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Abstract: The pediatric population has various criteria for measuring metabolic syndrome (MetS).
The diversity of consensus for diagnosis has led to different non-comparable reported prevalence.
Given the increase in its prevalence in pediatric ages, it is necessary to develop efficient methods to
encourage early detection. Consequently, early screening for the risk of MetS could favor timely action
in preventing associated comorbidities in adulthood. This study aimed to establish the diagnostic
capacity of models that use non-invasive (anthropometric) and invasive (serum biomarkers) variables
for the early detection of MetS in Chilean children. A cross-sectional study was carried out on
220 children aged 6 to 11. Multivariate logistic regressions and discriminant analyses were applied
to determine the diagnostic capacity of invasive and non-invasive variables. Based on these results,
four diagnostic models were created and compared: (i) anthropometric, (ii) hormonal (insulin, leptin,
and adiponectin), (iii) Lipid A (high-density cholesterol lipoprotein [HDL-c] and triglycerides [TG])
and (iv) Lipid B (TG/HDL-c). The prevalence of MetS was 26.8%. Lipid biomarkers (HDL-c and
TG) and their ratio (TG/HDL-c) presented higher diagnostic capacity, above 80%, followed by body
mass index (BMI, 0.71–0.88) and waist-to-height ratio (WHtR, 0.70–0.87). The lipid model A was
the most accurate (sensitivity [S] = 62.7%, specificity [E] = 96.9%, validity index 87.7%), followed
by the anthropometric model (S = 69.5%, E = 88.8% and validity index = 83.6%). In conclusion,
detecting MetS was possible through invasive and non-invasive methods tested in overweight and
obese children. The proposed models based on anthropometric variables, or serum biomarkers of
the lipid model A, presented acceptable validity indices. Moreover, they were higher than those that
measured adipokines, leptin, and adiponectin. The anthropometric model was the most cost-effective
and easy to apply in different environments.

Keywords: metabolic syndrome; pediatric obesity; anthropometry; metabolic biomarkers; adipokines;
early diagnosis
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1. Introduction

Metabolic syndrome (MetS) is referred to a series of metabolic abnormalities that
increase the risk of developing type-2 diabetes mellitus (T2D) and cardiovascular diseases
(CVDs). Although it is usually investigated in the adult population, it can also occur in
children and adolescents [1,2]. To date, there is no consensus on the definition of MetS for
the pediatric population [3,4]. However, most authors agree that in this population, the
essential components are glucose intolerance, central obesity, high blood pressure (HBP),
and an imbalance in the blood lipid levels (decreased levels of high-density cholesterol
lipoprotein [HDL-c] and hypertriglyceridemia) [5,6].

In recent years, the prevalence of MetS has increased exponentially due to multiple
causes, among which the presence of obesity is highlighted [7,8]. However, its estimation in
children and adolescents has been difficult due to geographic variability and the definitions
used [9]. The prevalence of MetS ranges from 3% to 19% in pediatric populations, which
increases significantly in the presence of a higher body mass index (BMI), reaching up to
29% [10]. Due to the increased prevalence of MetS in pediatric ages, efforts have been made
to develop increasingly efficient methods that encourage its early detection to mitigate the
onset of associated comorbidities during adulthood.

Among the different tools for the early detection of MetS, non-invasive or anthropo-
metric ones can be mentioned, as well as those that require invasive techniques such as
the measurement of serum biomarkers [11,12]. Different authors have pointed out that
anthropometric techniques are the most appropriate because they can be used in a greater
variety of clinical settings [11,13,14]. However, during the last decade, great developments
have been made in comprehending serum biomarkers such as adipocytokines, including
leptin, and adiponectin, which performs a relevant role in energy homeostasis and glucose
and lipid metabolism [15]. That is why it has been prioritized to deepen the research of
these adipocytokines in the pediatric population. Thus, evidence has been found that these
could detect or predict the onset of MetS early [12].

On the other hand, developing diagnostic methods has become increasingly frequent
in investigating non-communicable chronic diseases. It is widely recommended for use
within clinical practice guidelines to optimize decision-making [16]. The diagnostic models
allow knowing whether specific prognostic factors or markers, which are more invasive
or expensive, have an added valuable predictive value beyond economic predictors or
obtained, for example, from the history of patients or physical examination [17]. In the
MetS, it is known that there are physical or anthropometric changes whose measurement is
of low cost or, on the other hand, alterations in risk biomarkers, whose measurement may
be more expensive in clinical practice.

