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Abstract: Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism and part of newborn
screening (NBS) programs worldwide. However, NBS for IVA is hampered by, first, the increased
birth prevalence due to the identification of individuals with an attenuated disease variant (so-called
“mild” IVA) and, second, an increasing number of false positive screening results due to the use
of pivmecillinam contained in the medication. Recently, machine learning (ML) methods have
been analyzed, analogous to new biomarkers or second-tier methods, in the context of NBS. In this
study, we investigated the application of machine learning classification methods to improve IVA
classification using an NBS data set containing 2,106,090 newborns screened in Heidelberg, Germany.
Therefore, we propose to combine two methods, linear discriminant analysis, and ridge logistic
regression as an additional step, a digital-tier, to traditional NBS. Our results show that this reduces
the false positive rate by 69.9% from 103 to 31 while maintaining 100% sensitivity in cross-validation.
The ML methods were able to classify mild and classic IVA from normal newborns solely based
on the NBS data and revealed that besides isovalerylcarnitine (C5), the metabolite concentration of
tryptophan (Trp) is important for improved classification. Overall, applying ML methods to improve
the specificity of IVA could have a major impact on newborns, as it could reduce the newborns’ and
families’ burden of false positives or over-treatment.

Keywords: data analysis; artificial intelligence; data mining; isovaleric acidemia; neonatal screening;
inborn error of metabolism

1. Introduction

Starting more than 50 years ago, newborn screening (NBS) programs aim at early,
ideally pre-symptomatic identification of individuals with treatable severe rare diseases to
reduce morbidity and mortality. They are highly successful instruments of secondary pre-
vention with a growing panel of different conditions [1,2]. Isovaleric aciduria (IVA; OMIM
#243500) is an organic aciduria leading to severe life-threatening (neonatal) metabolic com-
pensations in its severest form. It is caused by bi-allelic pathogenic variants in the IVD gene
(cytogenic location: 15q15.1), resulting in a deficiency of isovaleryl-CoA dehydrogenase
(IVD, EC 1.3.99.10) in the leucine degradation pathway and hence accumulation of metabo-
lites deriving from isovaleryl-CoA. After the introduction of tandem mass spectrometry in
NBS, IVA became a target condition in German regular NBS in 2005 [3]. Identification by
NBS leads to earlier specialized treatment and thus, reduced mortality for affected indi-
viduals with the classical disease course [4]. However, the inclusion of IVA into the NBS
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disease panel also resulted in the identification of individuals with an attenuated, possibly
asymptomatic, disease variant (so-called “mild” IVA [4,5]), which was virtually unknown
in the pre-screening era. By this, the estimated birth prevalence of IVA increased from
1 in 280,000 newborns to 1 in 90,000–100,000 newborns worldwide [4,6,7]. A multi-center
long-term observational study showed individuals with mild IVA, 80% of the screened
with IVA in Germany, to be at risk for over-treatment [4]. The second struggle of NBS for
IVA is an increasing number of false positives due to the increasing use of pivmecillinam,
an antibiotic, used in urinary tract infections in pregnant women [8]. The antibiotic’s
metabolite pivaloylcarnitine is isobaric to isovalerylcarnitine (C5), the primary biomarker
in NBS for IVA [9]. New approaches to improve IVA NBS’s specificity (reduction of false
positives) while maintaining 100% sensitivity and a better distinction and prediction for
the IVA disease course (mild versus classic) are urgently needed to reduce the newborns’
and families’ burden of false positives or over-treatment.

Recently, in medical applications, machine learning (ML) methods, a sub-field of
artificial intelligence (AI), have been applied in various areas such as image classifica-
tion for mammography interpretation [10,11], diabetes prediction [12], and lung cancer
screening [13,14]. In the context of NBS, a variety of supervised ML methods have been
applied to NBS data to predict whether or not a newborn suffers from a condition. The meth-
ods and their results were summarized in a recent review [15]. They enabled a reduction
of false positive rates and identification of so far unknown metabolic patterns by relying
on complex feature combinations instead of predefined single cut-off values. Among the
previously applied ML methods, logistic regression (LR) and support vector machine (SVM)
were established as valuable candidates for NBS classification and achieved high perfor-
mance in comparative studies [15]. In particular, ML methods showed promising results
for improving specificity for phenylketonuria [16–18], methylmalonic aciduria [16,19,20]
and medium-chain acyl-CoA dehydrogenase deficiency [16,21,22]. However, most of these
studies applied sampling algorithms or reduced data sets, which changes the sick-to-control
ratio within the training and test data set compared to NBS [15]. Hence, the applicability
of these methods as a daily practice in NBS is unclear, as the ML algorithms are trained
and evaluated on these data sets. In this study, we apply ML methods to two data sets,
the full data set, containing all screened NBS profiles and the suspected diagnosis data
set, where the ML methods are applied in a digital-tier strategy, analogous to a biomarker
second-tier, after traditional newborn screening. Overall, we aim to improve NBS for IVA
by applying statistical and ML methods on the full and the suspected diagnosis data set. In
particular, focusing on the two goals: (1) improved specificity (reduction of false positives)
while maintaining 100% sensitivity, and (2) differentiation between mild and classic IVA.

2. Materials and Methods
2.1. NBS Data Set—Composition, Extraction, and Data Cleaning

About 20% of the newborns in Germany (i.e., about 140,000 newborns per year) are
screened at the NBS laboratory at Heidelberg University Hospital (UKHD) [6]. Prior to this
study, the UKHD data protection officer checked the set of NBS variables to be anonymized,
as well as data extraction and evaluation to be in accordance with the European general
data protection regulation (GDPR).

The NBS data set comprises 60 features, which contain 52 metabolites and 8 additional
variables that are made up of birth weight, sex, gestational age, birth year, age at blood
sample, age at sample arrival, and, if given, the suspected and the subsequently confirmed
or excluded diagnosis, Supplementary Table S1A. Figure 1 sums up the data extraction
and data cleaning steps performed on the data. For the data extraction, the data set was
restricted to first screenings of newborns of at least 32 weeks of gestation, at least 36 hours
of life age at sampling, and unremarkable NBS reports (hereafter called ’normal’) to assess
the regular NBS, Figure 1. Additionally, all profiles of newborns with suspected IVA,
subsequently confirmed (mild/classic IVA) or excluded (false positives) were extracted
to the suspected diagnosis data set, Figure 1. Initially, the NBS data set comprised NBS
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profiles of 2,237,142 newborns (including 145 cases with suspected IVA) born between 2002
and 2021.

