
Citation: Song, H.; Yin, C.; Li, Z.;

Feng, K.; Cao, Y.; Gu, Y.; Sun, H.

Identification of Cancer Driver Genes

by Integrating Multiomics Data with

Graph Neural Networks. Metabolites

2023, 13, 339. https://doi.org/

10.3390/metabo13030339

Academic Editor: Rui Wang-Sattler

Received: 5 January 2023

Revised: 20 February 2023

Accepted: 22 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Identification of Cancer Driver Genes by Integrating
Multiomics Data with Graph Neural Networks
Hongzhi Song 1,† , Chaoyi Yin 1,†, Zhuopeng Li 2, Ke Feng 1, Yangkun Cao 1 , Yujie Gu 1 and Huiyan Sun 1,*

1 School of Artificial Intelligence, Jilin University, Changchun 130012, China
2 College of Computer Science and Technology, Jilin University, Changchun 130012, China
* Correspondence: huiyansun@jlu.edu.cn; Tel.: +86-0431-85167648
† These authors contributed equally to this work.

Abstract: Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and
nongenetic alterations, so integrating multiomics data and extracting effective information from them
is expected to be an effective way to predict cancer driver genes. In this paper, we first generate
comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels
together with protein–protein interaction (PPI)-networks-derived attributes and then propose a
novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes
according to the impact of the alterations on a biological system. When applied to eight tumor types,
experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational
methods for driver genes identification. Moreover, it broadens our current understanding of cancer
driver genes from multiomics level and identifies driver genes specific to the tumor type rather than
pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further
predict drivers for other complex diseases.

Keywords: graph neural network; multiomics data; cancer driver gene; PPI network; biomarker

1. Introduction

Cancer is a complex disease with abnormal cellular metabolism. Cancer driver gene
alterations always influence the normal-to-cancer cell transformation process and repro-
gram metabolism to meet the higher demands for nutrition and growth of uncontrolled
cell proliferation [1]. Hence, it is critical to accurately identify such genes as the biomarkers
for facilitating precision diagnosis and therapeutics [2]. Growing evidence suggests that
cancer is driven by both genetic and nongenetic alterations [3], so integrating multiomics
data and extracting valuable information from them may be an effective way to predict
cancer driver genes.

Cancer progression is usually thought to result from the accumulation of driver genetic
mutations which confer a selective growth advantage to the cell [2]. Many existing studies
have been proposed to annotate cancer driver genes from genetic mutation data by counting
mutation frequency, both alteration and conversion, and performing a series of statistical
analyses, such as ccpwModel and xGeneModel [4]. In bladder cancer cells, the cancer driver
genes reportedly tend to have a higher conversion frequency of C->G and C->T than other
conversion patterns. Besides single nucleotide polymorphisms, a copy number variation
(CNV) is also a major, well-studied mutation type. CanDrA [5] is a machine learning model
for predicting cancer driver genes based on a set of 95 structural and evolutionary features.
However, such methods only considering mutation frequency would overlook some real
cancer driver genes with low mutation rates [6]. Moreover, aggregation mutation events
in some genes on chromosomes lead to different mutation probabilities per base, so it is
one-sided to identify cancer driver genes based on the average mutation rate [7]. On the
other hand, although genome sequences have facilitated the identification of many cancer
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genes, the number of identified cancer genes specific to each tumor type is still low [8] and
many genes that play important roles in tumorigenesis do not alter their DNA sequence [9].

Actually, cancer driver genes are usually dysregulated through various cellular mecha-
nisms and signals, hence these nonmutated cancer-dependent genes, such as transcriptional
and epigenetic regulators, are also of great interest. For example, DNA hypermethylation
and hypomethylation at CpG islands surrounding gene promoters can inactivate tumor
suppressor genes and activate oncogenes to promote tumor growth, respectively [10]. In
addition to epigenetic effects, disrupting transcription factor binding sites also alters the reg-
ulation and expression of genes in several ways [11]. Therefore, it is necessary to integrate
and make full use of the complementary information contained in multiomics data.

When looking at genes from the perspective of biological systems, they always work
together. Existing studies have shown that cancer driver genes have the capacity to alter
the gene expression of their interacting proteins or genes that share the same biochemical
pathways [12], and the disruption of some driver genes may promote the progression
of disease and lead to a cancer phenotype. Hence, taking advantage of the information
contained in biological networks, such as PPI networks, is highly important for predicting
cancer driver genes. Bashashati et al. proposed DriverNet [6] which identified driver
mutated genes by analyzing their impact on the expression of genes connecting to them
in the PPI network. The 20/20+ tool [9] generated a feature vector composed of mutation
clustering, evolutionary conservation, functional impact of variants, type of mutation con-
sequences, gene interaction network connectivity and other relevant factors for predicting
cancer driver genes.

In combination with the valuable information contained in a graph and a deep learning
model’s power, graph neural networks are widely used in classifying nodes in a network
and perform well [13]. In recent years, some methods for classifying pan-oncogenes based
on graph neural networks and multiomics data have been proposed. For example, Schulte-
Sasse et al. designed the EMOGI [8] model, which combined CNV data, DNA methylation
data, single nucleotide variant (SNV) data, and gene expression data and applied a graph
convolution network with PPI networks to classify pan-cancer genes. In reality, due to
the heterogeneity of tumors, cancer driver genes should be specific to each cancer type.
However, EMOGI cannot distinguish the driver genes of cancer types so far. Furthermore,
due to the limitation of graph convolution networks (GCNs) [14] in terms of efficiency, they
are difficult to apply to large networks. Moreover, a GCN incorporates noise information
in the way of aggregating nodes [15]. Compared with a GCN, GraphSAGE [16] aims to
learn an aggregator rather than learning a feature representation for each node. Thus,
the nodes and their neighborhood can be well-distinguished to reduce the influence of
false-positive protein interactions in the network [17,18]. In each layer of a GraphSAGE
model, the multiomics information of each gene and its interacted nodes, such as genes
acting together with it in a signaling or regulatory pathway, as well as in protein complexes,
are aggregated. In a real biological system, the strength of the interactions between the
nodes usually varies, while a GCN assigns the same weight to each edge in the graph,
leading to its limitations in practical application. A graph attention network (GAT) [19]
incorporates an attention mechanism to assign weights to the edges between nodes for
better learning the graph’s structural information and nodes’ representation.

In this study, we propose a novel framework called GGraphSAGE which integrates
multiomics data, network-derived features, and graph neural networks for identifying
cancer driver genes of each cancer type (Figure 1). We first generate a new feature vec-
tor for each gene in each tumor type, which is basically composed of four categories of
features including 3 transcriptomic features, 1 epigenomic feature, 26 genomic features,
and 6 network-derived features. Then, we take a total of 36 features along with the PPI
network to train a graph neural network model. Considering a large number of genes
cannot be definitely determined as cancer driver genes or not, we propose a semisupervised
classification method to identify cancer driver genes, by applying one layer of a GAT and
two layers of GraphSAGE to improve the performance of the model, where the GAT adds
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weights to each interaction of the PPI network and GraphSAGE is utilized to improve the
robustness of the model and make it more suitable for semisupervised tasks [20]. In order
to test the robustness of the model, we select TCGA-SKCM with a high mutation rate for
validation. Experimental results demonstrate that for all eight selected tumor types, the
classification performance of GGraphSAGE outperforms most existing cancer driver genes
identification methods, and it also has a good potential for discovering newly predicted
cancer driver genes (NPCDs).

Figure 1. Schematic diagram of GGraphSAGE framework. (a) Inputs of GGraphSAGE framework
include multiomics data (transcriptomic, genomic, and epigenetic data) and network and network-
derived data; (b) all features and the PPI network are used for the semisupervised training of cancer
driver genes. During the training of the GGraphSAGE model, the features are compressed by a three-
layer graph aggregate operation and gradually include an increasingly wide range of neighboring
nodes. The final output is determined by a probabilistic model (of whether it is a cancer driver gene).

2. Materials and Methods
2.1. Data Collection
2.1.1. Multiomics Data

We collected RNA-seq data, SNV data, DNA methylation data, and CNV data of
cancer samples and control samples from TCGA [21]. In our study, we used 3778 tumor
samples and 258 control samples across eight tumor types for analyses as each of them
had complete multiomics data (Table 1). Table 1 gives the detailed sample size of each
tumor type.
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Table 1. Number of tumor samples and control samples in each tumor type.