According to the latest Country Nutrition Profiles reported by the Global Nutrition
Report [18], Chile has made much progress in childhood stunting and wasting, having a
lower prevalence than the rest of Latina America. However, the prevalence of overweight
in children under five years is still higher in Chile than in Latin America (9.3% vs. 7.5%) [18].
Moreover, the Nutritional Map Report 2021 (JUNAEB) highlighted that obesity increased
from 17.8% in 2020 to 20.3% in 2021 in Chilean children and adolescents [19]. Moreover,
even if there is no national estimation of the MetS in Chilean children, some authors have
reported ranges from 4% to 45% [20–23].

Given the above, and the high prevalence of overweight and obesity in Chilean
children, the objective of the present research was to establish diagnostic risk models that
use non-invasive and invasive variables for the early detection of MetS in Chilean children.

2. Materials and Methods
2.1. Design, Population and Sample

A descriptive cross-sectional study was carried out in children aged between 6 and
11 years, who belonged to the urban environment of the city of Hualpén, Biobío Region
of Chile. Clinical data and blood sample collection were performed between March and
June 2008.
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For an estimated prevalence of MetS in children of 22.7% [23], considering an accuracy
of 6%, a 95% confidence interval (95% CI), and a total population of 1,556,805 in the
Biobío Region (according to the 2017 census [24]), we calculated a minimum sample size
of 188 individuals. We decided to use 6% considering this was not a prevalence study
but rather an associative model study. Finally, we studied 220 children aged between 6 to
11 years to keep the sample as large as possible considering the project’s budget. Moreover,
children suffering from a chronic condition and those whose parents or legal guardians did
not sign the informed consent were excluded.

2.2. Study Variables and Measurements

The independent variables included were sex (boy and girl), age (years), and those
grouped in:

Anthropometric variables: weight (kg), height (cm), BMI (kg/m2), waist circumference
(WC, cm), waist-to-height ratio (WHtR), fat-free mass (FFM, kg), body fat (BF, kg), BF per-
centage (%), systolic blood pressure (SBP, mmHg), and diastolic blood pressure (DBP, mmHg).

Trained nutritionists performed all anthropometric measurements. Weight and body
composition (BF, % of BF and FFM) were measured with a bioimpedance meter (TANITA
TBF-300, TANITA, Tokyo, Japan) with an accuracy of 0.1 kg. Height was measured without
shoes, using wall-mounted stadiometers to the nearest 0.1 cm (Seca, model 208). WC was
measured in the middle point between the lowest rib and the upper edge of the iliac crest,
with a noncompliant measuring tape at the nearest 0.1 cm (Seca, model 201). BMI (kg/m2)
was calculated at the body weight divided by height squared. The BMI z-score based on
age and sex was calculated according to the methods recommended by the World Health
Organization (WHO) [25]. Children were classified as underweight (BMI 5th percentile),
normal (BMI ≥ 5th percentile and <85), overweight (BMI ≥ percentile 85 and <95), or obese
(BMI > percentile 95), according to the specific international percentiles by age and gender
defined by the Center for Disease Control and Prevention [26]. WHtR was calculated by
dividing WC by height, both in centimeters. The figure <0.55 [27] was taken as a normal
value. To determine the presence of waist obesity (WC > percentile 90), reference tables
developed for the pediatric population by Fernández, et al. [28] were used according to age
and sex were used.

A physician measured blood pressure through a calibrated digital sphygmomanometer
(OMRON M3, OMRON, Kyoto, Japan). The cuff length to measure blood pressure was
chosen according to the arm circumference. Children were asked to sit down for at least
five minutes before measurement. Two records were taken with an interval of two minutes
between them, where average SBP and DBP were recorded. To determine the presence of
HBP (SBP o DBP > percentile 90), reference tables were used, according to age, gender, and
height [29].

Metabolic and hormonal variables: Glucose (mg/dL), HDL-c (mg/dL), LDL-c (mg/dL),
triglycerides (TG, mg/dL), total cholesterol (TC, mg/dL), insulin (µU/mL), adiponectin
(µg/mL) and leptin (ng/mL) were considered.

For metabolic and hormonal analyses, 4 mL of venous blood was drawn after an
overnight fast of 8 to 12 h. Serum concentrations of TC, HDL-c, LDL-c, TG, and glycemia
levels were determined through colorimetric methods, using commercially available kits
(Cobas C111 Roche, Indianápolis, IN, USA). Plasmatic insulin and adiponectin were mea-
sured using an ELISA commercial kit (Linco Research, St. Charles, MO, USA) in a Synergy
2 multi-mode reader (Biotek, Winooski, VT, USA). Based on the ELISA technique, lep-
tin was determined through a commercial immunoassay kit (Quantikine R&D Systems,
Minneapolis MN, USA) in plates sensitized with the human anti-leptin monoclonal anti-
body. The HOMA-IR index was calculated from the previously defined baseline glucose
and insulin concentrations [30]. Experienced technicians carried out all measurements
to minimize the variation coefficient. A test was considered abnormal when the glucose
levels were ≥100 mg/dL, TC ≥ 200 mg/dL, HDL-c ≤ 40 mg/dL, LDL-c ≥ 100 mg/dL, or
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TG ≥ 110 mg/dL. Regarding the reference values of insulin, leptin, and adiponectin, pre-
determined cut-off points were not considered because they are unknown for the pediatric
population studied. Instead, they were established according to the discriminant capacity
for MetS detected in this study.

