including methionine/cysteine and serine/glycine/alanine metabolism
(p < 0.05), and lipid pathways, including omega-3 and linoleate metabolism (p < 0.05). Quantified
metabolites that were differentially changed in the LFSD group, compared to usual diet group, and
representative of these enriched metabolic pathways included increased serine (p = 0.001), glycine
(p = 0.004), 2-aminobutyric acid (p = 0.012), and 3-hydroxybutyric acid (p = 0.005), and decreased
linolenic acid (p = 0.006). Microbiome changes included an increase in richness at the phylum level
and changes in a few genera within Firmicutes. In conclusion, the LFSD treatment, compared to
usual diet, was associated with metabolome and microbiome changes that may reflect biological
mechanisms linking dietary sugar restriction to a therapeutic decrease in hepatic fat. Studies are
needed to validate our findings and test the utility of these “omics” changes as response biomarkers.

Keywords: sugar; fatty liver disease; obesity; pediatric; liquid chromatography-mass spectrometry

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is now the most common chronic liver
disease in children, especially in certain subgroups such as children with obesity, males, and
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Hispanic/Latinos [1,2]. NAFLD can progress to cirrhosis and end-stage liver disease, and is
associated with cardiometabolic abnormalities such as insulin resistance (IR), hypertension,
and dyslipidemia [3–5]. Therefore, early diagnosis and effective treatments are imperative
for preventing the progression of co-morbidities.

Currently, no recommended medications or supplements exist for pediatric NAFLD
beyond lifestyle modification for general weight loss, which has been shown to have mod-
erate success in reducing hepatic fat and alanine aminotransferase (ALT) [6–12]. Dietary
sugar restriction has been proposed as a particularly effective therapeutic strategy for
NAFLD. One short-term (9 day) intervention study in 41 children (9–18 years) with obesity
showed that dietary restriction of the free sugar fructose (~4% of total energy intake (TEI))
was associated with improvements in hepatic fat (from 7.2% to 3.8%), hepatic de novo
lipogenesis and insulin kinetics [13]. Aligning with this, we recently conducted an 8-week,
randomized, controlled intervention study in 40 adolescent boys (11–16 years) with NAFLD
to test the effect of dietary free sugar restriction on hepatic fat, and found that the diet treat-
ment group achieved a significantly greater reduction in hepatic fat (from 25% at baseline
to 17% at week 8) compared to usual diet (21% to 20%) [14]. Importantly, this reduction in
hepatic fat was independent of weight loss, suggesting that sugar restriction may influence
NAFLD outcomes through mechanisms beyond calorie restriction and energy balance; this
warrants further investigation.

Advances in “omics” technologies allow us to evaluate systemic biological alterations
related to health, disease, and therapeutics. High-resolution metabolomics (HRM) can be
used to examine the metabolic pathway alterations associated with hepatic fat and the re-
lated cardiometabolic dysfunction. As shown in several cross-sectional studies [15–21], the
metabolome of children with NAFLD is often characterized by elevated branched chain
and aromatic amino acids, glutamate, and short-chain acylcarnitines, decreased glycine and
glutamine, and disturbances in lipid metabolism, especially glycerophospholipids. The micro-
biome has also gained interest as a pathogenic factor in NAFLD, which may interact with the
metabolome via the gut-liver axis, given its role in nutrient digestion and absorption, immune
function, and gut barrier integrity. Indeed, cross-sectional studies have found that children
with NAFLD, compared to healthy children, have increased intestinal permeability [21] and
alterations in gut microbiota composition, including lower alpha diversity [22], as well as
differential abundance of specific microbial species particularly within Bacteroidetes, Firmicutes,
and/or Actinobacteria [22–25]. Data are lacking, however, from intervention studies in pedi-
atric NAFLD examining changes in these metabolome and microbiome alterations due to
treatment. Such prospective studies could provide needed insights into the responsiveness of
underlying disturbances and/or identify novel response biomarkers.