Tumor Type Number of Tumor Samples Number of Control Samples

BLCA 408 19
BRCA 1095 19
LUSC 501 51
LUAD 515 59
ESCA 184 13
LIHC 371 59
STAD 238 33
SKCM 466 5

2.1.2. Network Data

We built the PPI network from the STRING database (https://cn.string-db.org/ ac-
cessed on 1 May 2021) and only considered the interaction whose score was greater than
0.9. We calculated the degree and betweenness centrality of each gene from the BioGrid net-
work.

2.1.3. Assignment of Positive Labels and Negative Labels for Genes

Aiming at classifying the genes, we first generated a positive or negative label for
each gene. The positive label referred to high-confidence cancer driver genes of different
tumor types from the intOGene library [22]. The negative label referred to genes that
were most likely not related to cancer. To obtain a list of negative genes, we excluded the
following five gene types from the known nonpositives and assigned negative labels to the
remaining genes:

1. Genes associated with the expression level of cancer driver genes.
2. Genes related to existing cancer pathways.
3. Cancer genes in the OMIM dataset [23] (https://omim.org//downloads accessed on

1 May 2021).
4. Known cancer driver genes in the DriverDBV3 dataset (http://driverdb.tms.cmu.edu.

tw/ accessed on 1 May 2021).
5. Cancer driver genes in the NCG dataset [24] (http://ncg.kcl.ac.uk/ accessed on 1

May 2021).

Random pseudolabels were allocated to the above five types’ genes, and eventually,
the model learned and predicted the labels by semisupervised learning. Table 2 shows the
number of positive and negative labels in each tumor type.

Table 2. Number of driver genes (positive labels) and nondriver genes (negative labels).

Tumor Type Driver Genes Nondriver Genes

BLCA 78 3586
BRCA 65 3646
LUSC 78 3586
LUAD 44 3690
ESCA 73 3659
LIHC 33 3636
STAD 35 3707
SKCM 14 3801

2.2. Feature Generation

A gene’s features consist of its original multiomics information and network features
derived from the PPI and BioGrid network. For each gene, for the transcriptome level,
we computed the genes’ average expression and outlier ratio; for the genome level, we
counted the mutation frequency, CNV, base transition frequency, variant allele fraction, and
mutational heterogeneity signatures obtained from MutSigCV; for the epigenome level,

https://cn.string-db.org/
https://omim.org//downloads
http://driverdb.tms.cmu.edu.tw/
http://driverdb.tms.cmu.edu.tw/
http://ncg.kcl.ac.uk/
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we calculated the genes’ average methylation. For biomolecular networks, we combined
the biological network and the genomic and transcriptomic data in a bipartite graph. Four
bipartite graph features were extracted for each candidate gene (Figure 2). Two network
features were calculated by the BioGrid network. The values of each feature of different
scales were normalized by row before being joined into a feature matrix (Figure 3).

Figure 2. Bipartite graph architecture. For each tumor type, we built a bipartite graph by gene
expression data, mutation data, and PPI network. We finally output a 4 × n dimensional feature
matrix (n is the number of genes to be predicted). The left partition of the bipartite graph is the
mutated genes, and the right partition of the bipartite graph is the outlying expression status for
each tumor sample. bipartite_E represents the number of edges of a mutated gene; bipartite_LCPRG
denotes the number of edges of a mutated gene linked to CPRGs; bipartite_CPRG is a binary number:
if a gene was a CPRG, we set the bipartite_CPRG feature of the gene as 1, otherwise 0; NSC is the
number of patients covered by a mutated gene.
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Figure 3. The characteristics of each gene. The attributes of a gene included the following four parts,
26 genomic features, 3 transcriptomic features, 1 epigenomic feature, and 6 network derived features
from the bipartite graph and BioGrid network, which together formed a 1× 36-dimension feature
vector for each gene.

2.2.1. Epigenetic Feature

For each gene i in tumor type Tj, we defined its epigenome feature as the fold change
of mean methylation signal level (β) between the cancer and control samples:

MethylationTj ,i =
β̄C

Tj,i

β̄N
Tj,i

(1)

where β̄C
Tj,i

and β̄N
Tj,i

represent the average methylation level of gene i in cancer and control
samples of tumor type Tj, respectively.

2.2.2. Transcriptome Features
Expression Fold Change

To quantify the differential expression level of each gene, we defined the log2 fold-
change between the average expression level of cancer samples and the average expression
level of normal samples as the expression fold-change feature as follows:

FoldChangeTj ,i =
¯EXPC

Tj,i

¯EXPN
Tj,i

(2)
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where ¯EXPC
Tj,i

and ¯EXPN
Tj,i

represent the average expression of gene i in cancer and control
samples of tumor type Tj, respectively. For the genes which were not measured in cancer
or normal samples, we set them to 0.

Significance of Differential Expression

In addition to the average expression ratio, we conducted a Wilcoxon test and took the
differences in the distribution of the gene expression between cancer and control samples
as an attribute. If there was no significant difference, the attribute value of the gene was 0;
if there was a significant difference and the mean value of the normal group was smaller
than that of the cancer group, the attribute value of the gene was 1; otherwise, the attribute
value was −1.

Gene Outlier Feature

The outlier feature of a gene was defined based on the Grubbs test. First, we generated
a patient-outlier matrix to represent the specificity of these genes. For each gene i, we used
the difference between the expression value of each sample and the mean of the expression
values of all samples to obtain Gij, which was calculated as follows:

Gij =
EXPij −mean(EXPi)

Si
(3)

where EXPij is the expression level of gene i in tumor sample j, and Si is the standard
deviation of the expression level of gene i in all samples.

Gp(N) was defined as follows:

Gp(N) =
N − 1√

N

√√√√ t2
α

2N ,N−2

N − 2 + t2
α

2N ,N−2
(4)

where N represents the number of measurements, and t2
α

2N ,N−2 denotes the critical value of
the t-distribution. α is the significance level and we set it to 0.05. α/2N is the significance
level of the t-distribution with degrees of freedom for N − 2. If there existed Gij > Gp(N),
then the value of the ith row and jth column in the outlier matrix was 1, otherwise it was 0.
Then, we calculated the sum of the outliers of all cancer samples corresponding to each
gene from the patient-outlier matrix as the outlier feature for the gene.

2.2.3. Genomic Features
Gene Mutation Frequency

For each tumor type, we generated a mutation matrix consisting of “1” and “0” with
rows as genes and columns as samples. A “1” indicated that the gene had a single nucleotide
variation in the sample, otherwise it was “0”. We computed the mutation frequency of each
gene in all cancer samples.

MFTj ,i =
mTj ,i

nTj ,i
(5)

where MFTj ,i represents the mutation frequency of gene i in the tumor type Tj’s samples,
mTj ,i and nTj ,i denote the number of samples with mutations in gene i and the number of
total samples of cancer type j, respectively.

Variant Allele Fraction

To analyze the tumor heterogeneity and tumor purity, we generated the variant allele
fraction feature by the ratio of the coverage depth of mutant loci in tumor samples to the
coverage depth of sequencing as follows:
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Variant allele f raction =
Allele Depth
Total Depth

(6)

where Allele Depth denotes the depth of coverage of reads supporting mutant loci, and
Total Depth denotes the depth of coverage of the total reads of that locus.

MutSigCV Derived Attribute

Mutation rate is an important indicator for identifying cancer driver genes. However,
due to the difference in length and CG base content between genes, the average mutation
frequency across samples did not completely reflect the real mutation level. To avoid
this situation, we selected 11 quantified features from MutSigCV [9], aiming to reveal the
regional heterogeneity present in nucleotide mutations and to evaluate the impact of these
features on the identification of cancer driver genes.

1. DNA replication time;
2. Noncoding mutation rate;
3. Local GC content;
4. HiC compartment;
5. Local gene density;
6. Wgs mean depth;
7. Wgs percent 20x;
8. Capture on target rate;
9. Capture mean depth;
10. Capture pct200;
11. Capture mean percentGC.

Mutant Base Conversion

Existing studies have shown that there are significant differences in the frequency of
base interchange in cancer. For example, the frequency of the CpG dinucleotide transition
mutation in gastrointestinal cancer (esophagus, colon, rectum, and stomach) is high [25].
The frequency of the C->A and C->G type mutagenesis in bladder cancer cells is higher than
that in other types of tumor cells [9]. Herein, we counted the number of base conversion
corresponding to each gene in each sample and generated 12 features, namely C->A, C->T,
C->G, A->T, A->C, A->G, G->C, G->A, G->T, T->A, T->G, and T->C.

