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Abstract: β-cyclocitral (βCC) is one of the significant oxidative products of β-carotene. It primes
plants for multiple stress acclimation without compromising plant growth. Metabolic reorganiza-
tion is necessary to maintain a balance between growth and defense. However, the βCC-mediated
changes in a plant’s metabolic network are unknown. Here, we demonstrate how βCC-induced
metabolic changes enable Solanum lycopersicum L. (tomato) plants to promote defense and main-
tain growth under stress. An analysis of early (0–240 min) and late (72 h) changes in the tomato
metabolome after βCC-treatment using liquid chromatography and tandem mass spectrometry
identified 57 compounds. A principal coordinate analysis suggested that βCC treatment significantly
changes the metabolite profile. A variable importance in projection (VIP) analysis revealed 16 and
19 discriminant metabolites from early and late samples, respectively (VIP ≥ 1.0). Upregulated
metabolites were mainly amino acids and phytophenols. Pathway enrichment analysis showed
that βCC treatment influenced amino acid metabolism at early and later times; however, phenyl-
propanoid and isoquinoline biosynthesis were influenced only at the later time. A 66.6% similarity in
the upregulated metabolites of βCC- and simulated-herbivory-treated plants confirmed βCC’s role
against herbivores. We conclude that βCC steers a temporal separation in amino acids and defense
metabolite accumulation that optimizes resource allocation to growth and defense.

Keywords: apocarotenoids; herbivory; liquid chromatography-mass spectrometry; metabolomics;
stress signaling

1. Introduction

Environmental stresses are deleterious for the survival of plants. Solanum lycopersicum
L. (tomato), one of the major food crops in the family Solanaceae, is also challenged by mul-
tiple environmental stresses, namely fungal pathogens, herbivores, cold, drought, etc. [1,2].
To counteract environmental challenges, plants optimize their defense strategies via stress
sensing, signaling, and reorganizing their metabolic profile under the environmental stim-
uli. The chloroplast plays a central role in plant defense signaling as it harbors biosynthetic
pathways of significant defense metabolites; chloroplast-associated carotenoids are crucial
for protecting the photosynthetic apparatus from photo-oxidative damage [3] because the
presence of a C40 polyene backbone makes carotenoids susceptible to oxidative cleav-
age. Cleavage of carotenoids occurs enzymatically by carotenoid cleavage dioxygenase
or non-enzymatically by reactive oxygen species (ROS). The oxidative carbonyl products
of carotenoids are known as apocarotenoids [4,5]. Apocarotenoids are well known as
the precursors of abscisic acid, a phytohormone involved in abiotic stress responses [6].
In recent years, the identification of novel apocarotenoids has established their role in
stress signaling [5,7]. Previous studies showed that singlet oxygen (1O2)-mediated cleav-
age of β-carotene produces many apocarotenoids, where β-cyclocitral (βCC) is the major
apocarotenoid [8].

Interestingly, drought, photooxidative stress, and herbivory increase the level of
βCC [9–12]. Studies have shown that exogenous application of βCC can induce 1O2-
responsive genes, marker genes for photo-oxidative stress [8]. Recently, we found that βCC
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treatment triggers the accumulation of transcripts related to both abiotic and biotic stresses.
Our study also revealed that exogenous application of βCC primes plants against drought
and develops resistance against herbivory [11,13]. These results suggest that βCC causes
functional changes in addition to trancriptomic changes. On the other hand, βCC treatment
enhances the growth of primary roots and the branching of lateral roots [11]. As defenses
are costly, a trade-off between growth and defense is often evident in stress-exposed
plants. However, βCC treatment enhances both plant growth and defense. Metabolites
can influence plant growth, the branching pattern of roots and shoots, the size, shape, and
position of leaves, etc. [14–16]. Therefore, metabolic reorganization is a prerequisite to
maintaining a balance between growth and defense. However, βCC-mediated changes in
the plant metabolome are yet to be revealed.

In the ‘omics’ field, metabolomics identifies large-scale changes in the plant
metabolome. It is highly challenging, as plant metabolites possess different physical
and chemical properties and vary significantly in their concentrations [17]. Metabolomics
can be investigated using two main approaches: targeted and untargeted [18,19]. Initially,
chromatographic techniques, such as liquid chromatography (LC) and gas chromatography
(GC), separate the metabolites, and mass spectroscopy (MS) investigates the quantitative
changes in the plant metabolome [20]. The use of nuclear magnetic resonance (NMR)
spectroscopy is also evident in metabolomics analysis [21]; however, as the sensitivity of
MS is high, it is preferred over NMR spectroscopy for analyzing plant metabolites [22]. The
tomato has been considered a model fruit. Its metabolomic profiles have been studied to
discriminate different varieties, determine geographical origin, examine fruit development
and ripening, and investigate seasonal changes [23]. A comparative metabolomics study of
Ralstonia solanacearum-infected tomato leaves, stems, and roots revealed the metabolic
changes after being infected with R. solanacearum [24]. This study identified the metabolites
providing plant defense against R. solanacearum [24]. However, a comparative metabolomics
study of tomato plants after apocarotenoid treatment has yet to be executed.