Therefore, the objective of this study was to evaluate both metabolome and microbiome
changes associated with a diet treatment-induced hepatic fat reduction in children with
NAFLD. To achieve this, we performed HRM on fasting plasma collected at baseline
and study completion from 40 adolescent boys with NAFLD who participated in the
randomized, controlled intervention study mentioned above that tested the effect of a
low free-sugar diet (LFSD) compared to a usual diet for 8 weeks [14]. In a sub-sample of
18 participants, we also performed 16S rRNA sequencing on stool at baseline and at week
8. Our hypothesis was that amino acid and lipid alterations detected by metabolomics
would be normalized and the diversity and composition of the gut microbiota would be
improved with the LFSD diet treatment.

2. Materials and Methods
2.1. Study Design

The parent study was an 8-week, randomized, controlled dietary treatment study
conducted in 40 adolescent boys (ages 11–16 years) with NAFLD. A detailed summary
of the study design, dietary treatment, and main findings of the parent study, as well as
baseline characteristics of the sample, have been reported elsewhere [14].
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Briefly, eligibility criteria included a clinical-pathological diagnosis of NAFLD by liver
biopsy, hepatic fat > 10% based on magnetic resonance imaging-proton density fat fraction
(MRI-PDFF), ALT > 45 U/L, and current sugar-sweetened beverage consumer (defined as
≥3, 8 fluid ounce drinks/week). Exclusion criteria included history of diabetes or other
chronic liver disease, history of significant alcohol use, or chronic use of medications known
to cause hepatic steatosis or steatohepatitis. Participants were randomized to either the
treatment group, which was provided a low free-sugar version of their habitual diet (goal:
<3% of TEI from free sugars) for 8 weeks, or the control group, which consumed their usual
diet for 8 weeks. The primary outcome of interest was change in hepatic fat measured by
MRI-PDFF from baseline to week 8.

As previously reported [14], provision of the LFSD resulted in a clinically significant
reduction in hepatic fat (from 25% at baseline to 17% at week 8), compared to usual diet
(from 21% at baseline to 20% at week 8). The LFSD treatment group, compared to the usual
diet control group, also experienced significantly greater improvements in ALT [14], as
well as other metabolic markers, including hepatic de novo lipogenesis (DNL) [26]. The
present study aimed to build on these prior findings and specifically assess the differential
metabolome and microbiome changes that occurred in the LFSD treatment group compared
to the usual diet control group, in parallel with the previously reported reduction in
hepatic fat. A summary of the workflow used in the study is shown in Figure 1. Written
informed consent was obtained from a parent or guardian, and assent was obtained from
the adolescent participants. Ethics approval was obtained from the institutional review
boards of the University of California San Diego, and Emory University.
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Figure 1. Workflow for participant inclusion in the present study. Metabolomics analysis was
performed by liquid-chromatography mass spectrometry (LC-MS), and microbiome analysis was
performed by 16S ribosomal RNA (rRNA) sequencing. Abbreviations: ALT, alanine aminotransferase;
TEI, total energy intake; LC-MS, liquid chromatography mass spectrometry; rRNA, ribosomal RNA.

2.2. High-Resolution Metabolomics

Blood samples were drawn at baseline and week 8 after an overnight fast. Plasma was
collected in EDTA-coated tubes, processed immediately, and stored at −80 ◦C. HRM was
performed on stored plasma samples using established liquid chromatography-mass spec-
trometry (LC-MS) methods by the Emory Clinical Biomarkers Laboratory [27,28]. Briefly,
plasma samples were randomized prior to analysis and analyzed in batches of 40 using a
dual chromatography platform. The platform consisted of hydrophilic interaction liquid
chromatography (HILIC) with positive electrospray ionization (ESI) and reverse phase
C18 chromatography with negative ESI, with detection by ultra-high resolution mass spec-
trometry (Q-Exactive HF Orbitrap, Thermo Scientific, San Jose, CA, USA). Each batch
included pooled human plasma (QStd-3) at the beginning, middle, and end. Raw data were
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extracted and aligned by an xMSanalyzer [29] with apLCMS [30], and batch correction was
performed using ComBat [31]. The result was a two-dimensional ‘feature table’ consisting
of 9865 HILIC/+ESI and 7280 C18/ESI−chemical features, defined by accurate mass-to-
charge ratio (m/z) and retention time (RT), and ion abundance in each sample, which are
referred to as m/z features hereafter. To minimize clustering effects by study site, both
datasets were normalized by site using ComBat [31]. Other data processing steps included
filtering if missing in >80% of samples (6259 HILIC/+ESI and 4009 C18/−ESI m/z features
were retained), log-transformation, and quantile normalization. Any remaining missing
values were assumed to be below the detection limit and were imputed with half the feature
minimum. We then calculated change values (week 8-baseline) using log-transformed
intensities of each m/z feature for later analyses.