NBS profiles excluded:
  -  Birth weight not 1000 – 6000 g: n=1396
  -  Gestational age not 32 – 42 weeks: n=6
  -  Age at sample arrival not 0 – 20 days: n=958
  -  Age at sampling not 36 – 120 hours: n=54,811
  -  Metabolites not 0 – 50,000 μmol/l: n=4
 
 

Total 2,106,960 NBS profiles including:

2,106,829 normal NBS profiles
103 NBS profiles false positive for IVA
22 newborns with mild IVA
6 newborns with classic IVA

Cleaning data entries:
  -  NBS profiles with unclear/unknown values and
unsettled diagnosis: n=73,877

 

2,237,142 NBS profiles with

- 60 features (52 metabolites,
8 additional variables)

Metabolites excluded:
 - More than 100,000 missing values: 'SUCC-MS',
'IRT', 'GALT', 'Gln'
 

NBS Profiles screened at Heidelberg University Hospital between 2002 and 2021

EXCLUDED DATA

2,236,997 normal NBS
profiles with

- gestational age ≥ 32 weeks
- age at sampling ≥ 36 hours

DATA
CLEANING

DATA
EXTRACTION

145 NBS profiles with
suspected IVA

FULL DATA
SET

SUSPECTED
DIAGNOSIS
DATA SET

2,237,142 NBS profiles with

- 56 features (48 metabolites,
8 additional variables)

2,163,265 NBS profiles with

- 56 features (48 metabolites,
8 additional variables)

Figure 1. Data extraction and data cleaning flow chart for NBS data screened at the NBS laboratory
at Heidelberg University Hospital. NBS profiles from normal and suspected IVA newborns are
extracted. From both data sets, features and NBS profiles are excluded due to missing entries and
implausible values resulting in 2,106,960 NBS profiles with 60 features including 48 metabolites and
8 additional variables each.

Data cleaning of the extracted data set was performed to ensure high data quality
and to remove artifacts within the data, Figure 1. First, the metabolite concentrations of
glutamine (Gln), succinylacetone (SUCC-MS), immune reactive trypsin (IRT), and galactose-
1-phosphate uridyltransferase (GALT) were removed as they were not measured contin-
uously within the time frame and each of them had more than 100,000 missing values.
Second, NBS profiles with missing or not interpretable entries such as ‘?’, ‘ ’, ‘U’ were
removed. In this step, newborns with an unsettled diagnosis at the time of data extraction
were excluded from the data set, which led to a disproportionate exclusion of 8 NBS profiles
from the suspected IVA data set. Third, the following ranges were defined to exclude data
sets with implausible values: Birth weight: 1000–6000 g; gestational age: 32–42 weeks, age
at sampling: 36–120 h, age at sample arrival: 0–20 days and metabolite concentrations:
0–50,000 µmol/L. The categorical variable sex was decoded as ‘0’ for female and ‘1’ for
male newborns. Finally, the total data set for analysis (hereafter “full data set”) contained
2,106,090 NBS profiles (including 131 cases with the suspected diagnosis IVA, hereafter:
“suspected diagnosis data set”). The suspected diagnosis data set included 28 subsequently
confirmed IVA cases (6 classic, 22 mild) and 103 confirmed false positives.

2.2. Statistical Methods

In NBS, statistical methods are utilized to analyze the high dimensional data set
and find patterns within the complex relationships of metabolites to remove redundant
features to improve the accuracy of an algorithm and reduce its training time [23]. Principal
component analysis (PCA) reduces dimensionality by focusing on features with the most
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variation and ranks the principal components by importance, accounting for the most
variation in the data [24]. Linear discriminant analysis (LDA) is a supervised method that
is applied to maximize the separability between groups. This can be done by projecting the
data onto a new axis to simultaneously maximize the distance between the class means and
minimize the variation within the classes [24]. T-distributed stochastic neighbor embedding
(TSNE) is a method that converts a high-dimensional data set into a matrix of pairwise
similarities and visualizes the data similarity [25]. It is capable of capturing the local and
global structure of high-dimensional data by revealing the presence of clusters at several
scales [25]. Analysis of variance (ANOVA) is a statistical method applied to test if the
means of two or more groups are significantly different from each other and therefore
examines the impact of one or more factors, which can be used for feature selection [24].

2.3. ML Classification

In this section, the ML classification methods, experimental setup, feature sets, and
validation procedure are described.

2.3.1. ML Methods

Recently, ML methods have been analyzed in the context of NBS, and from these
methods, LR and SVM achieved high performance for NBS classification tasks in com-
parative studies [15]. LR is a discriminative method that models the posterior probability
distribution P(Y|X) of the target variable Y given the features X. It constructs a separating
hyperplane between the classes and for every sample i uses the function

P(z = 1|X = xi) =
1

1 + e−(xT
i β)

to consider the distance from the hyperplane as a probability measure of class membership
of feature vector xi ∈ Rk with the vector of regression coefficients β = (β0, β1, . . . , βk).
During training, the regression coefficients are fitted using a maximum log-likelihood
method to maximize the probability of obtaining the observed results given the fitted
coefficients [16,26,27]. Ridge logistic regression (RR) extends this method and has been suc-
cessfully applied in NBS [22]. It introduces a regularization parameter to the cost function
to prevent overfitting, by adding an additional λ‖β‖2 to the log-likelihood method [28]. We
used λ = 1.0 as the regularization parameter. SVM attempt to find the largest separating
hyperplane between two classes by maximizing the margin between samples and decision
boundary [16,27]. A kernel function K(·, ·) : Rn ×Rn → R is used for the decision function

f (x) =
L

∑
i=1

αiyiK(xi, x) + b,

where xi ∈ Rn are the L support vectors which are the nearest training samples to the
decision boundary determined from training data, and yi ∈ {0, 1} is the class indicator
associated with each xi, b the bias and αi ≥ 0 the Lagrange multipliers [16,27]. We used a
linear function as the kernel function, and the regularization parameter c which controls
the trade-off between complexity and allowed classification error was set to 1.0.