In light of the reported results and previous findings, we hypothesized that βCC
treatment reorganizes plants’ metabolic networks to enhance plant growth and defense.
Therefore, in the current study, we aimed to reveal how exogenous application of βCC
changes the metabolic signature of the tomato plants that enables them to maintain growth
under stress using an LC–MS-based approach.

2. Materials and Methods
2.1. Plant Material, Growth Conditions, and Treatments

Seeds of tomato (var. Pusa Ruby) were germinated on cocopeat. 15-day-old seedlings
were transferred in pots (9 cm × 9 cm) that contained soil, cocopeat, and vermiculite (5:4:1)
and raised for five weeks. These plants were treated with 1 mL of pure βCC (treatment),
or water (control) kept in a watch glass in a transparent, closed glass container [11,25].
Tissues were harvested in liquid nitrogen 0, 30, 60, 90, 180, 240 min, and 72 h after treatment.
Insect herbivory was simulated in tomato plants by wounding the tomato leaves with
a fabric pattern wheel parallel to the mid-vein and applying 20 µL of oral secretion of
Spodoptera litura larvae diluted with sterile water (1:1) to the wound [26]. Tissues were
harvested in liquid nitrogen 72 h after treatment. All harvested tissues were stored at
−80◦C until further use.

2.2. Extraction of Metabolites and Data Acquisition in LC-QTOF-MS/MS

Leaf samples of tomato plants were pulverized in liquid nitrogen. An amount of
200 mg of tissue was extracted with 1 mL methanol spiked with the internal standard
formononetin (10 µg ml−1) by vortexing continuously for 15 min. Further, the extracts were
centrifuged at 15,000× g at 4 ◦C for 20 min. The collected supernatant was filtered and
subjected to LC-QTOF-MS/MS (Agilent Technologies, Stuttgart, Germany) for analysis.

The extracts were separated on an XDB-C18 column (150 mm × 4.6 mm × 5 µm;
Agilent Zorbax-Eclipse) using 0.1% (v/v) formic acid (solvent A) and acetonitrile with
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0.1% formic acid (solvent B) as mobile phases. Compounds were eluted with a solvent
gradient profile consisting of 95% A for 1 min followed by a gradient that reached 95% B
by 15 min, returned 95% A by 17.5 min, and continued until 20 min. The injection volume
was adjusted to 10 µL. The eluted compounds were detected using the centroid mode for
both negative and positive ionization modes. The pump limit was 1 min; the draw speed
and eject speed were set to 200 µL min−1 and 400 µL min−1, respectively. The maximum
pressure limit in the column was 800 bar, and the retention time exclusion tolerance was set
to (±) 0.2 min. The ion source (dual ESI) was adjusted with a limit of 2 precursors min−1.

2.3. LC-QTOF-MS/MS Data Analysis

Initially, a personal compound database library (PCDL) was prepared by accessing
different databases and libraries for the metabolites from Solanaceae plants. The PCDL
library and the Mass Hunter Qualitative Analysis BO.07.00 tool (Agilent Technologies) were
used to analyze the spectra of the metabolites. The MS/MS data were procured from four
replicate samples to assess the biological variations in the control, βCC-, and simulated-
herbivory-treated samples. Compounds with an abundance greater than 10,000 counts
and a score of more than 75 were considered for further analysis. These compounds were
identified with a mass threshold of 7 ppm and a peak distance threshold of 10 ppm in
MS/MS mode using the ‘find by formula’ function in the Mass Hunter software. The
molecular ion and daughter ions in MS and MS/MS modes were compared with the
reference or predicted spectra available at the Human Metabolome Database (HMDB),
MassBank, and Pubchem.

2.4. Statistical Analysis

Principal coordinate analysis (PCoA) of metabolomics data was performed in PAST
3 [27]. A heatmap was prepared with the web tool ClustVis (https://biit.cs.ut.ee/clustvis/;
accessed on 1 December 2022). Metaboanalyst 5.0 (https://www.metaboanalyst.ca/;
accessed on 1 December 2022) was used for orthogonal partial least square discriminant
analysis (OPLS-DA), variable importance in projection (VIP), fold-change analysis, and
pathway analysis. Venn diagrams were created using Venny 2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/; accessed on 1 December 2022) [28]. Normalized peak areas were
analyzed by one-way ANOVA followed by Fisher’s least significant difference (LSD) post
hoc test. The significance was determined at p ≤ 0.05.