2.3. 16S rRNA Sequencing

Fecal samples were collected by a sub-sample of participants enrolled at Emory Uni-
versity. Participants collected the samples at home using sterile tubes prior to the baseline
and week 8 study visits, and were stored at −80 ◦C until used. Microbial genomic DNA
was extracted from frozen fecal samples using a DNeasy PowerSoil kit (Cat#:12888-100, Qia-
gen, Germantown, MD, USA) according to the manufacturer’s instructions. Libraries were
prepared following Illumina’s 16S library preparation guide and Illumina’s Nextera Index
Kit (FC-121-1012). Microbial genomic DNA was quantified using a Qubit 2.0 Fluorometer.
The 16S variable region for each sample was amplified using 12.5 ng of microbial genomic
DNA. Sequencing was done at the Genomics core at the University of Louisville using a
Nano-300 cycle test chip (MS-103-1001) to confirm sample concentration, followed by Illumina
MiSeq Reagents kit v3 (600 cycles) (MS-102-3003) at 9 pM and 30% PhIX. Quality control
of raw sequence files was performed using FastQC (v0.10.1), and data were trimmed using
trimmomatic (v0.33) due to lower quality values for bases at the end of samples. Data were
then further analyzed using the QIIME 2 pipeline [32,33]. Briefly, sequences reads were
demultiplexed and denoised, and assigned to operational taxonomy units (OTUs) at 97%
similarity to the clustered Greengenes database [34]. To account for differences in raw se-
quences between samples, all taxonomic tables were normalized and log-transformed using
the following formula: Log10 [((Raw count in samplei/# of sequences in samplei) × Average
# of sequences per sample) + 1]. Similar to metabolomics data, we calculated change values
(week 8-baseline) for each taxa using log-normalized abundances. This was performed on
taxa present in >25% of samples to limit spurious associations. After this restriction, 56 OTUs,
38 genera, 22 families, nine classes, nine orders, and four phyla remained.

2.4. Other Relevant Assessments

A variety of clinical, laboratory, and dietary assessments were performed at baseline
and week 8, as previously described [14]. Notably, fasting blood was collected to assess
various laboratory markers, including liver enzymes [ALT, aspartate aminotransferase
(AST), and gamma-glutamyl transferase (GGT)], fasting glucose and insulin, and blood
lipids. Anthropometric assessments (height, weight, and waist circumference) were also
performed twice at each visit and averaged. To assess dietary intakes, three, 24-h dietary
recalls (2 weekday and 1 weekend day) were collected using the Nutrition Data System
for Research (version 2015, University of Minnesota, Minneapolis, MN, USA). Physical
activity was not assessed, but participants were asked not to make any major changes to
their physical activity routines during the study.

2.5. Statistical Analysis

Differential changes in the plasma metabolome were assessed using linear regression
models with the treatment group as the independent variable and the change value for each
m/z feature as the dependent variable. We also adjusted each model for baseline values for
each m/z feature. False discovery rate (FDR)-adjusted q-values were calculated based on
the Benjamini-Hochberg method to account for multiple testing [35]. Differentiating m/z
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features were entered into pathway analysis using Mummichog v2.0.6-beta (available at:
http://mummichog.org/; accessed 29 June 2020) [36]. Enriched pathways were selected
based on p < 0.05 in permutation-based testing and an overlap size ≥ 2 (i.e., at least two
differentiating m/z features were enriched in the pathway). To assess differential changes
in microbial composition and diversity, we first assessed beta-diversity by performing
principal coordinate analysis (PCoA) based on Bray-Curtis distance of the log-normalized
abundances using the “capscale” function of the R package vegan [37]. We next rarefied raw
counts using a subsample size equal to the sample with the fewest reads at each taxonomic
level using the “rrarefy” function of vegan, and assessed alpha diversity at each taxonomic
level using the Shannon diversity index, inverse Simpson index, and richness; evenness
was calculated as the Shannon Index divided by the natural log of richness. This process
was repeated 10 times, and the average value was used. Similar to the metabolomics data,
we constructed baseline-adjusted linear models to assess differences between groups in
change values for log-normalized abundances and diversity measures. Lastly, we examined
correlations between differentiating m/z features and differentiating taxa from 16S rRNA
sequencing using Kendall’s rank correlations. All analyses were carried out in RStudio
(v3.5.3). Figures were created using the R package ggplot2 [38].