2.3. Diagnosis of Metabolic Syndrome

The MetS diagnosis was determined by at least 3 out of 5 components of the Cook
phenotype [31]. The cut-off points used were WC ≥ 90th percentile; percentile of increased
blood pressure, either SBP or DBP ≥ 90th percentile; HDL-c ≤ 40 mg/dL; TG ≥ 110 mg/dL;
and glycemia ≥ 100 mg/dL.

2.4. Ethical Aspects

The study was carried out in compliance with the fundamental principles of the
Helsinki Declaration (1964), the Council of Europe Convention on Human Rights and
Biomedicine (1997), in the Universal Declaration of UNESCO on the human genome and
human rights (1997), as well as complying with the requirements established in Chilean
legislation in the field of biomedical research, the protection of personal data and bioethics,
according to Decree No. 114, of 2010 that approves the Regulation of Law No. 20,120, and
which was modified and updated in Decree 30 of 14 January 2013. Additionally, this study
was approved by the Ethics Committee of the Vice-Rectory of Research of the University of
Concepción (352-2019). Parents were given written informed consent before their children
were included in the study.

2.5. Statistical Analyses

Quantitative variables are presented with mean and standard deviation, whereas
qualitative variables are presented in frequencies and percentages. To test the goodness of fit
to a normal distribution of data from quantitative variables, the Kolmogorov–Smirnov test
with Lilliefors correction was used. For the contrast of bivariate hypotheses, the Student’s
t-test was used for two means and for non-parametric versions, the Mann–Whitney U-test
was used (considering Levene’s test for homogeneity contrast). The area under the curve
(AUC) was calculated to determine the diagnostic accuracy of each variable and to establish
which best predicted MetS. Sensitivity, specificity, Youden, and validity indices were also
analyzed to determine their best cut-off value for greater diagnostic accuracy.

To assess the aptitude of the studied variables (BMI, SBP, DBP, WHtR, HDL-c, TG,
TG/HDL-c, insulinemia, leptinemia, adiponectinemia) to predict MetS, binary adjusted
methods adjusted by age and gender were performed. The adjusted odds ratio (OR) was
determined with its 95% CI. The goodness of fit tests (−2 log likelihood, goodness of fit
statistic, Cox and Snell R2, Nagelkerke R2 and Hosmer–Lemeshow tests) were calculated
to evaluate the global adjustment of each model.

For all statistical analyses, an alpha error probability of less than 5% (p < 0.05) was
accepted, and the 95% CIs were calculated. For statistical analyses, the software IBM SPSS
Statistics version 22.0 (IBM, Chicago, IL, USA) and EPIDAT version 4.2. (Departamento de
Sanidade, Xunta de Galicia, Galicia, Spain) were used.

3. Results
3.1. Sample Description

Both clinical and anthropometric characteristics for children with and without MetS
are described in Table 1. The mean age was 9.1 (1.3) years, without significant differences
between boys and girls. Regarding the prevalence of MetS, this was 26.8% (34.5% in
girls and 19.1% in boys; p < 0.05), with a significantly higher proportion in girls than
in boys (OR = 2.2; p < 0.05). Except for age, glycemia, and LDL-c, the other variables
showed a significant bivariate association with MetS, according to the modified Cook
criteria (p < 0.001). Children with MetS showed higher levels of risk biomarkers, such as
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TG, insulin and leptin, and lower levels of HDL-c and adiponectin compared with children
without MetS (p < 0.001).

Table 1. Characteristics of the sample according to the presence of MetS.