Copy Number Variation Rate

We defined the copy number variation rate of a particular gene i in tumor type Tj as:

CNVTj ,i =
∑m

k=1 tumorSk
i,Tj
× n

∑n
l=1 normalSl

i,Tj
×m

(7)

where tumorSk
i,Tj

and normalSl
i,Tj

represent the number of amplifications or deletions of
gene i in cancer sample k and normal sample l from the tumor type Tj, respectively. m and
n are the number of cancer and normal samples.

2.2.4. Biological Network Derived Features
Bipartite Graph Attributes

For each tumor type, we used the gene expression matrix, mutation matrix and PPI
network to construct a bipartite graph (Figure 2). Nodes in the left partition of the bipartite
graph corresponded to mutated genes, and nodes in the right partition represented the
outlier expression status of each patient. We drew an edge between two nodes in different
partitions under the following conditions: in the same patient, mutations of the left-partition
node gene i and the abnormal expression of the right-partition node gene j were found, and
there was an interaction between gene i and gene j in the biological network. To estimate
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the effect of each mutated gene on DNA replication, we added cell growth attribute to each
gene according to whether it belonged to cell-proliferation-related biological functions or
pathways in the bipartite graph and gave four features to each mutated gene: the number
of connected edges, the number of edges connecting to cell-proliferation-related genes
(CPRG), the gene’s cell growth function attribute, and the number of patients covered by
the gene (Figure 2).

BioGrid Network Features

We separately calculated the degree and betweenness centrality of the genes based
on the BioGrid network. The degree centrality score is the number of connected edges of
each gene in the network; the betweenness centrality is the ratio of the shortest paths in the
network that pass through a gene and connect two genes to the total number of shortest
path lines between these two genes. These two features reflected the importance and the
topology characteristics of each gene in the network.

2.3. Model Construction

The proposed semisupervised deep graph learning framework GGraphSAGE was
constructed using a GAT layer and two GraphSAGE layers, where it took the PPI network
as the graph and each gene on the PPI network as a node. The advantage of GGraphSAGE
is that it aggregates the neighborhood information in the graph more reasonably. The
GAT quantifies the differences in interactions between homologous partners in biological
large-scale networks by aggregating the weights of adjacent edges. At the same time, by
sampling from the inside out and aggregating from the outside of GraphSAGE, using
“concat” instead of “average”, it can better distinguish the information of itself from its
neighbors. We used the generated feature matrix and PPI networks as inputs, which
allowed GGraphSAGE to receive both multiomics information and molecular interactions
in biological systems. It also greatly helped to improve the overall performance of the
model (Figure 4).

Figure 4. Graph neural network structure of GGraphSAGE framework. In the GGraphSAGE
model, the feature matrix is aggregated around nodes through a GAT layer and two GraphSAGE
layers for aggregating node, and each node contains the 3rd-order neighborhood information of the
node. The final output is that each node (gene) is assigned a two-dimensional vector by the softmax
layer, which consists of the probability that the node is a driver cancer gene and the probability that
the node is a passenger gene. A label (1 or 0) is set to each node by comparing the magnitude of the
two probabilities.

2.3.1. GraphSAGE Layer

GraphSAGE aims to improve the efficiency of a GCN and reduce noise. It learns an
aggregator rather than the representation of each node, which enables one to accurately
distinguish a node from its neighborhood information. In addition, it can be trained in
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batches to improve the polymerization speed. Compared with a GCN, GraphSAGE was
more flexible and suitable for our semisupervised task. The GraphSAGE algorithm is
formulated as follows:

h0
v ← xv, ∀v ∈ V (8)

hk
N(v) ← AGGREGATEk(

{
hk−1

u , ∀u ∈ N(v)
}
) (9)

hk
v ← σ(WK · CONCAT(hk−1

u , hk
N(v))) (10)

where xv is the input feature, k is the depth of the feature matrix, hk
N(v) is defined as the

aggregated representation of the neighbors of node v, hk
v denotes the representation of the

v node after aggregating its neighbors, and W is a learnable parameter.

2.3.2. GAT Layer

Since there are significant differences in the level of signal transduction between genes
in biological systems, it is reasonable to set different weights for each edge in the PPI
network. A GAT can set weights to each edge in the graph and was used to distinguish
edges with various weights in the PPI network. A GAT computes the weight of each edge
as follows:

aij =
exp(LeakyReLU(aT[Whi||Whj

]
))

∑k∈Ni
exp(LeakyReLU(aT [Whi||Whk])

(11)

where aij represents the weight relation coefficients of node i and node j, aT is a learnable
vector (aT ∈ R1×n), and n is feature dimension of each node. W is a learnable weight matrix
(W ∈ Rn×n). hi denotes the embedding of node i. Ni are all the neighbor nodes of i.

h
′
i = σ( ∑

j∈Ni

aijWhj) (12)

where σ is defined as the nonlinear activation function. h
′
i denotes the embedding of node i

after aggregating all the neighboring nodes.

2.4. Model Training

We randomly divided all the samples into a training set and test set with the proportion
of 70% and 30%, respectively, and took the generated feature matrix with partial node
labels and the PPI network as inputs. The cross-entropy loss L for our training nodes was
defined as:

L =
1
N ∑

g
Lg =

1
N ∑

g
−
[
yg · log(pg) + (1− yg) · log(1− pg)

]
(13)

where yg is the label of gene g, with 1 representing the positive class and 0 representing
the negative class. pg is the probability of gene g being predicted as positive. We imple-
mented our framework using Torch [26] and optimized the training process with the Adam
optimizer. The parameters for each layer are listed in Table 3.

Table 3. Parameters of GGraphSAGE framework.

Tumor Type GAT (Input/Output Size) GraphSAGE1 (Input/Output Size) GraphSAGE2 (Input/Output Size)

BRCA 36/64 64/128 128/2
BLCA 36/64 64/128 128/2
ESCA 36/64 64/32 32/2
LUAD 36/256 256/64 64/2
LIHC 36/256 256/128 128/2
LUSC 36/128 128/32 32/2
STAD 36/128 128/64 64/2
SKCM 36/64 64/256 256/2
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3. Results
3.1. Evaluation Metrics

We evaluated the performance of the model across eight tumor types and compared it
with eight methods for identifying cancer driver genes, including state-of-the-art methods
and classic machine learning methods. We calculated the average precision (AP) for
each tumor type, which is the area under the precision–recall curve (P-R curve) for each
method to quantify the performance of the models. We drew the P-R curve according to
the following:

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

where TP is the number of genes correctly classified as positive by the model; FN denotes
the number of genes incorrectly classified as negative by the model; and FP represents
the number of genes incorrectly classified as positive by the model. We obtained the
approximate area (AP) under the P-R curve by integration:

AP =
∫ 1

0
p(r)dr (16)

Because of the discreteness of the data, we actually smoothed the P-R curve rather
than compute it directly. For each point on the P-R curve, the precision value took the value
of the maximum precision to the right of that point. Next, on the smoothed P-R curve, the
precision value of the 10 equipoints of the recall axis (including 11 points and breakpoints)
was taken, and its average value was calculated as the final AP value. We calculated AP
as follows:

Psmooth(r) = maxr′>=rP(r) (17)

AP =
1
11 ∑0,0.1...1.0Psmooth(i) (18)

where Psmooth(r) represents the precision value of the model when the recall value is r after
the smoothing process. The AP is between zero and one, and the larger the AP, the better
the performance (Figure 5).

3.2. Performance of GGraphSAGE by Comparing with SOTA Methods

To evaluate the performance of GGraphSAGE, we first compared it with three SOTA
cancer driver gene identification methods, CanDrA [5], 20/20+ [27], and EMOGI [8].
CanDrA takes chromosome number, genomic coordinate, reference allele, mutated allele,
and the strand of the mutation as the features of each gene and obtains a score to determine
whether this gene is a driver or not. For 20/20+ [27], we used the mutation data from
TCGA and 24 attributes acquired from BioGrid [28], MutsigCV [9], and SNVBox [29] as
the features and applied a random forest [30] to predict the probability of the genes being
drivers. For EMOGI [8], we used DNA methylation, RNA-seq, and CNV data collected
from TCGA for different tumor types. We obtained the PPI network from the STRING
database and only retained the interaction scores greater than 0.9. We randomized the
labeled dataset to the training set (75%) and the test set (25%) for training and used a 10-fold
cross-validation for the parameter optimization and improvement of the model stability.