3. Results
3.1. Application of βCC Altered the Metabolite Profile of Tomato Plants

Previous reports showed that exogenous βCC could improve plants’ tolerance to
different stresses but did not reduce plant growth [9,11]. Therefore, to investigate how
βCC improves plants’ tolerance without compromising plant growth, we analyzed the
metabolome of tomato plants after βCC treatment and compared it with control plants.
Samples were collected at 0, 30, 60, 90, 180, and 240 min after βCC treatment to assess
βCC-mediated early changes in the metabolome (Figure S1). Similarly, to track the βCC-
induced late metabolic changes, samples were collected at 72 h after βCC treatment (Figure
S1). A total of 57 compounds were identified from positive and negative modes across all
the time points. Compounds were identified based on the daughter ion spectra at three
energy levels 10 eV, 20 eV, and 40 eV (Table S1). Among the identified compounds, 45
and 31 were accumulated at early (0–240 min) and late (72 h) time points, respectively.
A heatmap created with the identified compounds showed that the metabolic profiles of
βCC-treated samples differed from that of the control (Figure 1a). Principal coordinate
analysis (PCoA) showed a total variability of 70.35%, where the maximum variation was
captured in coordinates 1 (44.67%) and 2 (25.68%). Interestingly, βCC-treated samples from
0–240 min were grouped separately from the control samples from the same time points
(0–240 min). However, the control and βCC-treated samples from 72 h were grouped in
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the same coordinate in the PCoA plot (Figure 1b). This suggests that βCC-mediated early
changes in the metabolite profile were more prominent than later changes.
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Figure 1. Variation in the metabolites after βCC treatment across different time points. (a) The metabo-
lites showed variation in their accumulation pattern across different time points after being treated with
βCC. The color scheme at the top-right corner codes for the z-scores (−3 to +3) calculated over binary
coordinates of the samples. The average linkage clustering computed between the samples is based on
the Manhattan distance and depicted at the top of the heatmap. (b) The principal coordinate analysis
(PCoA) was performed with the identified metabolites using the Jaccard coefficient and transformation
exponent value 2. It showed that the maximum percentage of the variation was captured in coordinates
1 and 2. The values in parentheses show the percentages of the variation.
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3.2. Regulation of Metabolites in Early Time Points after βCC Treatment

The PCoA plot indicated a pronounced effect of βCC on metabolite accumulation
within 0–240 min after the treatment. To find out the discriminant metabolites that were
responsible for separating the control and βCC-treated samples, the peak area of 45 identi-
fied compounds from 0–240 min time scale were normalized with the internal standard
and analyzed for an orthogonal partial least square discriminant analysis (OPLS-DA) and
variable importance in projection (VIP) analysis. OPLS-DA showed that the control and
βCC-treated samples were well separated in the score plot (Figure 2a). The data confirmed
that the metabolic blend of the control and βCC-treated samples were different. VIP
analysis determined the relative contribution of the metabolites to the variation between
the control and βCC-treated samples. The analysis identified a total of 16 discriminant
compounds (VIP score ≥ 1.0) (Figure 2b).
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Figure 2. βCC-induced early metabolic changes and discriminant metabolites. To examine the
differences in the metabolic profile in tomato plants early after βCC treatment, orthogonal partial
least square discriminant analysis (OPLS-DA) and variable importance in projection (VIP) analysis
were performed with the normalized peak area of the metabolites identified from 0–240 min after
βCC treatment and in control plants. (a) An OPLS-DA plot showed the control group clustered to
the left region and the βCC-treated group clustered to the right area in the OPLS-DA score plot.
The shaded ellipses represent the confidence interval of 95% from OPLS-DA models. (b) A variable
importance in projection (VIP) plot showed that the metabolites responsible for the significant
separation observed between the two sample groups were indicated by a VIP score ≥ 1.0. An increase
in VIP score indicates a high contribution of the metabolites to the group separation. The red and
blue boxes on the right indicate whether the metabolite concentration was high (red) or low (blue) in
the βCC-treated plants compared to control plants.