Variable
Total

n = 220
Mean (SD or %)

With MetS
n= 59

Mean (SD or %)

Without MetS
n = 161

Mean (SD or %)
p

BOYS 110 (50%) 21 (19.1%) 89 (80.9%)
<0.05GIRLS 110 (50%) 38 (34.5%) 72 (65.5%)

AGE (years) 9.1 (1.3) 9.3 (1.2) 9 (1.3) 0.13
WC (cm) 74.5 (11.6) 83.6 (8.1) 71.2 (10.9) <0.001

WHtR (≥0.55) 128 (57.9) 55 (93.2) 73 (45.1) <0.001
BMI (kg/m2) 22.2 (4.2) 25.6 (3.1) 21 (3.8) <0.001

Overweight + obesity 148 (67) 57 (96.6) 91 (56.2) <0.001
BF (kg) 13.3 (6.7) 18.3 (5.7) 11.5 (6.2) <0.001

%BF 30.1 (9.5) 36.6 (6) 27.6 (9.4) <0.001
FFM (kg) 28.4 (5.1) 31.1 (5.1) 27.4 (4.7) <0.001

SBP (mmHg) 101.6 (12) 108.7 (12) 98.9 (10.9) <0.001
DBP (mmHg) 66.1 (10.6) 71.1 (10.7) 64.2 (10) <0.001

GLYCEMIA (mg/dL) 88.3 (8.6) 88.6 (10) 88.2 (7.9) 0.77
TC (mg/dL) 181.8 (33.1) 188.2 (36.4) 179.5 (31.6) 0.09

HDL-c (mg/dL) 50.5 (11.7) 40.4 (10.2) 54.2 (89.8) <0.001
LDL-c (mg/dL) 108.3 (28.9) 113.3 (32.9) 106.4 (27.1) 0.12

TG (mg/dL) 102.3 (84.2) 173.9 (119.8) 88 (63.1) <0.001
TG/HDL-c 2.8 (2.5) 5.2 (3.6) 1.9 (1.1) <0.001

Baseline insulin (µU/mL) 8.6 86.8) 12.4 (6.9) 7.2 (6.3) <0.001
HOMA-IR 1.9 (1.4) 2.7 (1.4) 1.6 (1.2) <0.001

Adiponectinemia (µg/mL) 15 (5.6) 12.3 (3.7) 16 (5.9) <0.001
Leptinemia (ng/mL) 17.2 (10.7) 23.9 (9.1) 14.0 (9.7) <0.001

MetS, metabolic syndrome; SD, standard deviation; WC, waist circumference; WHtR, waist-to-height ratio
index; BMI, body mass index; BF, body fat; FFM, fat-free mass; SBP, systolic blood pressure; DBP, diastolic
blood pressure; TC total cholesterol; HDL-c high-density lipoprotein cholesterol; LDL-c, low density cholesterol
lipoprotein cholesterol; TG, triglycerides: TG/HDL, triglycerides/high-density cholesterol lipoprotein ratio;
HOMA-IR, homeostasis model for insulin resistance: Statistical analyses: Student’s T-test (for parametric data),
Mann–Whitney U test (non-parametric data).

3.2. Components of the Metabolic Syndrome

Table 2 shows the trends of the mean values for each of the variables included in the
study, distributed according to the presence of MetS components (0, 1, 2, and ≥3). Subjects
with more MetS components had higher BMI, WC, fat mass, TG, LDL-c, insulin, HOMA-
IR, SBP, DBP, and leptin, and lower levels of HDL-c and adiponectin (p < 0.001). When
evaluating the linearity of the ratio between the variables under study and the number
of MetS components, the mean of the values of both serum biomarkers (TG, insulin, and
leptin) and the anthropometric variables (WC, BMI and fat mass) increased progressively
and continuously as more MetS components were added. On the other hand, HDL-c and
adiponectin decreased progressively in the function of the number of MetS components
presented. The SBP increased by 5 mmHg for each component of the added MetS.

3.3. MetS Diagnostic Accuracy and Discriminant Capacity of the Study Variables

When evaluating the discriminant capacity of each diagnostic variable, it was found
that lipid biomarkers (HDL-c and TG), and their ratio (TG/HDL-c), have a greater diagnos-
tic capacity, measured by AUC (above 80%), followed by WC (0.80 [0.72–0.88)], BMI (0.79
[0.71–0.88]) and WHtR (0.78 [0.70–0.87]), as shown in Table 3.
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Table 2. MetS components and linear trend analysis for independent variables.

Variable

0
Components

n= 51
Mean (SD or

%)

1
Component

n= 53
Mean (SD or

%)

2
Components

n= 57
Mean (SD or

%)

≥3
Components

n= 59
Mean (SD or

%)

r p

WC (cm) 62.3 (6.2) 71.3 (9.8) 79.2 (8.7) 83.6 (8.1) 0.70 <0.001
WHtR (≥ 0.55) 0.48 (0.03) 0.53 (0.07) 0.58 (0.05) 0.6 (0.05) 0.68 <0.001
BMI (kg/m2) 17.8 (2.0) 20.9 (3.0) 23.9 (3.4) 25.6 (3.1) 0.71 <0.001