The GGraphSAGE model performed better than all three SOTA methods. Overall,
20/20+ had stable performance across different cancer types but generally had a poorer
performance compared with GGraphSAGE. CanDrA achieved good performance on STAD,
LUAD, and LIHC, but it was overly dependent on the dataset and had unstable performance
on the other five tumor types. EMOGI was a similar approach to GGraphSAGE in model
structure and also used multiomics data and graph convolution networks. Although
EMOGI was proposed for the identification of pan-cancer genes, it could also work in
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predicting cancer driver genes of specific tumor type. The performance of EMOGI was not
good on LIHC and LUAD, while it performed well on other tumor types (Figure 5).

Figure 5. Performance comparison of GGraphSAGE with other methods. The heatmap reveals the
performance (AP) comparison of different methods for each tumor type, with darker colors indicating
higher AP values. These methods were divided into 4 categories: GGraphSAGE: the combination
of GAT and GraphSAGE; GAT or GraphSAGE: GAT or GraphSAGE model only; SOTA methods:
20/20+, CanDrA, and EMOGI; ML (machine learning): KNN, SVM, and random forest. As can be
seen from the figure, GGraphSAGE has a high AP value on each tumor type, and its performance is
better than other methods.

3.3. Performance of GGraphSAGE by Comparing with Classical Machine Learning Models

We also compared GGraphSAGE with three classical machine learning models, including
K-nearest neighbors (KNN) [31], support vector machines (SVM) [32], and random forests.

KNN is a classical algorithm for supervised learning classification based on the dis-
tance between the node and the nearest k nodes and performs well in binary classification
tasks. An SVM is a binary classification model. It is the nonlinear classifier defined on the
feature space with maximum interval. A random forest is a classifier composed of many
decision trees, in which each tree selects the optimal feature recursively and divides the
training data according to the feature.

The results showed that the three models generally performed poorly overall on the
tumor types, except for the SVM on LUAD and BLCA, and the random forest on LUSC.
The AP of GGraphSAGE was generally 20% higher than the three machine learning models
on all tumor types, which indicated that the addition of biological network structure
information was helpful for cancer driver gene identification (Figure 5).
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3.4. Ablation Experiments

To prove the superiority of the combination of a GAT and GraphSAGE, we calculated
the AP of the GAT and GraphSAGE, respectively. We set the same inputs as for GGraph-
SAGE and only changed the model parameters. It can be seen that the performance of the
GAT and GraphSAGE was lower than that of GGraphSAGE.

In the GAT, nodes in the graph can be assigned different weights based on the charac-
teristics of their neighbors. The GAT is suitable for calculating the specificity interactions in
PPI networks. However, there is noise (false-positive interacting protein) in the topology of
the PPI network [33] which affects the performance of the GAT. GraphSAGE introduces
neighbor sampling. Through the “concat” method of aggregating neighborhood nodes,
GraphSAGE can distinguish itself from neighborhood information to reduce the influence
of noise data and thus improve the robustness of the model [17,18]. Although GraphSAGE
samples neighborhood nodes to improve the efficiency of training, some neighborhood
information is lost. The method of node aggregation in GGraphSAGE improves the robust-
ness of the model, allowing sampling nodes to be aggregated with nonequal weights, while
preserving the integrity of the first-order neighborhood structure information.

As a result, GraphSAGE performed well on LIHC, ESCA, BLCA, and LUSC but
moderately on the other four tumor types. The GAT performed well on STAD, ESCA,
SKCM, and BLCA but poorly on the other tumor types, which indicated the performance
of the GAT model was highly dependent on the data set and had a low stability. In contrast,
GGraphSAGE performed well and was stable across all tumor types, which suggested that
GGraphSAGE was superior to GAT or GraphSAGE alone.

Moreover, to evaluate the contribution of each type of data, we conducted ablation
experiments on each type of data. Specifically, we removed one type of data in each experi-
ment and used the remaining data to identify the cancer driver genes by GGraphSAGE.
Then, we calculated the AP to assess the performance. The results showed that across the
eight cancer types, the complete multiomics data (containing genomic, epigenetic, tran-
scriptome, and network-derived features) performed best, which illustrated the necessity
of leveraging the complete multiomics and network data (Figure 6). After removing any
one type of features, the performance of the model decreased, which proved that each
type of data contributed to the model. For eight cancer types, removing genomic data had
the biggest effect on model performance (a mean 39.3% decline in AP), while removing
epigenetic data had the least effect (a mean 10.7% decline in AP). It indicated that genomic
features contributed the most to the classification and prediction of cancer driver genes,
while epigenetic features contributed the least. Compared to other cancer types, the perfor-
mance was poor after removing transcriptome features in BLCA, LUAD, and STAD, which
indicated that transcriptome features contributed significantly to these three cancer types,
while network-derived features contributed more to the other types.

3.5. Association between Newly Predicted Genes and Cell Proliferation

Uncontrolled cell proliferation is a determinant of carcinogenesis and driver muta-
tion. To assess the effect of mutations on cell proliferation, we analyzed the differences
in abnormal proliferation levels between samples with and without mutations (Figure 7).
Specifically, we first retrieved 160 CPRGs from GSEA that were included in DNA repli-
cation and cell cycle pathways, generated the transcriptomics data matrix of N samples
on the CPRG, and calculated the Spearman correlation coefficient between these genes by
setting 0.4 as the threshold. For the active cancer-related biological process, most genes
worked together and more than half of genes were significantly coexpressed, so we set
the low significance cutoff of correlations as 10−3 and selected a set of top 20 genes which
were highly correlated with each other as core genes to represent the whole cell prolifera-
tion process. Subsequently, we used the linear regression coefficient between core genes’
expression value of each sample and core genes’ average expression value vector on N
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samples, as the cell proliferation activity of each sample. The objective function of the linear
regression was:

Ŝθ = θ · S (19)

RST =
n

∑
i=1

(S(i)
mean − Ŝ(i)

θ )2 (20)

where θ represents the weights of samples, that is, the parameter that minimizes the
squared term of the residual; S is the sample column (S ∈ R1×20) in the core gene matrix;
Ŝθ represents the predicted value of a linear regression function that is used to fit the mean
vector of the sample (Ŝθ ∈ R1×20); and Smean denotes the mean expression level of core
genes across all samples. We took θ as the samples’ cell proliferation level.

To evaluate the effect of a mutation on cell proliferation, we divided the cancer samples
into two groups: one with such mutation and the other without (M and U in Figure 7).
Then, we conducted the Wilcoxon test analysis to assess the significance of differences in
cell proliferation between these two groups. We expected the driver mutations to cause
abnormal proliferation, but the passenger mutations were not associated with abnormal
proliferation. We identified the top 20 candidate genes for each tumor type according to
the scores (the score was the probability of being predicted as cancer driver genes in the
model) obtained from GGraphSAGE and removed genes that overlapped with those of the
intOGene database. Candidate genes with a p-value less than 0.05 indicated a significant
alteration of the corresponding gene was closely related to cell proliferation and thus were
ultimately selected as cancer driver genes to further demonstrate their association with
cancer (Figure 8). The information of the candidate NPCDs is listed in Table 4.

Figure 6. Results of ablation experiment of GGraphSAGE in eight cancer types. The bar chart
represents the model performance (AP) of GGraphSAGE across eight cancer types when removing
genomic, epigenetic, transcriptome, and network data, respectively.
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Figure 7. Flow chart of DNA replication function correlation test. (1) We extracted the fraction
of all CPRGs from the gene expression matrix ∈ R20500×n (n is the number of samples) of each
tumor type and created the CPRG matrix ∈ R160×n. (2) According to the Spearman correlation
coefficient threshold, we generated CPRG correlation Matrix ∈ R160×160(symmetric matrix). (3) We
selected the top 20 genes with the highest correlation in the CPRG matrix and extracted the top
20 genes from the CPRG matrix to produce the Filtered CPRG matrix ∈ R20×n. (4) The mean
expression level of each CPRG in the filtered CPRG matrix was used to calculate the linear regression
parameters for each sample, as the CPRG vector for the sample. The CPRG vectors were divided
into mutation/nonmutation vectors according to the mutation matrix, and the Wilcoxon test was
performed on the distributions of these two vectors to compute the p-values. The box plots are drawn
for each NPCD by the two sample-population distributions (Figure 8).