For NBS, it turns out that adapted ML methods, such as using newly constructed fea-
tures or combining several methods are beneficial [15,21,22,29]. Furthermore, we propose
three new combined methods LR based on LDA dimensions (LDA-LR), RR based on LDA
dimensions, (LDA-RR) and SVM based on LDA dimensions for application in NBS for
IVA. The workflow of these methods is exemplarily presented in Figure 2 for the LDA-LR
method. First, the NBS data are split into training and test data. Then the training data
including features and labels are used to train an LDA and transform the features to LDA
dimensions which are utilized as input to train and subsequently evaluate an LR classifier.
The trained LDA and LR models are then applied to the features of the test data set and the
predictions are compared to the test data labels to evaluate the model.



Metabolites 2023, 13, 304 5 of 18

Training data 

Test data 

LDA

NBS DATA

trained
LDA

LR trained
LR

trained
LDA

trained
LR

Features &  
Labels

Features

Labels

model
evaluation

model
evaluation

LDA-LR METHOD

Figure 2. Workflow for LDA-LR method. Showing the training process with features and labels of
the training data and evaluation of the trained methods on the test data.

2.3.2. Experimental Setup

The experimental setup describes how algorithms were developed and optimized. For
all experiments, we used the programming language python (Python Software Foundation.
Python Language Reference, version 3.9.2. available at http://www.python.org (accessed
on 1 February 2022)). To achieve the overall goal of improving NBS for IVA, each algorithm
was applied to the full and suspected diagnosis data set. The latter simulates the scenario,
where the ML method is used as an additional step after traditional NBS, a digital-tier, to
distinguish false-positive screening results from true positives. Both data sets are subject
to data imbalance, where the true positives are in the minority. To overcome this data
imbalance, we adapted the class weight parameter w1 in each of the classification methods,
to penalize a miss-classification of a true positive stronger in the cost function of the
optimization step [30]. We used a grid search to find the optimal minority class weight
parameter w1, while setting the majority class weight parameter w0 = 1 for each method.
The algorithms are evaluated on the two objectives, maintaining 100% sensitivity Sn and
maximizing specificity Sp,

Sn =
TP

TP + FN
, and Sp =

TN
TN + FP

,

with true negatives TN, false positives FP, false negatives FN and true positives TP. Hence,
the grid search results were first filtered to those maintaining 100% sensitivity, and then the
class weight parameter w1 was chosen, achieving the results with the highest specificity.

2.3.3. Feature Sets

For ML classifications on the full data set, the two target classes, termed “normal” and
“IVA” were applied, where normal included normal NBS profiles and NBS profiles which
were false positives for IVA and IVA included newborns with mild and classic IVA as the
ML method should classify the normal NBS profiles and newborns with IVA correctly
without knowledge of the suspected diagnosis. On the suspected diagnosis data set, the
two target classes were termed “normal” and “IVA”, where the label normal was given
to the false positives and the label IVA to newborns with mild and classic IVA, as the ML
method is supposed to learn to classify the previously false positively diagnosed NBS
profiles as normal.

All input features used in the experimental setup were normalized between 0 and 1 to
allow for direct comparability of the features. After consultation with clinical experts, we
decided to exclude birth year as a feature, as it is highly correlated with the increasing use of
pivmecillinam [9] leading to an increase of false-positive screening results, but should not
influence the algorithm’s classification. Furthermore, the suspected diagnosis was excluded

http://www.python.org
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and the confirmation diagnosis is used as the target variable resulting in 53 features. In
recent studies, feature selection techniques were used to improve ML classification for
NBS diseases as they can prevent overfitting, and allow classification algorithms to operate
faster and more efficiently [15,31]. Hence, besides using all features for the experiments,
iteratively adding all significant features according to ANOVA to the feature set, starting
with one feature, was evaluated to reduce the feature set to the most meaningful features.

2.3.4. Validation

For evaluation, both data sets were randomly split into 80% training and 20% test set,
where the NBS profiles with IVA were split 23 to 5 in training and test set. The classification
performance on both data sets was evaluated with the confusion matrix C,

C =

[
TN FP
FN TP

]
.

These results were then validated with ten repeats of 5-fold cross-validation [22]. For
the suspected diagnosis data set, the specificity is reported as combined specificity using
ML as an additional step to traditional NBS for comparability with the results on the full
data set.

3. Results
3.1. Data Analysis of NBS Data

In NBS, C5 is the primary biomarker to identify newborns with IVA and is until now
known to be the best metabolite to discriminate mild and classic IVA in larger cohorts [4,5].
In Table 1, the mean and standard deviation of all 48 metabolites included in the analysis
are presented for all normal and false positive NBS profiles as well as newborns with mild
and classic IVA. The mean of the measured C5 concentration is highest in newborns with
classic IVA (12.6 ± 5.22 µmol/L) and lowest in normal NBS profiles (0.1 ± 0.07 µmol/L) but
very similar in newborns with mild IVA (2.6 ± 1.16 µmol/L) and false positive NBS profiles
for IVA (2.6 ± 2.06 µmol/L).