BF (kg) 6.5 (2.9) 11.3 (5.3) 15.8 (5.7) 18.3 (5.7) 0.66 <0.001
%BF 20.1 (5.6) 27.9 (9.4) 33.7 (7.1) 36.6 (6.0) 0.66 <0.001

FFM (kg) 24.5 (84.5) 27.4 (3.8) 29.7 (84.3) 31.1 (5.1) 0.49 <0.001
SBP (mmHg) 93.8 (9.8) 98.6 (10.0) 103.8 (10.5) 108.7 (12.0) 0.47 <0.001
DBP (mmHg) 60.1 (8.3) 65.4 (9.6) 66.9 (10.8) 71.1 (10.7) 0.37 <0.001

HDL-c (mg/dL) 58.8 (9.6) 53.6 (8.0) 50.7 (10.1) 40.4 (10.2) 0.58 <0.001
TG (mg/dL) 66.3 (29.6) 82.8 (48.4) 132.7 (67.0) 173.9 (119.8) 0.61 <0.001

TG/HDL 1.2 (0.4) 1.7 (0.81) 2.8 (1.2) 5.1 (3.6) 0.61 <0.001
Baseline insulinemia

(µU/mL) 5.1 (2.8) 6.7 (4.6) 9.5 (8.8) 12.5 (6.9) 0.41 <0.001

HOMA-IR 1.1 (0.65) 1.5 (1.1) 2.0 (1.5) 2.7 (1.4) 0.44 <0.001
Adiponectinemia (µg/mL) 17.3 (5.6) 17.0 (6.4) 13.8 (4.9) 12.3 (3.7) 0.38 <0.001

Leptinaemia (ng/mL) 8.0 (4.2) 12.6 (8.8) 20.2 (10.6) 23.9 (9.1) 0.59 <0.001

MetS, metabolic syndrome; SD, standard deviation; WC, waist circumference; WHtR, waist height index; BMI,
body mass index; BF, body fat; FFM, fat-free mass; SBP, systolic blood pressure; DBP, diastolic blood pressure;
LDL-c, low density cholesterol lipoprotein; TG, triglycerides: TG/HDL, triglycerides/high-density cholesterol
lipoprotein ratio; HOMA-IR, homeostasis model for insulin resistance: Statistical analyses: correlation coefficient
of the linear model, value of r.

Table 3. Discriminant capacity and MetS diagnostic accuracy for the study variables.

Variable AUC 95% CI p Cut-off Values Youden Index

WC (cm) 0.80 (0.72–0.88) <0.001 77.50 0.51
WHtR (≥0.55) 0.78 (0.70–0.87) <0.001 0.53 0.53
BMI (kg/m2) 0.79 (0.71–0.88) <0.001 23.50 0.55

%BF 0.78 (0.69–0.87) <0.001 30.40 0.50
BF (kg) 0.79 (0.71–0.88) <0.001 10.25 0.46

FFM (kg) 0.71 (0.61–0.82) <0.001 29.75 0.37
SBP (mmHg) 0.73 (0.62–0.74) <0.001 109.50 0.40
DBP (mmHg) 0.70 (0.59–0.81) <0.001 64.50 0.33

HDL-c (mg/dL) 0.85 (0.77–0.95) <0.001 41.30 0.68
TG (mg/dL) 0.81 (0.73–0.90) <0.001 110.20 0.53

TG/HDL 0.87 (0.80–0.95) <0.001 2.33 0.59
Baseline insulinemia (µU/mL) 0.77 (0.68–0.87) <0.001 7.63 0.46

HOMA-IR 0.77 (0.68–0.88) <0.001 1.56 0.42
Adiponectinemia (µg/mL) 0.71 (0.61–0.81) <0.001 16.95 0.39

Leptinaemia (ng/mL) 0.78 (0.69–0.87) <0.001 14.00 0.49

MetS, metabolic syndrome; SD, standard deviation; WC, waist circumference; WHtR, waist height index; BMI,
body mass index; BF, body fat; FFM, fat-free mass; SBP, systolic blood pressure; DBP, diastolic blood pressure;
LDL-c, low density cholesterol lipoprotein; TG, triglycerides: TG/HDL, triglycerides/high-density cholesterol
lipoprotein ratio; HOMA-IR, homeostasis model for insulin resistance; AUC, the area under the curve. Statistical
analyses: the area under the curve and Youden index were calculated for dichotomic qualitative variables. 95% CI:
95% confidence intervals.

3.4. Risk Diagnostic Models

Considering the variables analyzed above that presented a statistically significant
association, and avoiding including those that could generate a priori high collinearity, four
diagnostic models were proposed and compared for MetS in children (Table 4). For all
models, variables were dichotomized (except for gender in the anthropometric model),
depending on whether the value is higher or lower than the cut-off value shown in Table 3.
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Table 4. Logistic regression models adjusted by age and gender.