2.6. Metabolite Annotation and Quantification

Differentially expressed m/z features were annotated using xMSannotator, a soft-
ware package that matches accurate masses to common positive and negative ion mode
adducts using the Human Metabolome Database (HMDB) [39], and scores all matches
from 0 (accurate mass match only) to 3 (high confidence match) based on a multifactorial
algorithm [40]. Annotations having an m/z and retention time of adducts, previously
confirmed by comparing ion dissociation and elution time to reference standards [41],
were considered Level 1 (“confirmed”) compounds according to criteria described by
the Metabolomics Standard Initiative (MSI) [42]. For all others, annotations with a score
of 2–3 in xMSannotator were Level 2 (“putative”) compounds, and annotations with no
match or a score of 0–1 in xMSannotator were Level 4 (“unknown”) compounds according
to MSI criteria. ClassyFire software [43] was used to group metabolites by compound class
for organizational purposes. We next used reference standardization methods to calculate
concentrations of selected metabolites with confirmed (Level 1 MSI) identities. Details of
this technique are reported elsewhere [41,44]. Briefly, concentrations were calculated using
single point calibration by multiplying the ion abundance for each metabolite by response
factors determined by dividing the known concentration of the metabolite in Q-std3 by its
ion intensity in Q-std3. For quality control purposes, the calculated concentrations of each
quantified metabolite were compared to previously reported values in HMDB.

3. Results

The mean age of participants was 13.0 ± 1.9 years. The majority of participants
were of Hispanic ethnicity (95%) and classified with overweight or obesity (98%). Eleven
participants (28%; four treatment participants and seven control participants) were diag-
nosed with biopsy-proven NASH at baseline. As previously described [14], most baseline
characteristics were similar in the LFSD treatment group compared to control group, in-
cluding BMI (mean ± SD: 33.7 ± 5.6 vs. 32.3 ± 6.3 kg/m2, respectively) and free-sugar
intake (10% TEI vs. 11% TEI, respectively). An exception was that average hepatic fat
(MRI-PDFF) was higher in the diet treatment group compared to control group at baseline
(mean ± SD: 25 ± 11% vs. 21 ± 8%, respectively).

After the 8-week treatment, free-sugar intake decreased to <1% TEI at week 8 in the
diet treatment group, compared to 10% TEI at week 8 in the control group. In parallel, the
diet treatment was associated with a greater mean decrease in hepatic fat from baseline to
week 8 (25% to 17%, respectively) than the control diet (21% to 20.0%, respectively) [14].

Characteristics of the sub-sample, who also provided fecal samples for 16S rRNA
sequencing, are shown in Table S1. Overall, characteristics of this sub-sample were similar

http://mummichog.org/
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compared to the full sample and there were no notable differences in any traits between
treatment groups.

3.1. Metabolome Changes Associated with the Low-Sugar Diet Treatment

A total of 419 m/z features from HLIC/+ESI and 205 from C18/−ESI were differen-
tially changed in the treatment compared to control group based on raw p < 0.05 in linear
regressions adjusted for baseline. Among these, 180 m/z features (122 from HILIC/+ESI
and 56 from C18/−ESI) were putatively annotated (Level 2) or confirmed (Level 1) based
on MSI criteria (Table S2). We summarize the mean change values for differentially changed,
confirmed (Level 1) m/z features in Table 1.

Table 1. Least squares (LS) mean change values and 95% CIs for select confirmed m/z features by
diet treatment group.