For further analysis of the groups of newborns, we applied ANOVA on the full and
the suspected diagnosis data sets and evaluated the significant features with a p-value
p < 0.05, Table 2. ANOVA was applied to the full data set with two target classes, normal
and IVA, and a data set with three classes, normal, mild IVA, and classic IVA, where normal
included the false positives, Table 2a. For the suspected diagnosis data set, ANOVA was
applied with two target classes, false positive and IVA, and with three classes, false positive,
mild IVA, and classic IVA, Table 2b. C5 is the significant feature with the highest F values
on the full NBS data set, Table 2a, and on the suspected diagnosis data set for ANOVA
with three target classes, Table 2b. However, tryptophan (Trp) is ranked highest or second
highest for the suspected diagnosis data set, whereas it is listed on a lower rank in all
methods for the full data set, Supplementary Table S2A. Furthermore, the group of false
positive screened newborns has the highest mean value of Trp (102.8 ± 34.42 µmol/L) from
all groups, and the box plots for Trp show higher concentration values for normal and
false positive NBS profiles than for newborns with IVA, Supplementary Figure S1. For all
ANOVA evaluations, birth year was identified as a significant feature. The box plots for
the birth year show that there are more false positively diagnosed newborns since 2016,
Supplementary Figure S1. After consultation with clinical experts, we decided to exclude
birth year as a feature for the ML methods, as it is highly correlated with the increasing use
of pivmecillinam [9] leading to an increase of false-positive screening results, but should
not influence the algorithm’s classification.
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Table 1. Mean values and standard deviation of 48 metabolite concentrations measured in dried
blood samples (µmol/L) for the groups of normal and false positive NBS profiles as well as newborns
with mild and classic IVA. The abbreviations can be found in Supplementary Table S1A.

Metabolites Normal False Positive Mild IVA Classic IVA
(µmol/L) (µmol/L) (µmol/L) (µmol/L)

NBS Profiles (No.) 2,105,959 103 22 6

17p 9.2 ± 7.22 8.0 ± 4.2 8.8 ± 4.67 14.9 ± 8.72
TSH 2.6 ± 1.75 2.7 ± 1.86 2.9 ± 2.09 0.7 ± 0.47
BIO 0.4 ± 0.09 0.5 ± 0.1 0.5 ± 0.06 0.5 ± 0.09
3HMG 0.0 ± 0.02 0.0 ± 0.01 0.0 ± 0.01 0.0 ± 0.01
Ala 237.1 ± 204.09 268.7 ± 194.71 236.6 ± 116.16 282.5 ± 86.74
Arg 14.7 ± 9.02 14.8 ± 10.97 15.5 ± 6.95 21.2 ± 11.1
Asa 0.6 ± 1.16 2.0 ± 2.34 0.3 ± 0.07 0.2 ± 0.08
Asp 52.8 ± 23.23 67.4 ± 60.31 55.7 ± 17.91 58.5 ± 12.63
C0 21.9 ± 11.35 20.8 ± 15.98 21.1 ± 8.49 24.5 ± 12.39
C10 0.1 ± 0.05 0.1 ± 0.06 0.1 ± 0.06 0.1 ± 0.03
C10:1 0.1 ± 0.05 0.1 ± 0.06 0.1 ± 0.07 0.1 ± 0.02
C12 0.1 ± 0.06 0.1 ± 0.04 0.1 ± 0.08 0.1 ± 0.08
C14 0.2 ± 0.08 0.2 ± 0.09 0.3 ± 0.11 0.3 ± 0.06
C14:1 0.1 ± 0.06 0.1 ± 0.05 0.2 ± 0.09 0.1 ± 0.02
C14OH 0.1 ± 0.03 0.0 ± 0.03 0.1 ± 0.06 0.1 ± 0.04
C16 3.4 ± 1.59 3.3 ± 1.66 3.3 ± 1.8 5.4 ± 1.97
C16:1 0.2 ± 0.08 0.1 ± 0.1 0.2 ± 0.07 0.2 ± 0.04
C16:1OH 0.1 ± 0.02 0.0 ± 0.03 0.1 ± 0.04 0.1 ± 0.08
C16OH 0.0 ± 0.02 0.0 ± 0.03 0.0 ± 0.03 0.0 ± 0.01
C18 1.0 ± 0.33 0.9 ± 0.3 1.0 ± 0.36 1.3 ± 0.37
C18:1 1.1 ± 0.6 1.2 ± 0.7 1.0 ± 0.61 2.0 ± 0.99
C18:1OH 0.0 ± 0.03 0.0 ± 0.03 0.0 ± 0.02 0.1 ± 0.07
C18:2 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.06 0.3 ± 0.26
C18OH 0.0 ± 0.02 0.0 ± 0.01 0.0 ± 0.01 0.0 ± 0.01
C2 26.4 ± 12.72 22.8 ± 12.53 24.1 ± 9.56 30.5 ± 11.97
C3 2.1 ± 1.1 2.1 ± 1.3 2.0 ± 0.94 2.6 ± 1.12
C4 0.2 ± 0.14 0.3 ± 0.33 0.2 ± 0.13 0.3 ± 0.13
C5 0.1 ± 0.07 2.6 ± 2.06 2.6 ± 1.16 12.6 ± 5.22
C5:1 0.0 ± 0.02 0.0 ± 0.02 0.0 ± 0.02 0.0 ± 0.02
C6 0.1 ± 0.04 0.1 ± 0.04 0.1 ± 0.03 0.0 ± 0.01
C8 0.1 ± 0.05 0.1 ± 0.06 0.1 ± 0.02 0.1 ± 0.05
C8:1 0.1 ± 0.07 0.1 ± 0.07 0.1 ± 0.08 0.1 ± 0.04
Cit 12.0 ± 6.59 15.0 ± 9.18 12.0 ± 2.99 17.5 ± 12.3
Glu 411.8 ± 103.84 411.8 ± 156.43 415.6 ± 99.99 372.7 ± 63.81
Glut 0.1 ± 0.08 0.1 ± 0.08 0.1 ± 0.09 0.0 ± 0.01
Gly 474.8 ± 166.87 468.8 ± 293.0 494.5 ± 181.09 386.8 ± 68.31
Hci 1.8 ± 1.05 2.0 ± 2.78 1.8 ± 0.58 2.7 ± 2.85
His 448.0 ± 392.35 952.2 ± 770.84 346.7 ± 170.6 230.0 ± 77.2
Leu+Ile 137.8 ± 47.4 145.6 ± 70.45 148.8 ± 62.9 210.3 ± 73.74
MeGlut 0.1 ± 0.04 0.0 ± 0.04 0.1 ± 0.04 0.0 ± 0.01
Met 17.5 ± 7.96 20.6 ± 9.28 17.0 ± 10.84 23.0 ± 8.54
Orn 76.0 ± 78.38 83.5 ± 70.38 75.6 ± 74.08 33.7 ± 63.66
Phe 46.6 ± 13.06 55.5 ± 15.5 45.5 ± 14.01 66.3 ± 29.08
Pro 904.4 ± 440.26 681.6 ± 713.35 985.1 ± 360.82 1203.8 ± 505.32
Thr 119.4 ± 61.79 89.9 ± 109.52 124.0 ± 43.31 125.2 ± 24.0
Trp 78.5 ± 236.31 102.8 ± 34.42 63.6 ± 13.89 51.7 ± 9.78
Tyr 81.3 ± 37.95 96.8 ± 40.64 70.8 ± 34.75 170.2 ± 147.11
Val 102.5 ± 43.83 115.0 ± 64.51 111.3 ± 57.15 194.3 ± 87.61
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Table 2. ANOVA results with all presented features having a p-value p < 0.05. All methods
were applied to the full NBS data set (a) and the suspected diagnosis data set (b). For 2 class
ANOVA, five features with the largest F values with binary target variable normal or IVA, and for
3 class ANOVA, five features with the largest F values with target variable normal (false positive
for (b)), mild IVA, and classic IVA are presented. Abbreviations: ANOVA—analysis of variance,
C14OH—3-OH-tetradecanoylcarnitine, C16:1OH—3-OH hexadecenoylcarnitine, C18:1OH—3-OH
octadecenoylcarnitine, C5—isovalerylcarnitine, His—histidine, MeGlut—3-methylglutarylcarnitine,
Trp—tryptophan, Tyr—tyrosine, Val—valine.