3.6. Newly Predicted Cancer Driver Genes and Their Verified Functions

On the basis of the cell proliferation analysis, we further verified the functions of the
candidate driver genes. Most of the genes have been extensively studied and are directly
and indirectly associated with tumor development in the published literature. Some genes
are identified as molecular markers of carcinogenesis. For example, CUL1 is defined as a
biomarker for breast cancer because it significantly promotes breast cancer cell migration,
invasion, and test-tube formation, as well as angiogenesis and metastasis in vivo [34].
Alternatively, the expression levels of some genes affect the functions involved in the trans-
formation of normal cells into cancer cells. For example, ACTN2 overexpression in human
hepatoma cells shows an enhanced cell viability and invasion, suggesting that it may play
a role in late metastasis, such as exosmosis and lung colonization [35]. Besides extensive
studies on gene expression level and function, some genes influence the occurrence and
development of cancer at the genomic and epigenetic levels. Sucularli et al. reported that
the deleterious mutations of DYNC1H1 led to the formation of associated cancers [36]. Lin
et al. found the methylation of RILP in lung cancer promoted tumor cell proliferation and
invasion [37]. Hence, we conclude that the NPCDs are expected to provide guidance for
researchers on further studies.
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Figure 8. Box plots of abnormal cell proliferation level of CPRG. The box plots show the differences
in the distribution of abnormal proliferation levels between samples with and without mutations in
different tumor types. The blue and orange boxes represent the distribution of the U and M sample
populations, respectively. The vertical axis is the abnormal cell proliferation level of each sample.
We conclude that mutations in candidate genes with a p-value < 0.05 in the CPRG abnormal cell
proliferation analysis result in elevated levels of abnormal cell proliferation.

Moreover, eight genes predicted by GGraphSAGE were also coauthenticated by the
most popular 30 SOTA methods (e.g., CHASM [29], e-Driver3D [38], OncoIMPACT [39],
PolyPhen2 [40], CTAT-score [41]). These genes include TBX3, CUL1, and MAP2K4 for
BRCA, PTCH1 for ESCA, ASXL2 for BLCA, EZH2 for LIHC, RIT1 for LUAD, and ERBB4
for STAD.

In summary, we demonstrated that GGraphSAGE had a higher performance than other
state-of-the-art methods based only on multiomics, biological networks, or using simple
graph neural networks in the classification of cancer driver genes by tumor type. We also
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provided strong evidence for the credibility of new driver genes predicted by GGraphSAGE
at both theoretical and function levels through a literature review and functional correlation
analysis (Table A1).

Table 4. Number of samples of NPCD mutant/nonmutant group and median of abnormal cell
proliferation level of sample groups.

Tumor Type Gene Name M/U Group Size Median of Abnormal Cell Proliferation Level (M/U)

BRCA
CUL1 50/1045 0.971/0.551
TBX3 85/1010 0.896/0.548

MAP2K4 104/991 0.743/0.51

BLCA
ATP6V1G1 22/389 0.998/0.75

ESF2 53/358 0.999/0.749
ASXL2 64/347 1.12/0.561

ESCA
UTP3 23/161 1.25/0.987

COL9A3 19/165 1.3/0.99
PTCH1 32/152 1.131/0.748

LUAD
RIT1 86/481 0.801/0.562

ATP6V0B 30/537 0.731/0.433
MRPS12 30/537 0.799/0.561

LIHC
EZH2 79/292 0.688/0.49

DYNC1H1 63/308 0.789/0.55
NID2 48/323 0.727/0.501

LUSC
RILP 53/448 0.975/0.691

EXOSC3 39/462 1.081/0.75
KRR1 45/456 1.191/0.744

STAD
ERBB4 35/402 1.011/0.771
ACTN2 48/389 1.232/0.822

KIAA1429 28/156 1.088/0.752

SKCM
CR1 68/399 1.11/0.786

PEG3 85/382 0.977/0.812
EPHA3 48/413 1.134/0.78

4. Discussion

Carcinogenesis is usually thought to result from the accumulation of key alterations,
both at the genetic and nongenetic level. Hence, the identification of cancer driver genes
is important to discover drug targets for specific cancer types. In this study, we proposed
a novel semisupervised graph-neural-network-based framework, GGraphSAGE, which
integrated multiomics and network-derived features to identify cancer driver genes for
each cancer type. We evaluated the performance of GGraphSAGE against three state-of-
the-art methods and three classic machine learning methods under the average precision
(AP) index across eight tumor types. Experiments showed that GGraphSAGE performed
better than all these methods in both precision and stability. Considering cancer is a
highly heterogeneous and complex disease, the disease initiation mechanism, microenvi-
ronment composition, and key alterations of various cancer types should be intuitively
distinct [42]. Hence, different from most existing methods focusing on pan-cancer driver
genes, we proposed to identify cancer driver genes based on the characteristics specific
to each cancer from various aspects. Besides widely studied genomic features, we also
focused on nongenetic alterations including transcriptomic and epigenomic features, as
well as biological-network-derived features, and generated a feature vector of length 36
for each gene at the end. It is well known that genes in the biological systems do not work
independently, and the disruption of some driver genes may promote the initiation and
progression of cancer. Hence, taking advantage of the information contained in biological
networks is highly important for predicting cancer driver genes. Indeed, most advanced
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methods also take this into account. The combination of valuable information contained in
graph and deep learning approaches, graph neural networks have gradually been used in
classifying nodes with outstanding performance [8,13]. Herein, considering large numbers
of genes cannot be definitely determined as cancer driver genes or not, we proposed a
semisupervised classification method to identify cancer driver genes, applying a GAT and
GraphSAGE to improve the performance of the model. Ablation experiments demonstrated
that the performance of jointly applying the GAT and GraphSAGE models was much better
than using either one alone. Moreover, the application of GraphSAGE was able to pro-
vide an availability assurance for scalable networks. After years of efforts, some public
databases, such as COSMIC [43] and intOGene, have release parts of driver genes. Beyond
these, GGraphSAGE was able to identify new driver genes with a high potential. Through
a literature review and functional correlation analysis (see Results), we demonstrated the
credibility of the newly predicted ones. We took abnormal cell proliferation as an indicator
of carcinogenesis and determined whether a candidate gene was a driver by evaluating
the association between its alterations and this indicator. In addition, other key biological
functions, such as EMT [44], which is an important cancer development indicator, will also
be considered in our further studies for identifying key drivers of cancer progression.

The application area of the GGraphSAGE model is broad, as it can be applied to any
multiomics data and biological network other than this study. Moreover, the predicted
diseases are not limited to cancer but can also be applied to other complex diseases. Our
GGraphSAGE is designed to classify cancer driver genes and passenger genes in various
tumor types. The semisupervised mechanism of the model also identifies NPCDs that play a
critical role in tumor development and the impact on cell growth function (Table A1). These
NPCDs are highly similar to the cancer driver genes in terms of multiomics embedding
and biological network structure. The GGraphSAGE framework provides an important
analytical tool for the future of precision medicine and for understanding the process of
tumor development and targeted therapy.

5. Conclusions

GGraphSAGE is a graph neural network framework for accurately and efficiently
distinguishing cancer driver genes, which is empowered by the generated comprehensive
multiomics features and the combination of GraphSAGE and GAT models. Through
statistical analyses, we found that the alterations of some newly identified cancer driver
genes influenced cell proliferation function and were reportedly associated with cancer
initiation and development. The GGraphSAGE framework provides a new insight to
identify the driver genes of complex disease and is helpful to understand the process of
disease development and design targeted therapy.
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Appendix A

Table A1. Newly predicted cancer driver genes by the GGraphSAGE model. Screening of the
literature and p-value, including gene ID, gene functions, statistical p-value of the association between
the gene’s mutation and cell proliferation, and reference of existing reports.

Tumor Gene ID Literature Description p-Value Citation

STAD

ERBB4

Members of the ErbB subfamily of receptor tyrosine kinases
are important regulators of normal breast physiology, and
abnormalities in their signaling have been associated with
breast tumorigenesis.

0.00238 [41,45]

ACTN2

ACTN2-overexpression in human hepatocellular carcinoma cells
showed enhanced cell motility and invasive ability, suggesting
possible functions in late metastatic stages, such as extravasation
and lung colonization.

0.00628 [35]

KIAA1429

M6 RNA methylation has a huge impact on RNA production/
metabolism and is involved in the pathogenesis of many
diseases, including cancer. M6 is modified by m-mounted 6
methyltransferases (METTL3/14, WTAP, RBM15/15B
and KIAA1429, referred to as “writers”), reduced by
(FTO and ALKBH5, referred to as “erasers”) and
recognized by m-mount6 binding proteins (YTHDF1/2/3,
IGF2BP1 and HNRNPA2B1, called “readers”).