Control Group
(n = 20)

Treatment Group
(n = 20)

Column m/z b Time (s) Name Adduct Mean Change (95% CI) a Mean Change (95% CI) a p-Value

HILIC/
+ESI

104.0706 82.3 2-Aminobutyric acid M + H 0.00 (−0.15, 0.15) 0.28 (0.13, 0.44) 0.0122

106.0499 98.3 Serine M + H −0.03 (−0.11, 0.05) 0.11 (0.02, 0.19) 0.0245

118.0498 25.4 Acetylglycine M + H −0.15 (−0.38, 0.09) 0.21 (−0.03, 0.44) 0.0393

120.0032 86.3 Glycine M + 2Na-H −0.15 (−0.24, −0.07) 0.03 (−0.06, 0.11) 0.0043

126.022 87.6 Taurine M + H 0.28 (0.10, 0.46) −0.08 (−0.26, 0.10) 0.0059

147.0764 97.8 Glutamine M + H 0.05 (−0.02, 0.12) −0.06 (−0.13, 0.01) 0.0304

154.0587 84.6 Creatine M + Na −0.07 (−0.27, 0.13) 0.22 (0.03, 0.42) 0.0405

166.0856 72.7 Phenylalanine M + H 0.16 (0.07, 0.24) 0.01 (−0.08, 0.10) 0.0206

209.092 66.5 Kynurenine M + H 0.01 (−0.09, 0.12) −0.14 (−0.24, −0.03) 0.0442

269.2261 43.7 Vitamin A (Retinol) M + H-H2O 0.06 (−0.04, 0.15) −0.1 (−0.19, −0.01) 0.0196

365.105 103.7 Disaccharide M + Na 0.57 (−0.13, 1.28) −0.53 (−1.23, 0.18) 0.0323

524.3714 57.9 LysoPC(18:0) M + H −0.03 (−0.15, 0.10) −0.21 (−0.34, −0.09) 0.0403

C18/
−ESI

103.04 38.9 3-Hydroxybutyric acid M-H −0.05 (−0.23, 0.14) 0.35 (0.16, 0.54) 0.0051

147.0663 18.4 Mevalonic acid M-H −0.14 (−0.49, 0.21) 0.38 (0.03, 0.73) 0.0436

174.0561 46.5 Indole-3-acetic acid M-H −0.07 (−0.31, 0.16) 0.27 (0.03, 0.50) 0.0467

277.2173 226.8 Linolenic acid M-H 0.26 (0.09, 0.43) −0.09 (−0.26, 0.08) 0.0057

a Mean change values and 95% CIs were calculated as least squares means from linear regression models adjusted
for baseline values. b Only showing m/z features with differentially expressed change values between groups
based on p < 0.05 and with confirmed identities based on Level 1 MSI criteria. A full list of differentially
expressed m/z features with confirmed or putatively annotated identities is in Table S2. Abbreviations: HILIC,
hydrophilic liquid interaction chromatography; ESI, electrospray ionization; LysoPC, lysophosphatidylcholine;
MSI, Metabolomics Standard Initiative.

No differences remained significant after adjusting for multiple testing. Therefore, to
prioritize the most biologically relevant findings, we performed untargeted pathway analy-
sis in Mummichog based on the raw p < 0.05 cut-off to identify differentiating features. This
revealed significant enrichment in pathways involved in amino acid metabolism, includ-
ing methionine/cysteine, tryptophan, and glutamate metabolism, fatty acid metabolism,
including omega-3 fatty acid metabolism and linoleate metabolism, bile acid metabolism,
and vitamin B6 (pyridoxine) metabolism (all p < 0.05) (Figure 2).

To further interpret the findings in a clinical context, reference standardization was
used to estimate absolute concentrations for a subset of identified, differentiating metabo-
lites. The mean concentrations by treatment group and time are shown in Table S3. Rep-
resentative of the enriched amino acid pathways above, the treatment compared to con-
trol group had increased levels of serine, glycine, acetylycine, and 2-aminobutyric acid
after 8 weeks, as well as decreased kynurenine and increased indole-3-acetic acid (two
tryptophan-related metabolites) (Figure 3, p < 0.05). Representative of the enriched fatty
acid pathways, there was an increase in the ketone body 3-hydroxybutric acid and a
decrease in linolenic acid in the treatment compared to control group (Figure 3, p < 0.05).
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Figure 3. Boxplots showing change values for select quantified metabolites by diet treatment group.
p-values were calculated using linear regression adjusted for baseline values. Metabolite concentra-
tions were calculated using the reference standardization technique [41]. Reference levels for each
metabolite in the Human Metabolome Database are shown in Table S3.