2 Class ANOVA 3 Class ANOVA

(a) Full NBS data set

Feature F value Feature F value

C5 97,909.21 C5 90,027.83
C16:1OH 28.17 C16:1OH 35.23
age at blood sample 15.74 Tyr 17.29
Val 10.28 Val 13.61
birth year 8.43 C18:1OH 12.90

(b) Suspected diagnosis data set

Trp 38.86 C5 57.75
birth year 24.37 Trp 19.72
C14OH 22.55 MeGlut 17.00
MeGlut 20.64 birth year 13.30
His 18.22 C16:1OH 13.06

For further analysis of the high-dimensional feature space, the dimensionality reduc-
tion techniques LDA, PCA, and TSNE were applied to construct meaningful dimensions.
These methods revealed clusters of newborns with mild and classic IVA within the reduced
dimensions and are presented in Figure 3.

For the full NBS data set, a strict separation of clusters is not possible, although,
for both, LDA and PCA, the newborns with mild and classic IVA were more closely
grouped with each other and with the falsely positive diagnosed newborns than with
the normal NBS profiles, Figure 3a,b. The suspected diagnosis data set transformed into
LDA dimensions show three distinct clusters for groups of false positives, mild IVA, and
classic IVA, Figure 3c. TSNE for the suspected diagnosis data set separates a large group
of false positives from the remaining data, Figure 3d. Hence, for further investigation,
we excluded the 5 significant features, based on ANOVA, Trp, argininosuccinate (Asa),
3-methylglutarylcarnitine (MeGlut), 3-OH-tetradecanoylcarnitine (C14OH), and histidine
(His) and applied the TSNE algorithm again, the results of this evaluation showed no
distinct separation into two clusters, Supplementary Figure S3. Hence, these features seem
to have an important influence on the TSNE method. Furthermore, we compared the
scatter plots of TSNE dimensions colored depending on the confirmed diagnosis and the
classification of an LR algorithm, Supplementary Figure S2. This comparison showed that
the LR method identifies all NBS profiles, which can be visually separated from other NBS
profiles in TSNE dimensions (right cluster), correctly as normal (purple), Supplementary
Figure S2b.
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FULL NBS DATA SET

SUSPECTED DIAGNOSIS DATA SET

a) LDA b) PCA

c) LDA d) TSNE

Figure 3. Dimensionality reduction plots of NBS profiles presenting normal in gray (circle) and false
positive newborns in purple (cross) as well as newborns with mild IVA in blue (triangle) and with
classic IVA in orange (star). Dimensions from linear discriminant analysis (LDA) are presented for
the full NBS data set (a) and the suspected diagnosis data set (c). The first two principal components
from principal component analysis (PCA) from the full data set (b) and the first two dimensions of
T-distributed stochastic neighbor embedding (TSNE) created from the suspected diagnosis data set
(d) are presented.

3.2. ML Classification Results for IVA Prediction

Based on the presented experimental setup, Section 2.3.1, we trained and optimized
the LR, RR, SVM, LDA-LR, LDA-RR, and LDA-SVM classification algorithms to improve
NBS for IVA on both data sets and present the classification results in Table 3. For the
evaluation of the reduced feature set with ANOVA, we compared false negatives and false
positives in the training and test set of each algorithm using significant features, where we
chose five features as a trade-off between best classification performance and the number
of selected ANOVA features, since adding more features only slightly improved the results,
Supplementary Table S3A. The LDA-LR, LDA-RR, and LDA-SVM methods were only
applied to the suspected diagnosis data set, as no distinct cluster could be detected in the
LDA dimensions for the full data set, Figure 3.



Metabolites 2023, 13, 304 10 of 18

Table 3. Evaluation results of ML methods on (a) the full data set and (b) the suspected diagnosis data
set. Methods are applied to all 53 features, 5 features selected with ANOVA, or LDA dimensions. The
methods were evaluated by false negatives (FN) and false positives (FP) on the training and test set.
Abbreviations: Asa—argininosuccinate, aas—age at sampling, BIO—biotinidase, C14OH—3-OH-
tetradecanoylcarnitine, C16:1OH—3-OH hexadecenoylcarnitine, C5—isovalerylcarnitine, FN—false
negatives, FP—false positives, His—histidine, LDA—linear discriminant analysis, LR—logistic
regression, MeGlut—3-methylglutarylcarnitine, RR—ridge logistic regression, SVM—support vector
machine, Trp—tryptophan, Val—valine.