Further, the fold-change analysis revealed that, out of 16 discriminant compounds, 11
were upregulated (log2FC ≥ 2), and four were downregulated (log2FC ≤ −2.0) (Figure S2).
Though the log2FC value of one of the discriminant metabolites (aspartate) was 1.8, its VIP
score was 1.01; therefore, it had the most negligible influence in separating the control and
βCC-treated sample groups. The normalized peak area of the discriminant metabolites
from all the time points was further analyzed by one-way ANOVA and Fisher’s LSD
post hoc test. Significantly different metabolites were determined at p ≤ 0.05 (Table S2)
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and visualized by mapping their regulation in the network of metabolic pathways for
each time point (Figure 3a). The analysis showed that the upregulated metabolites were
mainly amino acids and their derivatives (i.e., tryptophan, leucine, aspartate, glutamate,
homoserine, and o-acetylserine), followed by phytophenols (i.e., shikimate, rutin, and
coumaric acid), carbohydrates and their derivatives (i.e., UDP-glucose and galactose),
and carboxylic acid (i.e., salicylic acid). Cinnamic acid, linoleic acid, nicotinic acid, and
sucrose were significantly downregulated metabolites. Most of the compounds were upreg-
ulated, so a pathway enrichment analysis was performed with the upregulated compounds.
It revealed that the pathways related to (1) aminoacyl-tRNA biosynthesis (p = 0.0001),
(2) glycine, serine, and threonine metabolism (p = 0.001), (3) lysine biosynthesis (p = 0.0010),
(4) cysteine and methionine metabolism (p = 0.0028), (5) arginine biosynthesis (p = 0.0059)
(6) phenylalanine, tyrosine, and tryptophan biosynthesis (p = 0.0088), (7) alanine, aspartate,
and glutamate metabolism (p = 0.0088) (8) galactose metabolism (p = 0.0131), and (9) in-
dole alkaloid biosynthesis (p = 0.0267) were significantly influenced (hypergeometric test;
p ≤ 0.05) by βCC application (Figure 3b). The above data suggest that βCC treatment
mainly boosted plants’ amino acid metabolism within a few hours of treatment.

3.3. Regulation of Metabolites at a Late Time Point after βCC Treatment

Generally, in plants, accumulation of defense metabolites takes place 3–4 days after
exposure to stress [29]. Surprisingly, the PCoA plot indicated that the metabolic blend of
βCC-treated samples from 72 h was less different than that of the control samples. This
result suggests that quantitative changes were more critical than qualitative changes in
later times. The Venn diagram constructed with the metabolites detected 72 h after βCC
treatment showed that, among 31 identified compounds, 19 were commonly present (63%)
in control and βCC-treated plants, and only eight compounds (25%) were detected explic-
itly after βCC treatment (Figure 4a). However, the OPLS-DA (Figure 4b) and fold-change
analysis (Figure S3) showed that, though the metabolite profile of control and βCC-treated
plants were qualitatively similar, they were quantitatively different. Further, we identified
the discriminant metabolites from βCC-treated samples after 72 h of treatment by VIP
analysis. This revealed 19 discriminant compounds, of which 15 compounds (78%) were
significantly upregulated (log2FC ≥ 2.0), and four compounds (21%) were significantly
downregulated (log2FC ≤ −2.0). The upregulated compounds included mainly phytophe-
nols (i.e., isoferulic acid, ferulic acid, coumaric acid, and quinic acid), followed by amino
acids (i.e., homoserine, threonine, valine, tyramine, and aspartate), carbohydrates and
their derivatives (i.e., galactose, glucose, and mannose), organic acids (i.e., citric acid and
fumaric acid), and steroidal alkaloids (i.e., α-tomatine) (Figure 4c). Significantly downreg-
ulated metabolites were serine, solasodine, solasonin, and linoleic acid (Figure 4c). The
pathway enrichment analysis of the upregulated discriminant compounds revealed their
involvement in (1) glycine, serine, and threonine metabolism (p = 0.0014), (2) lysine biosyn-
thesis (p = 0.0017), (3) aminoacyl-tRNA biosynthesis (p = 0.0038), (4) tyrosine metabolism
(p = 0.0056), (5) arginine biosynthesis (p = 0.0071), (6) citrate cycle (p = 0.0088), (7) va-
line, leucine and isoleucine biosynthesis (p = 0.0106), (8) alanine, aspartate and glutamate
metabolism (p = 0.0106), (9) cysteine and methionine metabolism (p = 0.0433), (10) phenyl-
propanoid biosynthesis (p = 0.0433), and (11) isoquinoline alkaloid biosynthesis (p = 0.0437)
(hypergeometric test; p ≤ 0.05) (Figure 4d). The data suggest that βCC treatment en-
hanced the pathways related to plant defense at later time points, keeping the amino acid
biosynthesis and metabolism boosted.
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Figure 3. Mapping the relative expression of discriminant metabolites early after βCC treatment and
their influence on metabolic pathways. The normalized peak area of the discriminant metabolites
from control and βCC-treated samples of different time points (0, 30, 60, 90, 180, and 240 min)
were subjected to one-way ANOVA; the significance was determined by Fisher’s LSD at p = 0.05.
(a) Significantly up- and down-regulated metabolites from different time points are mapped on
the pathways modified from the KEGG database. (b) Pathway analysis using the upregulated
discriminant metabolites shows altered pathways after βCC treatment (left panel). The x-axis depicts
pathway impact values obtained from the pathway topology analysis, and the y-axis depicts the –log
of the p values obtained from the pathway enrichment analysis (p ≤ 0.05). Circular nodes represent
the metabolic pathways. The size of the circular nodes positively corresponds with the impact of the
proposed pathway based on the pathway topology. The node color, from yellow to orange, shows
different levels of significance based on pathway enrichment analysis (yellow–low; orange–high). The
most significantly altered pathways are characterized by both a high −log(p) value and a high impact
value. Nine pathways were significantly altered after βCC treatment (right panel). Metabolites in
black font were identified in the study, but greys were not. Grey boxes indicate no significant changes
in the metabolite accumulation at p≤ 0.05.
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Figure 4. βCC-induced late metabolic changes, discriminant metabolites, and their influence on
metabolic pathways. (a) A Venn diagram created with the identified metabolites from control
and βCC-treated samples showed many metabolites regulated commonly and specifically in them.
(b) OPLS-DA plot showed distinct clusters of the control group to the left region and the βCC-
treated group to the right region of the plot. The shaded ellipses represent the confidence interval
of 95% from OPLS-DA models. (c) A variable importance in projection (VIP) plot showed that the
metabolites responsible for the significant separation observed between these two sample groups
were indicated by a VIP score ≥ 1.0. An increase in VIP score indicates a high contribution of the
metabolites to the group separation. The red and blue boxes on the right indicate whether the
metabolite concentration was high (red) or low (blue) in the βCC-treated plants compared to control
plants. (d) Pathway analysis using the upregulated discriminant metabolites shows altered pathways
after βCC treatment (upper panel). The x-axis depicts pathway impact values obtained from the
pathway topology analysis, and the y-axis depicts the –log of the p values obtained from the pathway
enrichment analysis (p ≤ 0.05). Circular nodes represent the metabolic pathways. The size of the
circular nodes positively corresponds with the impact of the proposed pathway based on the pathway
topology. The node color, from yellow to orange, shows different levels of significance based on
pathway enrichment analysis (yellow–low; orange–high). The most significantly altered pathways
were characterized by both a high −log(p) value and a high impact value. A total of 11 pathways
were significantly altered after βCC treatment (lower panel).
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3.4. βCC Treatment Induces a Similar Metabolic Response as Simulated Herbivory