0.02902 [46]

BLCA

ESF1

Transcription of the E1A gene of highly oncogenic adenovirus
12 (Ad12) starts at two initiation sites (TS1 and TS2). We have
previously shown that the distal ends of the E2F and ATF motifs
of TS1 are synergistically involved in E1A self-stimulation
in the TS1 promoter region. Here, we report the identification
of a second E2F-like target region (E2DFII) upstream of the
E1A stimulatory factor 1 binding site (ESF-1), which is important
for 13S-mediated self-activation of TS2.

0.0215 [47]

ATP6V1G1

Low mRNA and protein expression of ATP6V1s members were found
to be significantly associated with clinical cancer stage,
lymph node metastasis status, and patient gender in KIRC
patients. In addition, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1C2,
ATP6V1D, ATP6V1E1, ATP6V1E1, ATP6V1E1,
ATP6V1E1, ATP6V1E1, ATP6V1G1, and ATP6V1H had lower mRNA
expression but shorter OS.

1.22× 10−6 [48]

ASXL2

Upregulation of ASXL2 was associated with advanced
clinical staging. Patients exhibiting high levels of ASXL2
expression had poorer overall survival, while those with
low ASXL2 expression levels survived longer. A multifactorial
Cox regression analysis showed that ASXL2 expression
could be considered as an independent prognostic factor
for CRC. Inhibition or overexpression of ASXL2 significantly
affected the proliferation of CRC cells.

0.0084 [41,49]
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Table A1. Cont.

Tumor Gene ID Literature Description p-Value Citation

BRCA CUL1

CUL1 significantly promoted breast cancer cell migration,
invasion, and in vitro tube formation, as well as angiogenesis
and metastasis in vivo. Mechanistically, global transcriptional
changes in MDA-MB-231 cells were determined using
human gene expression profiling, and autocrine expression
of cytokines CXCL8 and IL11 were identified as target
genes of CUL1 in breast cancer cell migration, invasion,
metastasis, and angiogenesis.

0.02971 [34,41]

BRCA

TBX3

TBX3 has no known function in adult tissues but is
frequently overexpressed in a wide range of epithelial-
and mesenchymal-derived cancers. This overexpression greatly
affects several features of cancer, including senescent
bypass, apoptosis and deactivation, promotion of proliferation,
tumor formation, angiogenesis, invasive and metastatic
capacity, and cancer stem cell expansion.

0.04926 [41,50]

MAP2K4

Genetic variants (copy number variants and single nucleotide
polymorphisms) and acquired somatic copy number aberrations
(CNAs) were associated with approximately 40% of gene
expression, with the landscape dominated by cis and trans
CNAs. By depicting genes with expression aberrations driven
by CNA in cis, we identified putative cancer genes, including
deletions in PPP2R2A, MTAP, and MAP2K4.

0.0121 [41,51]

ESCA

COL9A3

USP3 promotes GC progression and metastasis by deubiquitinating C-
OL9A3 and COL6A5. These findings identify a
mechanism for the USP3-mediated deubiquitination of enzymatic
activity in GC metastasis and suggest a potential therapeutic
target for GC management.

0.03911 [52]

PTCH1

Dysregulation of the Hh signaling pathway is associated
with developmental abnormalities and cancers (including
Gorlin syndrome) and sporadic cancers (e.g., basal cell
carcinoma, medulloblastoma, pancreatic, breast, colon,
ovarian, and small-cell lung cancers). Abnormal activation
of the Hh signaling pathway is caused by mutations in related
genes (ligand nondependent signaling) or by overexpression
of Hh signaling molecules (ligand-dependent
signaling—autocrine or paracrine).

0.00464 [41,53]

UTP3

UTP3, the small subunit process group homolog (UTP3),
and prostaglandin E synthase 3 (PTGES3). Thus, pathway functions
in dynamic module 3 (ubiquitin-mediated protein hydrolysis
and ribosomes) and several seed genes (PPP1R12A, UTP3,
and PTGES3) may be associated with OS progression
and could serve as potential therapeutic targets in OS.

0.04913 [54]

LIHC

EZH2

Recent findings on the role of EZH2 in cancer genesis, progression,
metastasis, metabolism, drug resistance and immune regulation.
In addition, we highlight the progress of targeted EZH2
therapies in experimental and clinical studies.

1.71× 10−6 [41,55]

DYNC1H1 The deleterious mutations were found to affect the function
of DYNC1H1 leading to the formation of associated cancers. 0.04582 [36]

NID2

NID2, SPARC, and MFAP2 were upregulated in gastric tumor
tissues and significantly associated with poor overall
survival. Thus, by using these 3 upregulated DEGs, the
predictive value of the risk score model used for gastric
cancer prognosis could be improved.

0.0122 [56]
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Table A1. Cont.

Tumor Gene ID Literature Description p-Value Citation

LUSC RILP Methylation of RILP in lung cancer promotes tumor cell
proliferation and invasion. 0.02103 [37]

LUSC

EXOSC3

In inflamed mucosa, EXOSC3 and CNOT4-mediated RNA stabilization,
including that of MYD88, may trigger cancer development
and could serve as potential predictive markers and innovative
therapies to control cancer progression.

0.00055 [57]

KRR1
Tumor-associated antigens KRR1 and ZRF1 and their cognate
autoantibodies may be considered as potential molecular
markers for breast cancer.

0.0318 [58]

LUAD

ATP6V0B
miRNA-15a, which could regulate ATPase, H(+) transporting,
lysosomal21 kDa, V0 subunit b(ATP6V0B), and miRNA-155,
were found to be the most significant.

0.0188 [59]

RIT1

The results provide a genome-wide map of oncogenic RIT1
functional interactions and identify components of the RAS
pathway, spindle assembly checkpoint, and Hippo/YAP1 network
as candidate therapeutic targets for RIT1 mutant lung cancer.

0.0384 [41,60]

MRPS12 MRPS12 functions as a potential oncogene in ovarian cancer and is
a promising prognostic candidate. 0.0148 [61]

SKCM

CR1

The HER2 CR1 domain can be antagonized by the clinically
used HER2 antibody pertuzumab. Pertuzumab significantly
reduced tumorigenicity in TNBC cells expressing
circ-HER2/HER2-103.

0.005766 [62]

EPHA3
EphA3, originally isolated from leukemia and melanoma cells,
is currently one of the most promising therapeutic targets,
with multiple tumor-promoting effects in multiple cancer types.

0.01137 [63]

PEG3

Paternal expression gene 3 (PEG3) was the only imprinted
gene associated with prognosis of colon cancer patients at the mRNA
level, and a high expression of PEG3 mRNA was associated
with a poor prognosis.

0.04961 [64]

References
1. Liu, F.; Gai, X.; Wu, Y.; Zhang, B.; Wu, X.; Cheng, R.; Tang, B.; Shang, K.; Zhao, N.; Deng, W.; et al. Oncogenic β -catenin

stimulation of AKT2–CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc. Natl. Acad. Sci. USA
2022, 119, e2202157119. [CrossRef] [PubMed]

2. Stratton, M. Patterns of somatic mutation in human cancer genomes. EJC Suppl. 2008, 9, 6. [CrossRef]
3. Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. [Special Issue Review] Cancer Genome

Landscapes. Science 2013, 339, 1546–1558. [CrossRef] [PubMed]
4. Wensheng, Z.; Flemington, E.K.; Kun, Z. Driver gene mutations based clustering of tumors: Methods and applications.

Bioinformatics 2018, 34, i404–i411.
5. Mao, Y.; Chen, H.; Liang, H.; Meric-Bernstam, F.; Mills, G.B.; Chen, K. CanDrA: Cancer-Specific Driver Missense Mutation

Annotation with Optimized Features. PLoS ONE 2013, 8, e77945. [CrossRef]
6. Bashashati, A.; Haffari, G.; Ding, J.; Ha, G.; Lui, K.; Rosner, J.; Huntsman, D.G.; Caldas, C.; Aparicio, S.A.; Shah, S.P. DriverNet:

Uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012, 13, R124. [CrossRef]
7. Carter, H. Computational Assessment of Somatic Missense Mutations Detected in Tumor Sequencing Studies with Cancer-Specific

High-Throughput Annotation of Somatic Mutations (CHASM). Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD,
USA, 2012.