Anthropometric Model (Non-Invasive)

Variable OR (Adjusted) 95% CI p The Goodness of Fit and Diagnostic
Accuracy of the Model

Boys 1 (reference)
<0.01

Hosmer–Lemeshow (p > 0.05)
R2 (Nagelkerke) = 0.48

S = 69.5%
E = 88.8%

Validity index = 83.6%
YI = 0.583

Girls 3.7 (1.6–8.4)
BMI < 23.50 (kg/m2) 1 (reference)

<0.01
BMI ≥ 23.50 (kg/m2) 5.9 (2.1–16.6)

WHtR < 0.53 1 (reference)
<0.05WHtR ≥ 0.53 5.6 (1.3–23)

SBP < 109.50 (mmHg) 1 (reference)
<0.05SBP ≥ 109.50 (mmHg) 2.2 (1.01–4.9)

DBP < 64.50 (mm/Hg) 1 (reference)
<0.05DBP ≥ 64.50 (mm/Hg) 3.1 (1.2–7.7)

Lipid Model A

HDL-c ≥ 41.30 (mg/dL) 1 (reference) <0.001

Hosmer–Lemeshow (p > 0.05)
R2 (Nagelkerke) = 0.55

S = 62.7%
E = 96.9%

Validity index = 87.7%
YI = 0.596

HDL-c < 41.30 (mg/dL) 19.3 (8–46.7)
TG < 110.20 (mg/dL) 1 (reference)

<0.001TG ≥ 110.20 (mg/dL) 8.0 (3.1–20.1)

Lipid Model B

TG/HDL-c < 2.33 1 (reference)
<0.001

Hosmer–Lemeshow (p < 0.05)
R2 (Nagelkerke) = 0.35

S = 83.3%
E = 74.5%

Validity index = 76.7%
YI = 0.578

TG/HDL-c ≥ 2.33 14.6 (6.6–32.5)

Hormonal Model

Insulinemia < 7.63 (µU/mL) 1 (reference)
<0.01 Hosmer–Lemeshow (p > 0.05)

R2 (Nagelkerke) = 0.49
S = 68.6%
E = 85.1%

Validity index = 79.8%
YI = 0.537

Insulinemia ≥ 7.63 (µU/mL) 5.0 (1.7–15.1)
Leptinaemia < 14.00 (ng/mL) 1 (reference)

<0.05Leptinaemia ≥ 14.00 (ng/mL) 6.0 (1.5–23.9)
Adiponectinemia ≥ 16.95 (µg/mL) 1 (reference)

<0.05Adiponectinemia < 16.95 (µg/mL) 9.1 (1.8–46.6)

OR, odds Ratio; BMI, body mass index; WHtR, waist height ratio; SBP, systolic blood pressure; DBP, diastolic
blood pressure; HDL-c, high-density cholesterol lipoprotein; TG, triglycerides; TG/HDL, triglyceride/lipoprotein
ratio of high-density cholesterol; S, sensitivity; E, specificity; YI, Youden index. Statistical analyses: logistic
regression models adjusted for age and sex, Nagelkerke R2 and Hosmer–Lemeshow tests for global model fit.

The results of the indicators (sensitivity, specificity, and validity index) are presented
in Table 4. This allowed knowing the diagnostic performance of the four models after
being adjusted by age and sex. Although all the models presented can be valid to estimate
MetS, the Lipid model A, based only on the determination of HDL-c (OR= 19.3, 95%
CI: 8–46.7; p <0.001) and TG (OR= 8.0, 95% CI: 3.1–20.1; p < 0.001) turned out to be the
most accurate.

4. Discussion

A prevalence of 26.8% in the MetS was found in the pediatric sample, which was
significantly higher than that found by other authors, possibly due to the diversity of criteria
used to define MetS and the characteristics of the populations studied [32,33]. However, this
was similar to that described in the IDEFIC study [6] and in two other studies carried out in
Chilean pediatric populations, which also used the Cook criteria to define MetS [23,34]. On
the other hand, it is recognized that overweight and obesity are the most important features
contributing to the increased presence of MetS in children [21,35,36]. This is consistent with
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the results of the present study, since 96.6% of the children included with MetS presented
overweight or obesity.

When describing the characteristics of the cases that presented MetS, it was evidenced
that all variables—except age, glycemia, TC, and LDL-c—showed a significant bivariant
association with MetS. The lack of association with fasting glycemia reflects the existence
of the known initial hyper-insulinemia compensatory mechanism [37]. The baseline insulin
levels and the HOMA-IR index were higher in children who presented MetS, which is
consistent with the findings of another Chilean study [29] and other populations [38,39].
There was a linear association between the variables under study and the number of MetS
components. Moreover, the mean of the values of the variables increased, both in the
non-invasive (BMI, WHtR, WC, SBP) and in the invasive (LDL-c, TG, glucose, leptin), or
decreased (adiponectin) progressively and continuously in the function of the number of
MetS components presented by the children. This allows the possibility to recognize the
development toward MetS and, therefore, act early.