Method Features (Number) Train FN Train FP Test FN Test FP

(a) Full data set

LR all (53) 0 65 0 27
RR all(53) 6 20,065 3 5005
SVM all(53) 1 35 0 9
LR C5, C16:1OH, aas, Val, BIO 0 167 0 42
RR C5, C16:1OH, aas, Val, BIO 5 6026 1 1577
SVM C5, C16:1OH, aas, Val, BIO 1 68 0 15

(b) Suspected diagnosis data set

LR all (53) 0 29 0 7
RR all (53) 0 18 0 5
SVM all (53) 0 20 0 6
LR Trp, C14OH, MeGlut, His, Asa 0 35 0 6
RR Trp, C14OH, MeGlut, His, Asa 0 35 0 6
SVM Trp, C14OH, MeGlut, His, Asa 0 37 0 6
LDA-LR LDA dimensions 0 9 0 10
LDA-RR LDA dimensions 0 22 0 12
LDA-SVM LDA dimensions 0 12 0 10

In general, although the optimization procedure described in the experimental set-up
aims at maintaining 100% sensitivity, which means 0 false negatives, some methods fail
to achieve this in the training and test sets. For the full data set, only LR maintains 100%
sensitivity, meaning that all newborns with IVA would be detected. Applying LR on all
53 features reduces the total amount of false positives to 92, whereas only using 5 significant
features, increases the total false positives to 209. On the suspected diagnosis data set, all
methods maintain 100% sensitivity in the training and test set and reduce the total amount
of false positives. In particular, the proposed methods LDA-LR, LDA-RR, and LDA-SVM
show a reduction in both training and test sets to cumulative 19, 34, and 22 false positives.

For validation of the presented algorithms, Table 4 presents the mean results of ten
repeats of 5-fold cross-validation for all algorithms from Table 3 which maintained 0 false
negatives in the training and test sets and improved specificity. For the full data set, LR
applied to all features obtained 100% sensitivity and 99.9958% specificity reducing the
false positives in total to 88, Table 4. On the suspected diagnosis data set, LDA-RR and
LDA-LR obtained the best results, reducing the false positives in total to 31 and 39 while
maintaining 100% sensitivity, Table 4. Whereas using LDA dimensions as input features
for SVM, and training LR and RR with all 53 features did not maintain 100% sensitivity
in the cross-validation. However, the evaluation on the reduced feature set maintained
100% sensitivity for all three algorithms and reduction to 45–47 false positives, which is a
reduction of the false positive rate of 54–56% compared to 103 false positives in traditional
NBS. Moreover, only using Trp as input for an RR already reduces the false positives to 63,
while maintaining 100% sensitivity, which indicates the importance of Trp for the reduction
of false positives, Supplementary Table S3A. The results in Table 4 highlight the importance
of validating the algorithms, as the initial splitting into training and test set can have a
large influence on the performance of an algorithm.
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Table 4. Mean results of ten repeats of 5-fold cross-validation on (b) the full data set and (c) suspected
diagnosis data set, compared to traditional screening results (a). Methods are applied to all 53 features,
5 features selected with ANOVA or LDA dimensions. The methods were evaluated by sensitivity,
specificity, and number of false positives (real numbers are rounded up) combined for training and
test set. For the suspected diagnosis data set, these evaluations are calculated based on the full
data set to allow comparability between both data sets. Abbreviations: Asa—argininosuccinate,
C14:1—tetradecenoylcarnitine, C14OH—3-OH-tetradecanoylcarnitine, C5—isovalerylcarnitine, FN—
false negatives, FP—false positives, His—histidine, LDA—linear discriminant analysis, LR—logistic
regression, MeGlut—3-methylglutarylcarnitine, RR—ridge logistic regression, SVM—support vector
machine, Trp—tryptophan.

Method Features (Number) Sensitivity % (FN) Specificity % FP

(a) Traditional NBS

NBS C5 100 99.9951 103

(b) Full data set

LR all (53) 100 99.9958 88

(c) Suspected diagnosis data set

LR all (53) 98.2143 (1) 99.9981 41
RR all (53) 96.2143 (2) 99.9987 29
SVM all (51) 97.9286 (1) 99.9975 52
LR Trp, C14OH, MeGlut, His, Asa 100 99.9978 47
RR Trp, C14OH, MeGlut, His, Asa 100 99.9979 46
SVM Trp, C14OH, MeGlut, His, Asa 100 99.9979 45
LDA-LR LDA dimensions 100 99.9981 39
LDA-RR LDA dimensions 100 99.9985 31
LDA-SVM LDA dimensions 99.2857 (1) 99.9985 32

The application of LR allows for an interpretation of its feature contributions, as it is in-
terpretable on a modular level, meaning that it can be inherently explained how parts of the
model affect predictions [32]. Hence, we analyzed the LR coefficients β = (β0, β1, . . . , βk)
of the LR models on full and suspected diagnosis data set with all features, Table 3, for
interpretation of the methods and analysis of influential metabolite concentrations, Figure 4.
Traditional NBS only considers C5, whereas analyzing the coefficients of LR on the full
data set identified C5, butyrylcarnitine (C4), Asa, tyrosine (Tyr), acetylcarnitine (C2) as
the features with the absolute largest model coefficients, Figure 4a. The coefficient of C5
shows a large positive value, 146, which can be interpreted as an increase in C5 can increase
the probability that the NBS profile is classified as a newborn with IVA by the LR model,
whereas the increase of a feature value with a negative coefficient such as C4 influences
the model in the opposite direction, Supplementary Table S3B. For the suspected diagnosis
data set, Trp, octanoylcarnitine (C8), and Asa have the largest negative LR coefficients,
whereas MeGlut and C5 have the largest positive LR coefficients, Figure 4a. Trp having the
largest negative value, −3.28 can be interpreted as an increase in the feature value of Trp
increases the probability that the NBS profile is classified as a normal newborn by the LR
model, Supplementary Table S3C. For both data sets, C5 shows large positive coefficients
and hence, the interpretation corresponds to an increased C5 level being a known primary
marker of the common NBS for IVA [4,5,9].
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Figure 4. LR model coefficients graph, showing the five highest absolute LR coefficients of the LR
models on (a) full data set and (b) suspected diagnosis data set on all features.