8. Schulte-Sasse, R.; Budach, S.; Hnisz, D.; Marsico, A. Integration of multiomics data with graph convolutional networks to identify
new cancer genes and their associated molecular mechanisms. Nat. Mach. Intell. 2021, 3, 513–526. [CrossRef]

9. Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.;
Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218.
[CrossRef]

10. Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell 2017, 168, 629–643. [CrossRef]
11. Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [CrossRef]

http://doi.org/10.1073/pnas.2202157119
http://www.ncbi.nlm.nih.gov/pubmed/36122209
http://dx.doi.org/10.1016/S1359-6349(08)71197-2
http://dx.doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
http://dx.doi.org/10.1371/journal.pone.0077945
http://dx.doi.org/10.1186/gb-2012-13-12-r124
http://dx.doi.org/10.1038/s42256-021-00325-y
http://dx.doi.org/10.1038/nature12213
http://dx.doi.org/10.1016/j.cell.2016.12.013
http://dx.doi.org/10.1101/cshperspect.a019505


Metabolites 2023, 13, 339 22 of 23

12. Creixell, P.; Reimand, J.; Haider, S.; Wu, G.; Shibata, T.; Vazquez, M.; Mustonen, V.; Gonzalez-Perez, A.; Pearson, J.; Sander,
C.; et al. Pathway and network analysis of cancer genomes. Nat. Methods 2015, 12, 615–621.

13. Yin, C.; Cao, Y.; Sun, P.; Zhang, H.; Li, Z.; Xu, Y.; Sun, H. Molecular Subtyping of Cancer Based on Robust Graph Neural Network
and Multi-Omics Data Integration. Front. Genet. 2022, 13, 884028. [CrossRef]

14. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
15. Gong, L.; Cheng, Q. Exploiting Edge Features in Graph Neural Networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
16. Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; Achan, K. Inductive representation learning on temporal graphs. arXiv 2020,

arXiv:2002.07962.
17. Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; Koutra, D. Beyond Homophily in Graph Neural Networks: Current

Limitations and Effective Designs. Adv. Neural Inf. Process. Syst. 2020, 33, 7793–7804.
18. Zhu, J.; Jin, J.; Loveland, D.; Schaub, M.T.; Koutra, D. On the Relationship between Heterophily and Robustness of Graph Neural

Networks. arXiv 2021, arXiv:2106.07767.
19. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 20.
20. Liu, J.; Ong, G.P.; Chen, X. GraphSAGE-Based Traffic Speed Forecasting for Segment Network with Sparse Data. IEEE Trans.

Intell. Transp. Syst. 2022, 23, 1755–1766. [CrossRef]
21. Weinstein, J.; Collisson, E.; Mills, G.; Shaw, K.; Ozenberger, B.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.; Network, C. The

Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [CrossRef]
22. Gonzalez-Perez, A.; Perez-Llamas, C.; Deu-Pons, J.; Tamborero, D.; Schroeder, M.P.; Jene-Sanz, A.; Santos, A.; Lopez-Bigas, N.

IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 2013, 10, 1081–1082. [CrossRef]
23. Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; Mckusick, V.A. Online Mendelian Inheritance In Man (OMIM). Hum. Mutat. 2000,

15, 57–61. [CrossRef]
24. D’Antonio, M.; Pendino, V.; Sinha, S.; Ciccarelli, F.D. Network of Cancer Genes (NCG 3.0): Integration and analysis of genetic

and network properties of cancer genes. Nucleic Acids Res. 2012, 40, D978–D983. [CrossRef] [PubMed]
25. Pleasance, E.D.; Cheetham, R.K.; Stephens, P.J.; McBride, D.J.; Humphray, S.J.; Greenman, C.D.; Varela, I.; Lin, M.L.; Ordóñez, G.R.;

Bignell, G.R.; et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010, 463, 191–196.
[CrossRef] [PubMed]

26. Imambi, S.; Prakash, K.B.; Kanagachidambaresan, G.R. PyTorch. Program. Tensorflow Solut. Edge Comput. Appl. 2021, 87–104.
Available online: https://www.semanticscholar.org/paper/PyTorch-Imambi-Prakash/d668f12be54174141e6197fad737006b7
b0c0571 (accessed on accessed on 1 May 2021).

27. Tokheim, C.J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Karchin, R. Evaluating the evaluation of cancer driver genes. Proc.
Natl. Acad. Sci. USA 2016, 113, 14330–14335. [CrossRef] [PubMed]

28. Chatr-Aryamontri, A.; Breitkreutz, B.J.; Oughtred, R.; Boucher, L.; Heinicke, S.; Chen, D.; Stark, C.; Breitkreutz, A.; Kolas, N.;
O’Donnell, L.; et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015, 43, D470–D478. [CrossRef]

29. Wong, W.C.; Kim, D.; Carter, H.; Diekhans, M.; Ryan, M.C.; Karchin, R. CHASM and SNVBox: toolkit for detecting biologically
important single nucleotide mutations in cancer. Bioinformatics 2011, 27, 2147–2148. [CrossRef]

30. Pavlov, Y.L. Random Forests; Karelian Research Centre Russian Academy of Sciences: Petrozavodsk, Russia, 1997.
31. Abeywickrama, T.; Cheema, M.A.; Taniar, D. k-Nearest Neighbors on Road Networks: A Journey in Experimentation and

In-Memory Implementation. arXiv 2016, arXiv:1601.01549.
32. Cortes, C.; Vapnik, V.N. Support-vector networks. Mach. Learn. 2004, 20, 273–297. [CrossRef]
33. Zhang, Y.; Liu, J.; Liu, X.; Fan, X.; Hong, Y.; Wang, Y.; Huang, Y.L.; Xie, M.Q. Prioritizing disease genes with an improved dual

label propagation framework. BMC Bioinform. 2018, 19, 47. [CrossRef]
34. Huang, Y.F.; Zhang, Z.; Zhang, M.; Chen, Y.S.; Song, J.; Hou, P.F.; Yong, H.M.; Zheng, J.N.; Bai, J. CUL1 promotes breast cancer

metastasis through regulating EZH2-induced the autocrine expression of the cytokines CXCL8 and IL11. Cell Death Dis. 2018,
10, 2. [CrossRef] [PubMed]

35. Lo, L.H.; Lam, C.Y.; To, J.C.; Chiu, C.H.; Keng, V.W. Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic
roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression. Biochem. Biophys. Res. Commun. 2021, 541, 70–77.
[CrossRef] [PubMed]

36. Sucularli, C.; Arslantas, M. Computational prediction and analysis of deleterious cancer associated missense mutations in
DYNC1H1. Mol. Cell. Probes 2017, 34, 21–29. [CrossRef] [PubMed]

37. Lin, J.; Zhuo, Y.; Yin, Y.; Qiu, L.; Li, X.; Lai, F. Methylation of RILP in lung cancer promotes tumor cell proliferation and invasion.
Mol. Cell. Biochem. 2021, 476, 853–861. [CrossRef]

38. Porta-Pardo, E.; Garcia-Alonso, L.; Hrabe, T.; Dopazo, J.; Godzik, A. A Pan-Cancer Catalogue of Cancer Driver Protein Interaction
Interfaces. PLoS Comput. Biol. 2015, 11, e1004518. [CrossRef]

39. Bertrand, D.; Chng, K.R.; Sherbaf, F.G.; Kiesel, A.; Chia, B.K.; Sia, Y.Y.; Huang, S.K.; Hoon, D.S.; Liu, E.T.; Hillmer, A.; et al.
Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic
Acids Res. 2015, 43, e44. [CrossRef]

40. Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr.
Protoc. Hum. Genet. 2013, 76,7–20. [CrossRef]

http://dx.doi.org/10.3389/fgene.2022.884028
http://dx.doi.org/10.1109/TITS.2020.3026025
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1038/nmeth.2642
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
http://dx.doi.org/10.1093/nar/gkr952
http://www.ncbi.nlm.nih.gov/pubmed/22080562
http://dx.doi.org/10.1038/nature08658
http://www.ncbi.nlm.nih.gov/pubmed/20016485
https://www.semanticscholar.org/paper/PyTorch-Imambi-Prakash/d668f12be54174141e6197fad737006b7b0c0571
https://www.semanticscholar.org/paper/PyTorch-Imambi-Prakash/d668f12be54174141e6197fad737006b7b0c0571
http://dx.doi.org/10.1073/pnas.1616440113
http://www.ncbi.nlm.nih.gov/pubmed/27911828
http://dx.doi.org/10.1093/nar/gku1204
http://dx.doi.org/10.1093/bioinformatics/btr357
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1186/s12859-018-2040-6
http://dx.doi.org/10.1038/s41419-018-1258-6
http://www.ncbi.nlm.nih.gov/pubmed/30578411
http://dx.doi.org/10.1016/j.bbrc.2021.01.017
http://www.ncbi.nlm.nih.gov/pubmed/33482578
http://dx.doi.org/10.1016/j.mcp.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28455235
http://dx.doi.org/10.1007/s11010-020-03950-0
http://dx.doi.org/10.1371/journal.pcbi.1004518
http://dx.doi.org/10.1093/nar/gku1393
http://dx.doi.org/10.1002/0471142905.hg0720s76