The greatest diagnostic capacity of MetS found in the present study was given by
non-invasive variables (anthropometric and blood pressure). Among the anthropometric
variables, the BMI stands out (AUC = 0.79, 95% CI: 0.71–0.88), with a cut-off point of
23.5 kg/m2. Despite not considering body composition or fat distribution, this index
suggests other adiposity indices in predicting MetS; therefore, it should be the choice
considering its ease of calculation [40]. Other authors also demonstrated that BMI has
good diagnostic power for MetS [41,42]. Along the same line, several studies highlight
the WC for predicting MetS [43–45], which can add more information to that provided by
the BMI [45]. Regarding WHtR, a value ≥0.55 significantly increased the risk of suffering
MetS in this study. In addition, it had a moderate diagnostic capacity, with an AUC = 0.78
(95% CI: 0.70–0.87), being similar to the results of a meta-analysis in which the WHtR, as a
quantitative measurement, showed an AUC = 0.76 (95% CI: 0.71–0.80). Thus, WHtR could
be considered in the periodic health check-ups of children and adolescents since it can
measure the risk of MetS, independently of the degree of general obesity [46].

In obesity and MetS, the presence of dysfunctional adipocytes is described. These cells
present, among others, alterations in the secretion of adipokines, such as a reduction of
adiponectin and increased leptins [47–50]. Indeed, the adiponectin levels of children in this
study who presented MetS were significantly lower, and the leptin levels were higher than
those who lacked MetS (p < 0.001). The reduction in adiponectin and increase in leptin was
inversely proportional as more MetS components were added, similar to what was found in
previous reports [42,43]. This supports the idea that adipokines could be a good biomarker
to identify individuals at risk of presenting MetS [51,52]. Likewise, this study found that
both adipokines present a moderate diagnostic capacity, similar to the results described
in a meta-analysis carried out in an Asian population [53]. At present, it is unclear which
serum adipokine value is more appropriate to identify MetS in the pediatric population.
The cut-off value of leptin found in this study to discriminate the presence of MetS was
14.00 ng/mL, similar to that found by Madeira, et al. [54] in prepubertal children, with
an optimal leptin cut-off point of 13.4 ng/mL. This data can be beneficial to interpret this
biomarker’s result in Chilean children adequately.

Dyslipidemia is related to MetS and its onset at an early age can predict future car-
diovascular complications. The results of the present study show an atherogenic profile
in the MetS group, with higher LDL-c, lower HDL-c, higher TG, and higher values of
the TG/HDL-c ratio, with statistically significant differences between groups with and
without MetS. This result is consistent with previous reports [55,56]. Therefore, children
with MetS have an atherogenic lipid profile that should be examined and intervened to
correct early. Indeed, in a pediatric population with MetS, it has been reported a reversion
of lipid alteration [57]. In addition, the variables of this study with greater diagnostic
capacity are two lipid variables: TG and HDL-c, as well as their ratio (TG/HDL-c), all
with an AUC > 80%. This is consistent with the findings by Liang, et al. [58], in which
the TG/HDL-c ratio was the best indicator for MetS, with a larger AUC (AUC = 0.84).
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However, a much lower cut-off value compared to that of the present study >1.25 vs.
>2.33, respectively, was found. The latter is expected since there is a cut-off value defined
by the TG/HDL-c ratio in the children population, which may vary depending on the
population analyzed. A more recent study also found that the TG/HDL-c ratio is an early
predictor of MetS and strongly correlated with their components. Thus, it can be used as
an effective index in children, regardless of age and predisposition to MetS [59]. In a study
performed in men and women (n = 797, 35–60 years) of Aboriginal, Chinese, European,
and South Asian origin, the TG/HDL-c ratio was a superior indicator for MetS compared
to TC/HDL-c, LDL-c/HDL-c, and nonHDL-c/HDL-c [60]. Moreover, TG/HDL-c ratio has
been proposed as an indirect measure of small dense LDL, which is the most atherogenic
LDL fraction [61,62]. Thus, TG/HDL-c ratio seems a reliable indicator for MetS and CVDs.