3.2. Microbiome Changes Associated with the Low-Sugar Diet Treatment

We used 16S rRNA sequencing to assess gut microbiota at baseline and week 8 in a
sub-sample of 19 participants (all residing in Atlanta, GA, USA). A total of 312,917 reads
were obtained from 37 fecal samples (mean 8457 reads/sample). One participant in the
treatment group was missing a fecal sample at week 8 and was excluded from further
analyses. PCoA analysis was performed using Bray-Curtis dissimilarity. Based on the
first multidimensional scaling (MDS) axis, there were significant correlations between time
points (baseline and week 8) at the family and genus level as expected (Figure S1). However,
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MDS ordination showed that there were no significant differences between groups for
change values for the first or second MDS axes (Figure S2, Table S4). After rarefying
the data, we found that richness increased in the treatment versus control group at the
phylum level (p = 0.02, Figure 4) and trended toward being increased at the class level
(p = 0.09) (Table S5). We next assessed changes in microbial abundance and found that the
log-normalized abundance of two genera, which were one unclassified genus from family
Ruminococcaceae (p = 0.006) and Phascolarctobacterium from family Veillonellaceae (p = 0.035)
(Figure 4), and three OTUs, including Ruminococcus bromii (p = 0.026), were increased in
the treatment compared to control group after 8 weeks (Table S6). However, similar to the
metabolomics results, no findings were significant after FDR correction.
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Figure 4. Changes in rarefied diversity measures and microbial composition by treatment group
and correlations between differentially expressed metabolites and genera. (A) Boxplots of change
values for richness and Shannon diversity index at the phylum level. (B) Boxplots of change values
for genera that were differentially changed in the treatment group versus control group (p < 0.05 in
baseline-adjusted linear regression). No results were significant after adjusting for multiple testing.
(C) Scatterplots showing significant correlations between differentially changed metabolites and
genera (p < 0.05, FDR-adjusted q < 0.20 based on Kendall’s correlation). Only showing results for
metabolites (y-axis) that were confirmed (Level 1) based on MSI criteria.

3.3. Integrative Analysis of Metabolome and Microbiome Changes

In an exploratory analysis, we examined correlations between the differentially changed
m/z features (419 HILIC/+ESI and 205 C18/−ESI, based on raw p < 0.05) and differentially
changed genera (based on raw p < 0.05) using Kendall’s rank correlations. This revealed
significant correlations between 108 m/z features (77 HILIC/+ESI and 31 C18/−ESI) and
the unclassified genera in Ruminococcaceae, and between 118 m/z features (98 HILIC/+ESI
and 20 C18/−ESI) and Phascolarctobacterium (raw p < 0.05). In Figure 4, we plotted scat-
terplots for select metabolome x microbiome correlations (selected based on confirmed
Level 1 metabolite identity and a correlation with p < 0.05 and FDR-adjusted q < 0.20).
Acetylglycine (r = 0.38, p = 0.03, q = 0.18) and creatine (r = 0.35, p = 0.04, q = 0.19) were
positively correlated, and disaccharide (r = −0.41, p = 0.02, q = 0.19) and taurine (r = −0.46,
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p = 0.008, q = 0.14) were negatively correlated with the unclassified genera in Ruminococ-
caceae (Figure 4). In addition, kynurenine (r = −0.52, p = 0.006, q = 0.14) was negatively
correlated with Phascolarcotobacterium (Figure 4).

3.4. Sample Size Estimations for Future Studies

Post-hoc analyses were performed to guide the design of future studies testing metabolome
× microbiome responses to diet treatment in pediatric NAFLD. Specifically, using the data
from this pilot study, we estimated the sample sizes that would be needed to detect significant
changes in our metabolome and microbiome data after FDR correction using simulated datasets
(Analysis code available at: https://github.com/FarnazFouladi/PowerAnalysis/blob/master/
PowerEstimation.R; accessed 22 January 2021). Based on 6259 HILIC/+ESI m/z features
after data pre-processing, 10% true positives, and the smallest observed effect size with raw
p < 0.05 (d = 0.6596, estimated using the esc package in R), we estimated that a sample size of
57 participants per group would be needed to achieve an average power > 80% after FDR
correction. For the microbiome data, we performed the analysis at the genus level, based on
57 none-rare genera (prevalence > 10%) and the smallest borderline effect size with raw p < 0.10
(d = 0.9098), and estimated that 31 participants per group would be needed to achieve an
average power > 80% after FDR correction.