Metabolites 2023, 13, 339 23 of 23

41. Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.;
Reardon, B.; et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018, 173, 371–385. [CrossRef]

42. Kumar, A.; Masand, N.; Patil, V.M. Understanding Molecular Process and Chemotherapeutics for the Management of Breast
Cancer. Curr. Chem. Biol. 2021, 15, 69–84. [CrossRef]

43. Sondka, Z.; Bamford, S.; Cole, C.G.; Ward, S.A.; Dunham, I.; Forbes, S.A. The COSMIC Cancer Gene Census: describing genetic
dysfunction across all human cancers. Nat. Rev. Cancer 2018, 18, 696–705. [CrossRef]

44. Craene, B.D.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 2013,
13, 97–110. [CrossRef]

45. Kilpinen, S. Role of ErbB4 in breast cancer. J. Mammary Gland. Biol. Neoplasia 2008, 13, 259–268.
46. Chen, X.Y.; Zhang, J.; Zhu, J.S. The role of m6A RNA methylation in human cancer. Mol. Cancer 2019, 18, 1285–1292. [CrossRef]
47. Pützer, B.M.; Gnauck, J.; Kirch, H.C.; Brockmann, D.; Esche, H. A cis-acting element 7 bp upstream of the ESF-1-binding motif is

involved in E1A 13S autoregulation of the adenovirus 12 TS2 promoter. J. Gen. Virol. 1997, 78, 879–891. [CrossRef]
48. Wang, P.; Wang, L.; Sha, J.; Lou, G.; Lu, N.; Hang, B.; Mao, J.H.; Zou, X. Expression and transcriptional regulation of human

ATP6V1A gene in gastric cancers. Sci. Rep. 2017, 7, 3015. [CrossRef]
49. Cui, R.; Yang, L.; Wang, Y.; Zhong, M.; Yu, M.; Chen, B. Elevated Expression of ASXL2 is Associated with Poor Prognosis in

Colorectal Cancer by Enhancing Tumorigenesis and Inducing Cell Proliferation. Cancer Manag. Res. 2020, 12, 10221. [CrossRef]
50. Khan, S.F.; Damerell, V.; Omar, R.; Du Toit, M.; Khan, M.; Maranyane, H.M.; Mlaza, M.; Bleloch, J.; Bellis, C.; Sahm, B.D.; et al.

The roles and regulation of TBX3 in development and disease. Gene 2020, 726, 144223. [CrossRef]
51. Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.;

et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352.
[CrossRef]

52. Wu, X.; Wang, H.; Zhu, D.; Chai, Y.; Wang, J.; Dai, W.; Xiao, Y.; Tang, W.; Li, J.; Hong, L.; et al. USP3 promotes gastric
cancer progression and metastasis by deubiquitination-dependent COL9A3/COL6A5 stabilisation. Cell Death Dis. 2021, 13, 10.
[CrossRef]

53. Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A
comprehensive review. Bosn. J. Basic Med. Sci. 2018, 18, 8. [CrossRef]

54. Sontag, J.M.; Nunbhakdi-Craig, V.; Mitterhuber, M.; Ogris, E.; Sontag, E. Regulation of protein phosphatase 2A methylation by
LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. J. Neurochem. 2010, 115, 1455–1465. [CrossRef]
[PubMed]

55. Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol. 2020, 13, 104. [CrossRef] [PubMed]
56. Shan, Z.; Wang, W.; Tong, Y.; Zhang, J. Genome-scale analysis identified NID2, SPARC, and MFAP2 as prognosis markers of

overall survival in gastric cancer. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e929558-1. [CrossRef] [PubMed]
57. Tsuda, M.; Noguchi, M.; Kurai, T.; Ichihashi, Y.; Ise, K.; Wang, L.; Ishida, Y.; Tanino, M.; Hirano, S.; Asaka, M.; et al. Aberrant

expression of MYD88 via RNA-controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer
Sci. 2021, 112, 5100. [CrossRef]

58. Dyachenko, L.; Havrysh, K.; Lytovchenko, A.; Dosenko, I.; Antoniuk, S.; Filonenko, V.; Kiyamova, R. Autoantibody response to
ZRF1 and KRR1 SEREX antigens in patients with breast tumors of different histological types and grades. Dis. Markers 2016,
2016, 5128720. [CrossRef]

59. Chen, Y.; Teng, L.; Liu, W.; Cao, Y.; Ding, D.; Wang, W.; Chen, H.; Li, C.; An, R. Identification of biological targets of therapeutic
intervention for clear cell renal cell carcinoma based on bioinformatics approach. Cancer Cell Int. 2016, 16, 16. [CrossRef]

60. Vichas, A.; Riley, A.K.; Nkinsi, N.T.; Kamlapurkar, S.; Parrish, P.C.; Lo, A.; Duke, F.; Chen, J.; Fung, I.; Watson, J.; et al. Integrative
oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat. Commun. 2021, 12, 4789.
[CrossRef]

61. Qiu, X.; Guo, D.; Du, J.; Bai, Y.; Wang, F. A novel biomarker, MRPS12 functions as a potential oncogene in ovarian cancer and is a
promising prognostic candidate. Medicine 2021, 100, e24898. [CrossRef]

62. Li, J.; Ma, M.; Yang, X.; Zhang, M.; Luo, J.; Zhou, H.; Huang, N.; Xiao, F.; Lai, B.; Lv, W.; et al. Circular HER2 RNA positive triple
negative breast cancer is sensitive to Pertuzumab. Mol. Cancer 2020, 19, 142. .
[CrossRef]

63. Janes, P.W.; Slape, C.I.; Farnsworth, R.H.; Atapattu, L.; Scott, A.M.; Vail, M.E. EphA3 biology and cancer. Growth Factors 2014,
32, 176–189. . [CrossRef]

64. Zhou, T.; Lin, W.; Zhu, Q.; Renaud, H.; Liu, X.; Li, R.; Tang, C.; Ma, C.; Rao, T.; Tan, Z.; et al. The role of PEG3 in the occurrence
and prognosis of colon cancer. OncoTargets Ther. 2019, 12, 6001–6012. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cell.2018.02.060
http://dx.doi.org/10.2174/2212796814999200728185759
http://dx.doi.org/10.1038/s41568-018-0060-1
http://dx.doi.org/10.1038/nrc3447
http://dx.doi.org/10.1186/s12943-019-1033-z
http://dx.doi.org/10.1099/0022-1317-78-4-879
http://dx.doi.org/10.1038/s41598-017-03021-3
http://dx.doi.org/10.2147/CMAR.S266083
http://dx.doi.org/10.1016/j.gene.2019.144223
http://dx.doi.org/10.1038/nature10983
http://dx.doi.org/10.1038/s41419-021-04460-7
http://dx.doi.org/10.17305/bjbms.2018.2756
http://dx.doi.org/10.1111/j.1471-4159.2010.07049.x
http://www.ncbi.nlm.nih.gov/pubmed/21044074
http://dx.doi.org/10.1186/s13045-020-00937-8
http://www.ncbi.nlm.nih.gov/pubmed/32723346
http://dx.doi.org/10.12659/MSM.929558
http://www.ncbi.nlm.nih.gov/pubmed/33758160
http://dx.doi.org/10.1111/cas.15157
http://dx.doi.org/10.1155/2016/5128720
http://dx.doi.org/10.1186/s12935-016-0291-8
http://dx.doi.org/10.1038/s41467-021-24841-y
http://dx.doi.org/10.1097/MD.0000000000024898
http://dx.doi.org/10.1186/s12943-020-01259-6
http://dx.doi.org/10.3109/08977194.2014.982276
http://dx.doi.org/10.2147/OTT.S208060

	Introduction
	Materials and Methods
	Data Collection
	Multiomics Data
	Network Data
	Assignment of Positive Labels and Negative Labels for Genes

	Feature Generation
	Epigenetic Feature
	Transcriptome Features
	Genomic Features
	Biological Network Derived Features

	Model Construction
	GraphSAGE Layer
	GAT Layer

	Model Training

	Results
	Evaluation Metrics
	Performance of GGraphSAGE by Comparing with SOTA Methods
	Performance of GGraphSAGE by Comparing with Classical Machine Learning Models
	Ablation Experiments
	Association between Newly Predicted Genes and Cell Proliferation
	Newly Predicted Cancer Driver Genes and Their Verified Functions

	Discussion
	Conclusions
	Appendix A
	References