Four diagnostic models were proposed and compared based on the findings described,
centered on invasive and non-invasive variables, which were statistically significant in
the logistic regression analysis. These allowed the early detection of MetS. All the models
presented can be valid to predict MetS, though lipid model A, based on the determination
of HDL-c and TG, turned out to be the most accurate to predict MetS (sensitivity of 62.7%,
specificity of 96.9%, and validity index of 87.7%). Although an invasive technique is
involved (blood sample extraction), its determination is widely used in clinical practice.
This technique is also cheaper and, therefore, more efficient than the hormonal model, which
requires the analysis of insulin, leptin, and adiponectin, which are not always available in
the clinical laboratory routine and are of high cost. The lipid model B (TG/HDL-c) also
showed high sensitivity, reaching 83.3%, which could facilitate the screening of children
with LBP with MetS. With this point of view, oxidative stress markers may be used to
develop new diagnostic models to estimate the risk of MetS [63] but with associated
high costs.

For a long time, anthropometric measurements have been recognized and widely
used as convenient indicators in the prediction of MetS. In addition, the data found in
this study show a fundamental role of BMI, WC, WHtR, and blood pressure in the early
non-invasive diagnosis of MetS. Although in other populations, WC and WHtR have been
proposed as an alternative to BMI in the discrimination of MetS [64,65], results found in the
present research have shown that its combined use (WHtR and BMI) in the non-invasive
model together with the measurement of SBP and DBP can increase its diagnostic capacity
(S = 69.5%, E = 88.8% and validity index = 83.6%). The second one is the most accurate of
the four models proposed. This model has a notable advantage since it could be applied
in any context (e.g., school, primary care, etc.,) and has good diagnostic precision and the
possibility of reducing the blood draws involved, especially in places with scarce health
resources, capable of being more cost-effective.

Early detection of MetS is difficult in clinical settings due to the absence of a universal
definition and variability of components and their cut-off points. Hence, the data provided
by this study can be very useful in understanding the behavior of the different MetS compo-
nents in Chilean children and also provide additional information regarding emerging and
promising metabolic risk biomarkers such as adiponectin and leptin. Of the four diagnostic
models proposed, the one that includes non-invasive techniques (anthropometric model)
makes it an inexpensive option that could be easy to apply in any healthcare setting or even
schools. This model may facilitate the early detection of children at risk in the school envi-
ronment, their timely referral to primary care, and the application of early interventions,
preventing the possible complications associated with MetS in the following stages of life.

Strengths and Limitations

Among the strengths of this study, we can highlight that the nutritional evaluation
and blood pressure of the children were carried out by highly trained personnel and
that, according to the available evidence, this work and the models proposed seem to
be the first tools to predict MetS in Chilean children. However, this study is not exempt
from limitations. First, due to the cross-sectional nature of the study, cause-and-effect
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associations cannot be established. Second, the sample of children analyzed had a high
prevalence of overweight and obesity, which raises the prevalence of MetS, above that
shown in the pediatric population. Third, given the high prevalence of obesity in the
sample, the models had to match the population used in the study closely. For this reason,
future work should consider samples with a better representation and distribution of the
nutritional status. Fourth, considering the heterogeneity of diagnostic criteria and the
scarce consensus around them, the modified Cook criteria were used. These are widely
distributed to facilitate the comparison with other works carried out in similar populations.
Fifth, given the pubertal changes that can influence anthropometric results [66] and risk
biomarkers, due to the physiological insulin resistance described in this stage of life [67],
further studies are suggested to consider this variable. Sixth, due to the number of variables
in the study, it was impossible to collect all possible models that could be run. The latter
was associated with methodological unfeasibility (non-compliance with the assumptions
of the logistic regression model) and coefficient of determination (validity indices and/or
other statistics with low values of no scientific or clinical interest). Therefore, only the
four models already mentioned met all the methodological and clinical relevance criteria
and were included in the study. Finally, this study did not make a comparison with other
scores, such as those used for the NAFLD diagnoses or the fibrosis-4 index (Fib 4) [68],
since some biochemical measures were not available for the analytes in the samples (e.g.,
platelet count).

5. Conclusions

The prevalence of MetS found in this pediatric population was high, especially among
children who were overweight and obese. The model based on non-invasive variables
presented good diagnostic accuracy and could be easy to apply in different settings (school
or health). However, according to the results found, HDL-c and TG are the variables
with greater diagnostic capacity. The TG/HDL-c included in the proposed lipid models
turned out to be the most accurate for the early detection of MetS. These parameters can be
obtained in the primary care setting, and when compared with other biomarkers such as
leptin and adiponectin, they are inexpensive. For this reason, it is suggested not to rule
out its use if they are available. Both models can be convenient and beneficial because they
allow not only to perform an early diagnosis, but a timely derivation which enables the
implementation of interventions that help correct the different disorders found in MetS and
prevent the onset of cardiovascular or metabolic complications in adulthood.
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