Previously, we found that βCC treatment was also able to enhance resistance against a
generalist herbivore, Spodoptera littoralis, in Arabidopsis thaliana [13]. To investigate if the
discriminant metabolites are also influenced after insect herbivory, we compared the levels
of βCC-induced metabolites with simulated-herbivory-treated and control plants after 72 h
of treatment. Interestingly, out of the 15 discriminant compounds from βCC-treated plants,
ten compounds (66.6%) were significantly upregulated after simulated herbivory compared
to the control (Figure 5). The upregulated compounds included ferulic acid, isoferulic acid,
coumaric acid, α-tomatine, tyramine, aspartate, citric acid, galactose, glucose, and mannose
(Figure 5). In addition, βCC-treated samples accumulated significantly more amounts of
quinic acid, threonine, valine, homoserine, and fumaric acid (One-way ANOVA; Fisher’s
LSD; p ≤ 0.05) (Figure 5). The data suggest that βCC treatment can induce a similar blend
of compounds that are upregulated after insect herbivory with a few more amino acids and
phytophenol.
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Figure 5. Comparative levels of metabolites after βCC treatment and simulated herbivory. The
normalized peak area of the upregulated discriminant metabolites identified after 72 h of βCC
treatment was compared with that of control and simulated-herbivory-treated (W+OS) plants. The
accumulation of phytophenols, (a) ferulic acid (F2,9 = 7.975; pβCC = 0.006, pW+OS = 0.008), (b) isoferulic
acid (F2,9 = 9.012; pβCC = 0.0036, pW+OS = 0.0078), (c) coumaric acid (F2,9 = 5.554; pβCC = 0.014, pW+OS

= 0.081), and (d) α-tomatine (F2,9 = 37.185; pβCC and W+OS < 0.001) were significantly more in βCC-
and simulated herbivory-treated plants, but (e) quinic acid (F2,9 = 8.672; pβCC = 0.0057, pW+OS = NA)
was upregulated only after βCC treatment. Similarly, the levels of amino acids, (f) tyramine was also
upregulated in βCC- and simulated-herbivory-treated plants (F2,9 = 4.368; pβCC = 0.034, pW+OS = 0.027);
however, levels of (g) aspartate (F2,9 = 4.082; pβCC = 0.022, pW+OS = 0.069), (h) threonine (F2,9 = 28.458;
pβCC = 0.0002, pW+OS = 0.364), (i) valine (F2,9 = 10.038; pβCC = 0.005, pW+OS = 0.599), and (j) homoserine
(F2,9 = 35.912; pβCC < 0.001, pW+OS = 0.341) were upregulated only after βCC treatment. Accumulation of
carbohydrates and their derivatives, (k) glucose (F2,9 = 137.907; pβCC and W+OS < 0.001), (l) galactose (F2,9