3.3. ML for Newborns with Mild and Classic IVA

The inclusion of IVA into the NBS disease panel resulted in the distinction of individu-
als with mild and classic IVA [4,5]. Therefore, we analyzed whether ML methods could be
applied to classify NBS profiles into three groups, normal, mild IVA, and classic IVA, where
normal included normal and false positives for the full data set and only false positives for
the suspected diagnosis data set. For this, we chose the best-performing methods from the
ML classification, with respect to the highest specificity while maintaining 100% sensitivity
in cross-validation, Tables 3 and 4. The performance of the algorithms was evaluated with
a mean confusion matrix of 100 independent runs comparing the predicted and confirmed
diagnosis on both data sets.

The mean confusion matrix of LR on the full data set, Figure 5a, shows that the method
on average predicts 5.9 of 6 newborns with classic IVA and all newborns with mild correctly
while it falsely predicts 88.8 normal NBS profiles as mild IVA and 5.8 normal NBS profiles
as classic IVA. On the suspected diagnosis data set, RR reduced the false positives to 17.43,
while newborns with mild IVA (21 of 22) and newborns with classic IVA (5.7 of 6) are
similar, Figure 5b. Applying the proposed LDA-LR method, the number of false positive
newborns reduces to 9.85, while classifying newborns with mild and classic IVA similarly
well, Figure 5c.

Figure 5. Confusion matrix displaying mean results of 100 independent runs for classification of
normal (including false positives), mild IVA, and classic IVA applying (a) LR on full NBS data set and
for classification of false positive, mild IVA, and classic IVA applying (b) RR on suspected diagnosis
data set and (c) LDA-LR on suspected diagnosis data set. Prediction agreeing with the confirmed
diagnosis is highlighted in bold.

4. Discussion

NBS for IVA in Germany is hampered by the identification of an attenuated disease
variant in about 80% of all newborns with confirmed IVA [4], for which the benefit of NBS
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is still unclear, and an increasing number of false positive screening results due to the use
of pivmecillinam contained in the medication. [8]. This study examined the application of
data analysis and ML methods as a potential digital-tier on NBS profiles to improve the
specificity of NBS for IVA and support the classification of disease severity.

4.1. Data Analysis Can Reveal Patterns within NBS Data

The NBS data set from the Heidelberg NBS laboratory contains more than 2 million
NBS profiles with 60 features, making the analysis challenging for humans but highly
applicable for ML methods, which was already shown for several NBS conditions [15].
The application of ANOVA on the data sets confirmed biological knowledge such as
highlighting C5, the known primary variable of the common NBS for IVA [4,5,9] as a
significant feature for the full NBS data set, Table 2. Moreover, on both data sets, ANOVA
identified birth year as a significant feature, Table 2, for all evaluations, which is explained
by the increasing number of false positives in recent years, Supplementary Figure S1, due
to the use of pivmecillinam as an antibiotic in pregnant women since its authorization in
Germany in March 2016 [8,33]. Other parameters were up to now not described to be altered
in newborns with IVA nor are easy to explain regarding the metabolic pathways [4,5,9].
However, for the suspected diagnosis data set, the metabolite concentration of Trp is
identified as a significant feature by ANOVA, Table 2, and the LR coefficients, Figure 4,
with the false positive newborns having a significantly higher Trp concentration than
the newborns with IVA, Table 1. Furthermore, only using Trp as input for RR already
reduced the false positives from 103 to 63, Supplementary Table S3A. These results show
that Trp plays an important role in the ML methods to improve the classification within the
suspected diagnosis data set and hence, in the reduction of false positives. The biochemical
explanation for this observation is difficult. A previous study showed that the increased
intake of leucine, and by this possibly also its accumulation in IVA, influences intracellular
Trp metabolism in rats as they compete for the same amino acid transporters [34].

In NBS, techniques such as PCA have been used to improve NBS for congenital adrenal
hyperplasia [29]. For IVA, the methods LDA, PCA, and TSNE showed clusters of newborns
with mild and classic IVA within the new dimensions. In particular, for the suspected
diagnosis data set, the groups (false positive, mild IVA, classic IVA) could be very clearly
separated with LDA dimensions, Figure 3c, indicating the existence of underlying patterns
within the data sets that enable a separation of the three newborn groups. The application
of the unsupervised method TSNE showed that a large group of false positives could be
separated from the remaining data points, Figure 3d, and that this separation was strongly
influenced by the significant features, Supplementary Figure S3. Hence, the TSNE method
can reveal interesting patterns within the data which the ML algorithm might rely on to
reduce the false positives in IVA classification and the ML method can identify features that
strongly influence the results of the TSNE method. Application of these methods could also
be used to find unknown patterns within large data sets of other NBS conditions analyzing
them independently from the data labels.

4.2. ML Methods Can Improve IVA Classification

The aim of applying ML methods for IVA classification is to model complex relation-
ships within the NBS data and improve the specificity while maintaining 100% sensitivity.
However, this can be a difficult task due to the high data imbalance resulting from the
low prevalence of IVA [4,6,7,15]. Most recent studies on ML-based NBS apply sampling
algorithms or reduced data sets to overcome data imbalance [16,19,21,29]. however, these
methods change the sick-to-control ratio within the training and test data set the ML al-
gorithm is learning and evaluated on, which makes the results difficult to compare to
traditional NBS [15]. Hence, in this study, we did not apply these techniques and showed
that a grid search over the class weight parameter within the ML cost function for every
individual ML algorithm can be applied to overcome the data imbalance problem. Further-
more, current standards in NBS for IVA using C5 as a primary marker are well developed
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and obtain 100% sensitivity while only suspecting 103 of 2,106,960 (0.05h) NBS profiles
falsely as newborns with IVA. Hence, we evaluated the ML algorithms on two data sets,
the full data set, with no prior knowledge, and the suspected diagnosis data set simulating
the scenario, where the ML classifier is used as a digital-tier after traditional NBS. Our
results showed that the methods improved NBS for IVA more in the latter case, on the
suspected diagnosis data set, and especially, the proposed LDA-LR and LDA-RR methods
reduced the false positives to 19 and 34 in the training and test set and the false positive
rate by 62.1% and 69.9% in cross-validation, Tables 3 and 4. These results and the improve-
ment of classification, when applying only five significant features, Table 3, highlight and
confirm the importance of data analysis and careful feature selection to improve the ML
classification for NBS, as shown in previous studies [16,19,21]. Altogether, this suggests
that adding ML methods as digital-tier to traditional NBS, similar to the implementation of
a biomarker-based two- or multiple-tier strategy, automatized performed in a few minutes
if the metabolic first-tier is above the cut-off, could improve NBS for IVA. The increased
specificity, i.e., reduction of false positives, could massively reduce harm to the infants and
their families with false positive results if further confirmatory diagnostics are not necessary.
Furthermore, using ML methods as a digital-tier can support the cost-effectiveness of the
IVA NBS. False positive NBS results are accompanied by additional costs and effort, as
these results entail the information transmission about the suspicious NBS result to the local
hospital and the families by a physician, clinical evaluation of the newborn and sampling
for the confirmatory diagnostics by a pediatrician, costs for these metabolic (and genetic)
analyses, and finally communication of the results to the families. By reducing the false
positive rate by nearly 70% with the digital-tier approach, also these human and material
resources could be reduced, while hard- and software costs for the digital-tier approach are
low. Moreover, the reduction of the false positives will allow re-focusing the screening for
IVA on the true positives.