4. Discussion

We examined the systemic biological changes, assessed by untargeted metabolomics
and 16S rRNA metagenomics, linked to a therapeutic reduction in hepatic fat measured by
MRI in youth with NAFLD. The findings build upon prior cross-sectional studies examin-
ing ‘omics’ disturbances in pediatric NAFLD and provide insight into which disturbances
may be most responsive to reductions in dietary sugar and/or hepatic fat. In the plasma
metabolome, we found that the predominant shifts were related to amino acid and lipid
metabolic pathways and may reflect the normalization of critical biological processes. In
the gut microbiome, we found an increase in richness at higher phylogenetic levels and
differential changes in Firmicutes taxa. We also identified potentially novel correlations
between differentially changed metabolites and taxa, supporting a link between the circu-
lating metabolome and the composition of the gut microbiota. Although most associations
were no longer statistically significant after correcting multiple testing, and should be
interpreted with caution, these pilot results still provide critical information for the design
of future intervention studies in pediatric NAFLD.

4.1. Changes in Amino Acid- and Lipid-Related Metabolites

Using a framework that coupled metabolite feature selection with untargeted pathway
analysis, we identified key metabolic pathways that were enriched with differentially
changed metabolites, which allowed us to prioritize the metabolomics findings with the
greatest potential for biological relevance. Among these findings, both methionine/cysteine
metabolism and serine/alanine/glycine metabolism were enriched with differentially
changed metabolites. These pathways encompass several sub-pathways related to one-
carbon metabolism, such as the methionine cycle and the trans-sulfuration pathway. Within
these pathways, notable amino acid changes in the treatment group were increases in
serine, glycine, and acetylglycine. A prior adult study showed that these metabolites were
lower in adults with high hepatic fat [45], and their increased levels in this study may
reflect improved oxidative stress and glutathione metabolism secondary to the hepatic
fat reduction [46]. This is further supported by parallel increases in 2-aminobutyric acid,
which has been suggested to reflect glutathione homeostasis [47], and was also inversely
associated with dietary intakes of sugary foods/beverages in the Atherosclerosis Risk in
Communities Study [48].

Contrary to our hypothesis, none of the aromatic or branched chain amino acids
were changed due to the treatment, despite a consistent finding that these are disturbed in
children with NAFLD [15–18]. There were, however, changes in tryptophan-related metabo-

https://github.com/FarnazFouladi/PowerAnalysis/blob/master/PowerEstimation.R
https://github.com/FarnazFouladi/PowerAnalysis/blob/master/PowerEstimation.R


Metabolites 2023, 13, 401 10 of 14

lites, including decreased kynurenine, an intermediate in tryptophan degradation, and
increased indole-3-acetic acid, a microbial tryptophan metabolism. Both may be causally
linked to NAFLD as aryl hydrocarbon receptor ligands, which modulate key processes
involved in liver steatosis and inflammation [49,50]. Kynurenine levels in particular are
determined by the activity of dioxygenase enzymes, which can be modulated by immune
and/or stress-related mediators [51]. It is possible that the diet treatment normalized these
processes either directly or indirectly via the microbiome, which has been shown to interact
with the host immune system [52]. The latter possibility is supported by our finding that
changes in kynurenine correlated with the taxa Phascolarctobacterium.

The diet treatment also induced changes in key lipid classes previously associated
with NAFLD [53,54], including linolenic acid and several glycerophospholipids (Table S2).
Likewise, the ketone body 3-hydroxybutyric acid was increased with the diet treatment,
consistent with an adult study showing increased levels of 3-hydroxybutryic acid after
a very low carbohydrate diet [55], and may reflect improved ketogenic potential and
metabolic flexibility [56].

4.2. Changes in Microbial Diversity and Abundance

The diet treatment was also associated with a few microbiome changes, which included
an increase in richness at the phylum level and changes in two genera and three OTUs
within Firmicutes. One example was an increase in Ruminococcus bromii, which has been
shown to be responsive to diets high in resistant starch [57], and could reflect unintended
changes in other aspects of the diet beyond sugar restriction (i.e., an increase in dietary
fiber) in the treatment group. At the same time, it is partially expected that our microbiome
findings would be weaker than the metabolome findings given evidence that humans tend
to exhibit only subtle microbiome changes in response to diet [58]. It is possible that the
sub-sample size in this pilot study with microbiome data was too small to detect these
subtle changes.