= 33.337; pβCC and W+OS < 0.001), and (m) mannose (F2,9 = 260.128; pβCC = 0.014, pβCC and W+OS < 0.001)
were also upregulated after both βCC treatment and simulated herbivory; however, accumulation of
organic acids (n) citric acid (F2,9 = 1.980; pβCC = 0.077, pW+OS = 0.356), and (o) fumaric acid (F2,9 = 40.004;
pβCC = 0.005, pW+OS = 0.0006) was only increased after βCC treatment. The mean normalized peak area
(±SE) was analyzed from four replicate plants by one-way ANOVA and Fisher’s LSD post hoc test.
Different letters indicate significant differences at p ≤ 0.05.
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4. Discussion

Plant growth and productivity are severely affected by environmental stress. However,
plants adapt to this unfavorable condition by optimizing their defense strategies. Therefore,
the machinery of stress perception, signal transduction, and, ultimately, production of
defense responses have been extensively studied. The plant hormones jasmonic acid [30],
abscisic acid [31], ethylene [32], and salicylic acid [33], are known as stress signaling
molecules; however, the growth hormones auxin, gibberellins, and strigolactones also
participate as signaling molecules in plant–environment interactions [34]. In recent years
researchers have uncovered apocarotenoids as potential signaling molecules. Studies have
shown that βCC, the oxidative product of β-carotene, is a significant apocarotenoid that can
induce 1O2-responsive genes, essential for photooxidative stress in Arabidopsis thaliana [8].
We found that the exogenous application of βCC reprograms the transcriptome of tomato
plants [25] by triggering multiple stress-responsive genes, essential to counteract both
abiotic and biotic stresses. We also found that βCC can prime tomato plants against drought
and induce resistance against insect herbivores in A. thaliana plants [11,13]. However, βCC
treatment does not negatively affect plant growth but enhances root growth and lateral
branching [10,11]. Generally, plants compromise their photosynthetic ability under stress,
and, at the same time, they invest in defense; this reduces the carbon flux towards growth
and causes a growth–defense trade-off [35]. Previous studies on tomato metabolomics
have revealed that the leaf, stem, and root metabolome present different signatures upon
infestation. In addition, metabolomic markers can be used to monitor or predict the
performance of plants and their response to environmental stresses [36]. These facts
stimulated the hypothesis that βCC specifically upregulates those metabolites that play a
dual role in improving plant growth and defense. It is also possible that defense metabolites
are upregulated after accomplishing plant growth requirements in βCC-treated plants,
which avoids diversion of carbon flux from growth toward defense. To examine this,
we compared the metabolome of βCC-treated plants with control plants to reveal βCC-
induced metabolic changes in tomato plants. In addition, we also compared βCC-induced
metabolic changes with simulated-herbivory-induced changes to reveal βCC’s influence on
the defense metabolites related to insect herbivory. Our results showed that βCC treatment
mainly influenced the metabolism of amino acids and the accumulation of phytophenols.