Since the inclusion of IVA into the NBS disease panel, there has been a distinction
between individuals with mild and classic IVA [4,5]. ML methods can classify newborns
with mild and classic for both data sets while obtaining a similar false positive reduction,
Figure 5. For both data sets, the algorithms used several features as input and false positives
were mainly newborns falsely classified as newborns with mild IVA. Until now, isolated C5
is known to be the best metabolite to discriminate mild and classic IVA in larger cohorts [4,5]
and may be seconded by other metabolites if a metabolic comprehensive explanation of the
combinations is given. As many of the screened individuals with IVA are asymptomatic at
the positive screening result [4], it would be crucial to predict the severity of the clinical
phenotype in order to enable a stratified diagnostic and therapeutic practice. This would
allow immediate treatment of all individuals at risk, and would also reduce over-treatment
for individuals with the predominantly identified attenuated variant.

4.3. Limitations

The acquired data set consists of more than 2 million NBS profiles but only 28 (22 mild,
6 classic) newborns with IVA. This is above the minimum number of 20 true positives
suggested by Lin et al [19] to achieve stable results in NBS but still very low and could neg-
atively affect the proposed ML algorithms, as the true positives might not span throughout
the whole feature space needed to be learned by the algorithm. Validating the ML methods
with cross-validation, revealed that not all algorithms could robustly obtain good results,
indicating that the training and test data sets might not contain sufficient data. Also, the
classification results of the three-fold classification, normal, mild, and classic IVA, Figure 5,
showed that not all newborns with mild and classic IVA could be identified correctly over
the 100 independent runs, which would be an essential requirement for the application
of ML methods as a daily practice in NBS. Furthermore, this study only considers data
from the Heidelberg screening laboratory in Germany, hence the algorithms could perform
differently on other data sets. Moreover, the LDA-LR and LDA-RR methods do not allow
for an evaluation of important features since the LR coefficients are only evaluated on
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the two LDA dimensions. This gives rise to the question if algorithms should only be
evaluated based on their performance or also on their interpretability. In general, it is not
clear how black box methods can be applied in the clinical context and which ethical and
legal requirements are needed to apply ML methods, as well as how these methods may be
controlled and accepted by the patients and society [35]. A previous survey in Germany [36]
showed that patient representatives expect advances in personalized treatment through
the application of AI. They hope for improved interconnected medical care, advanced
diagnostics, and the use of electronic patient records. However, strong concerns about
data protection and informal self-determination of the data were mentioned. Moreover,
the patient representatives fear possible mistakes or discrimination by the algorithms and
AI systems due to insufficient training data sets, and the loss of social interaction with
physicians [36]. All these concerns should be considered when applying AI methods in the
medical context.

4.4. Future Directions for ML in NBS

This study is a retrospective study, however, it could also be a direction for future
research and prospective future application of ML in NBS. Therefore, the next steps should
be to assess the reliability and robustness of the proposed methods on larger data sets,
validate the digital-tier strategy in daily practice in parallel to the traditional NBS, and
evaluate the possible cost-effectiveness. Thus, a joint analysis of data from different NBS
centers would be highly desirable to fulfill the needed positive sample sizes. Furthermore,
the proposed ML methods could be applied to other NBS diseases where they could be
used to improve specificity but also to enhance the understanding of underlying patterns,
and guide directions for future research in the field of biomarker detection. In this study, we
focused on ML methods, which were identified in the literature as good candidates for an
application to NBS [15]. However, also more advanced methods such as neural networks
and adaptive gradient boosting were already applied in NBS [19,37] and could be evaluated
for IVA. Moreover, feature attribution and explainable AI techniques could enhance the
understanding and interpretability of black box ML methods, which could lead to a higher
acceptance of these. Metabolite concentrations, such as Trp, which were highlighted by
the algorithms could be investigated in future studies, applying metabolic and model-
based approaches such as genome-scale metabolic models, e.g., Recon models [38], which
could allow further insights into these alterations. As a last step, the legal and ethical
preconditions have to be set up by the responsible authorities to enable ML methods as
diagnostic tools.

5. Conclusions

In recent years, AI methods, which are trained to learn complex relationships within
data, are successfully applied to various tasks within the medical domain [10–12]. In
this study, we have demonstrated that ML methods can be applied to improve NBS
for IVA leading to a reduction of false positives by nearly 70% in cross-validation in a
digital-tier strategy and enable increased insight into NBS data. Hence, their nearly cost-
less application could be highly beneficial for NBS programs by avoidance of harm to
newborns with IVA and their families, less effort for the NBS laboratories in reporting and
tracking, and reduction of human and material resources for the confirmatory diagnostics.
Furthermore, it opens new perspectives in future NBS research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13020304/s1, Figure S1: Box plots for feature tryptophan
(Trp) on full data set and suspected diagnosis data set and box plots for birth year and C5; Figure S2:
Feature selection overview; Figure S3: Machine learning (ML) classification results; Table S1: Data
overview; Table S2: Feature selection overview; Table S3: Machine learning (ML) classification results.
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