When we integrated the change values for the above genera with change values from
the metabolomics data, we found several significant correlations; for example, the correla-
tion between the tryptophan metabolite kynurenine and Phascolarctobacterium discussed
above, and correlations between several amino acid metabolites and disaccharide with the
unclassified genera in Ruminococcaea. This exploratory analysis provided insight into the
information we could gain from integrative “omics” research and supports that there may
be an influence of the microbiome on the metabolome changes observed, but future studies
with larger sample sizes will be needed to validate these findings.

4.3. Limitations and Strengths

This study provides a strong foundation for characterizing the biological changes that
occur with a clinically effective NAFLD intervention, but a limitation was the homogenous
sample, which limits the generalizability of findings. As a pilot study, our sample size was
likely under powered and may explain why no differences were significant after adjusting
for multiple testing. This can be common in human metabolomics studies [59], due to the
collinear nature of metabolites, which can make traditional multiple testing corrections
inappropriate. We instead evaluated raw p-values to avoid the loss of relevant findings and
type II error [60], and interpreted our findings in the context of the pathway enrichment
results, but false positives are possible and larger studies are needed to confirm these
findings. By using 16S rRNA sequencing, we were not able to measure microbial activity
and therefore did not fully capture the effect of diet treatment on the microbiome. In
addition, because the treatment group experienced changes in diet and hepatic fat over
8 weeks, we are unable to differentiate whether our findings were due to a reduction in
dietary free-sugars, hepatic fat, or both. Strengths were the use of an optimized, high-
resolution metabolomics approach to comprehensively measure the plasma metabolome,
in parallel with the incorporation of 16S rRNA sequencing to measure the gut microbiome
composition and diversity. We could, therefore, evaluate a broad spectrum of metabolic
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perturbations from a systems biology approach and assess both expected and novel molec-
ular changes. Another strength was the sophisticated clinical measures used to evaluate
the therapeutic effects of the intervention, including magnetic resonance imaging to assess
changes in hepatic fat. In addition, the repeated measures design of the dietary treatment
study allowed us to control for individual variation and assess within-person changes in
metabolome and microbiome profiles over time, increasing our confidence that the changes
observed were due to the intervention.

5. Conclusions

In summary, the findings from this integrative metabolome-by-microbiome analysis
provide insight into the network of underlying biological changes that were associated
with provision of a low free sugar diet for 8 weeks, and subsequent hepatic fat reduction,
among adolescent boys with NAFLD. The metabolome and microbiome changes identified
in the diet treatment group may represent response biomarkers related to the change in
dietary free sugar content and/or hepatic fat fraction. Given the small sample size as a pilot
study, larger scale studies are needed to confirm both the metabolome and microbiome
findings from this study, and to disentangle the causal mechanisms at play.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13030401/s1, Figure S1: Correlations between baseline (week 0, x-axis)
and week 8 (y-axis) for the first multidimensional scaling axis (MDS) in PCoA analysis at each taxa level;
Figure S2: Multidimensional scaling (MDS) ordination at each taxonomic level. Ordination based on
Bray-Curtis dissimilarity; Table S1: Baseline characteristics of the sub-sample of participants (n = 19) who
provided stool samples for 16S rRNA metagenomics sequencing; Table S2: Mean change values and
95% confidence intervals by treatment group for all confirmed (Level 1 MSI) or putatively annotated
(Level 2 MSI) m/z features from both the HILIC/+ESI column and the C18/-ESI column; Table S3: Con-
centrations for quantified and confirmed metabolites that were differentially changed from baseline to
week 8 in the diet treatment group compared to control group; Table S4: Least squares (LS) mean change
values and 95% confidence intervals (CIs) by treatment group for the first and second multidimensional
scaling (MDS) axis from PCoA analysis based on Bray-Curtis dissimilarity; Table S5: Least squares (LS)
mean change values and 95% confidence intervals (CIs) by treatment group for rarefied microbial diversity
measures; Table S6: Mean change values and 95% confidence intervals (CIs) by treatment group for the
log-normalized relative abundance of bacteria according to each taxonomic level.
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