Traditionally, amino acids are designated as the building blocks of protein; however,
they also serve as intermediates for other biosynthetic pathways. Therefore, apart from
plant growth and development, they also influence the generation of metabolic energy
and signaling processes [37] and confer resistance to both abiotic and biotic stress [38–40].
In a recent study, it was demonstrated that pathogen-inoculated tomato plants’ primary
metabolic pools were altered [41]. Similarly, βCC treatment induced many primary metabo-
lites very early after the treatment. We found that βCC treatment increased the levels of
tryptophan and its precursor shikimate. Shikimate is the common intermediate of the
amino acid tryptophan and phenylalanine biosynthetic pathways. As tryptophan is the
precursor for auxin and 5-hydroxytryptamine biosynthesis, an increase in the tryptophan
level may contribute to plant growth. On the other hand, phenylalanine accumulation re-
mained unaltered after βCC treatment; however, the derivatives of phenylalanine, namely,
coumaric acid, rutin, and salicylic acid, were significantly increased (Figure 3a). These
metabolites are known for their antioxidant and antipathogenic properties [42–44]. More-
over, rutin and coumaric acid application resulted in increased photosynthesis, chlorophyll
content, and shoot growth [45,46]. In addition, the amino acids glutamate and glycine were
also increased after βCC treatment. Glutamate is the precursor of chlorophyll tetrapyrrol
protoporphyrin IX biosynthesis, where δ-aminolaevulinic acid (ALA) is the major interme-
diate [47]. Interestingly, the application of 14C-labeled glycine can instantly be incorporated
into ALA in dark-grown barley leaves [48]. Moreover, exogenous glycine application
can stimulate root hair formation and [49] induce plant growth [50,51]. These findings
are consistent with our previous results that showed that βCC treatment could enhance
chlorophyll accumulation and root growth in tomato plants [11].
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βCC treatment can also enhance the levels of aspartate, which serves as a precursor
of many biosynthetic pathways required for growth and defense [52]. For example, it
is a precursor for the aspartate oxidase pathway that synthesizes nicotinamide adenine
dinucleotide (NAD), an essential component of chlorophyll synthesis [53]. Therefore, pre-
sumably, βCC-induced increase in glutamate, glycine, and aspartate accumulation supports
increased chlorophyll content in βCC-treated plants. Another vital role of aspartate is to
transfer the reduction equivalents from the glycolytic pathway to the mitochondria for
ATP generation via the malate–aspartate shuttle [54]. Recent studies showed that mito-
chondrial components of the malate–aspartate NADH shuttle act as a longevity factor
that induces the extension of lifespan in yeast. Therefore, presumably by enhancing the
malate–aspartate shuttle, stress-induced excess reducing powers are ameliorated in mito-
chondria that ultimately helps plant survival during stress. Moreover, the accumulation
of aspartate is closely related to stress acclimation. For example, aspartate concentration
was increased significantly in drought-exposed Brassica napus plants [55]. It is known that
out of the eight essential amino acids, four amino acids, namely methionine, threonine,
lysine, and isoleucine, are produced from aspartate [56]. An increase in aspartate after βCC
treatment is translated into an increase in the levels of homoserine (a common intermedi-
ate of methionine, threonine, and lysine), and specifically threonine, but not methionine,
lysine, and isoleucine. βCC also induced the accumulation of leucine. An increase in threo-
nine and leucine may be attributed to the critical components of serine/threonine protein
kinases [57] and leucine-rich repeat (LRR) proteins [58], respectively, and facilitates the
perception of stress signals and protein–protein interactions. An increase in the transcripts
of serine/threonine protein kinases and LRR proteins after βCC application [25] suggests
the same.

Abiotic stresses, such as drought and salinity, cause osmotic stress in the plant. To
maintain osmolarity, plants produce compatible solutes to maintain cell turgor. These
non-toxic compounds fall into three categories, namely, amino acids, onium compounds,
and sugars/polyols [59]. Proline is one of the significant osmolytes; however, we found
proline levels remained unaltered until three days after βCC treatment. Our previous study
showed that proline significantly increased after 21 days of βCC treatment. Therefore
proline may be upregulated after three days of βCC treatment. However, homoserine
is a non-protein amino acid, and increased levels of homoserine can be attributed to the
production of the homoserine betain, a known osmolyte in salt stress [60]. Mannose is
another important metabolite that also works as an osmolyte and, in addition, enhances
antioxidant metabolism and reduces chlorophyll degradation [61].

Accumulation of phytophenols is significantly increased after βCC treatment. They
contribute to plant color and protect plants from oxidative stress, pathogen infestation,
and herbivore attack [62]. Phytophenols are biosynthesized utilizing amino acids as the
precursors; however, a few phenolic compounds are also derived from the shikimic acid
pathway [63]. Coumaric acid is one of the phytophenols that is biosynthesized through
the shikimate pathway [64] and can be converted into phenolic acids [65,66]. Therefore, an
increase in the levels of coumaric acid and its phenolic acids, namely, ferulic acid and its
isomer isoferulic acid, suggest a role of βCC in the production of defense metabolites against
abiotic and biotic stress. This view is further strengthened by the commonly upregulated
defense metabolites in βCC- and simulated-herbivory-treated samples. Interestingly, α-
tomatine, a glycoalkaloid specifically present in tomato that deters insect herbivores, is
significantly greater in βCC-treated plants than simulated-herbivory-treated plants. Similar
trends were evident in the accumulation of quinic acid. Together, this suggests that βCC
can upregulate defense metabolites that prime tomato plants against multiple stresses.
However, a few metabolites, namely cinnamic acid, nicotinic acid, linoleic acid, solasodin,
and solasonin, that are related to plant defense, were downregulated significantly. A high
turnover of cinnamic acid to coumaric acid and rutin probably restricts its accumulation.
Similarly, the allocation of aspartate towards homoserine production can limit aspartate
allocation towards nicotinic acid. Downregulation of linoleic acid after βCC treatment is
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surprising, as linoleic acid levels are known to be increased within an hour of herbivory
and pathogen attack. After being attacked by herbivores, linoleic acid is liberated from cell
membranes and is converted to jasmonate, which regulates transcription of the defense
genes [67]. In our previous transcriptomic study, we did not find upregulation of any
genes from the jasmonate biosynthetic cascade [25]. In the current study, we could not
detect jasmonic acids or their derivatives; however, the levels of α-tomatine, a jasmonate-
dependent glycoalkaloid [68], increased. Together, these suggest that βCC operates in
a jasmonate-independent way in tomato plants. The other glycoalkaloids, solasodine,
and solasonine were downregulated after BCC treatment. As α-tomatine is the major
glycoalkaloid in tomato plants, downregulation of others may be cost-effective.

5. Conclusions

In the current study, we found that exogenous βCC elicits changes in the metabolome
of tomato plants. Interestingly, these changes were more significant at early time points
after βCC treatment than later ones. βCC mainly regulates amino acid and phytophenol
metabolism. Interestingly, βCC-treated plants precisely upregulated metabolites having a
role in improving both growth and defense; moreover, regulation of amino acid and phy-
tophenol metabolism at different times optimized the growth of tomato plants. Therefore,
βCC is a promising molecule for inducing resilience against biotic and abiotic stress. In
general, most research has focused on the effect of priming molecules on plant phenotypic
changes. However, our study sought to reveal the molecular changes that contribute to
understanding the molecular mechanisms underlying priming.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13030329/s1, Figure S1: Representative base peak chro-
matogram (BPC) from LC-MS analysis of control, βCC-, and simulated-herbivory-treated samples;
Figure S2: Fold-change analysis of the samples from early time points (0–240 min) after βCC treat-
ment compared to control plants; Figure S3: Fold-change analysis of the samples from 72 h after
βCC treated plants compared to control plants. Table S1: Compounds identified from control and
βCC-treated tomato plants by LC-MS/MS; Table S2: Statistical analysis of the levels of discriminant
metabolites identified early after βCC treatment.

Author Contributions: Conceptualization, S.M.; methodology, S.D.; software, S.D. and S.M.; valida-
tion, S.D. and S.M.; formal analysis, S.D. and S.M.; investigation, S.M.; resources, S.M.; data curation,
S.M. and S.D.; writing—original draft preparation, S.M. and S.D.; writing—review and editing, S.M.;
visualization, S.M.; supervision, S.M.; project administration, S.M.; funding acquisition, S.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ramalingaswami Reentry Fellowship, Department of
Biotechnology (DBT), India. Grant number BT/HRD/35/02/2006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the main text and
supplementary materials.

Acknowledgments: The authors acknowledge Savitribai Phule Pune University for the infrastructure
provided for the study, V. T. Barvkar for technical help with LC-MS data acquisition, and S. Raskar, V.
Purkar, and Rakesh M. for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/metabo13030329/s1
https://www.mdpi.com/article/10.3390/metabo13030329/s1


Metabolites 2023, 13, 329 13 of 15

References
1. Thakur, B.; Singh, R.; Nelson, P. Quality attributes of processed tomato products: A review. Food Rev. Int. 1996, 12, 375–401.

[CrossRef]
2. Zhang, Y.; Song, H.; Wang, X.; Zhou, X.; Zhang, K.; Chen, X.; Liu, J.; Han, J.; Wang, A. The roles of different types of trichomes in

tomato resistance to cold, drought, whiteflies, and botrytis. Agronomy 2020, 10, 411. [CrossRef]
3. Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 2015, 8, 68–82. [CrossRef] [PubMed]
4. Giuliano, G.; Al-Babili, S.; Von Lintig, J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 2003, 8, 145–149. [CrossRef]
5. Hou, X.; Rivers, J.; León, P.; McQuinn, R.P.; Pogson, B.J. Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci.

2016, 21, 792–803. [CrossRef]
6. Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought,

salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [CrossRef]
7. Moreno, J.C.; Mi, J.; Alagoz, Y.; Al-Babili, S. Plant apocarotenoids: From retrograde signaling to interspecific communication.

Plant J. 2021, 105, 351. [CrossRef]
8. Ramel, F.; Birtic, S.; Ginies, C.; Soubigou-Taconnat, L.; Triantaphylidès, C.; Havaux, M. Carotenoid oxidation products are stress

signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 5535–5540. [CrossRef]
9. D’alessandro, S.; Ksas, B.; Havaux, M. Decoding β-cyclocitral-mediated retrograde signaling reveals the role of a detoxification

response in plant tolerance to photooxidative stress. Plant Cell 2018, 30, 2495–2511. [CrossRef]
10. d’Alessandro, S.; Mizokami, Y.; Legeret, B.; Havaux, M. The apocarotenoid β-cyclocitric acid elicits drought tolerance in plants.

Iscience 2019, 19, 461–473. [CrossRef]
11. Deshpande, S.; Manoharan, R.; Mitra, S. Exogenous β-cyclocitral treatment primes tomato plants against drought by inducing

tolerance traits, independent of abscisic acid. Plant Biol. 2021, 23, 170–180. [CrossRef]
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