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Abstract: The gut–liver axis has been recognized as a potential pathway in which dietary factors
may contribute to liver disease in people living with HIV (PLWH). The objective of this study was to
explore associations between dietary quality, the fecal microbiome, the metabolome, and liver health
in PLWH from the Miami Adult Studies on HIV (MASH) cohort. We performed a cross-sectional
analysis of 50 PLWH from the MASH cohort and utilized the USDA Healthy Eating Index (HEI)–2015
to measure diet quality. A Fibrosis-4 Index (FIB-4) score < 1.45 was used as a strong indication
that advanced liver fibrosis was not present. Stool samples and fasting blood plasma samples were
collected. Bacterial composition was characterized using 16S rRNA sequencing. Metabolomics
in plasma were determined using gas and liquid chromatography/mass spectrometry. Statistical
analyses included biomarker identification using linear discriminant analysis effect size. Compared
to participants with FIB-4 ≥ 1.45, participants with FIB-4 < 1.45 had higher intake of dairy (p = 0.006).
Fibrosis-4 Index score was inversely correlated with seafood and plant protein HEI component score
(r = −0.320, p = 0.022). The relative abundances of butyrate-producing taxa Ruminococcaceae, Roseburia,
and Lachnospiraceae were higher in participants with FIB-4 < 1.45. Participants with FIB-4 < 1.45 also
had higher levels of caffeine (p = 0.045) and related metabolites such as trigonelline (p = 0.008) and
1-methylurate (p = 0.023). Dietary components appear to be associated with the fecal microbiome and
metabolome, and liver health in PLWH. Future studies should investigate whether targeting specific
dietary components may reduce liver-related morbidity and mortality in PLWH.

Keywords: HIV; metabolome; metabolomics; microbiome; liver disease; diet; diet quality;
Healthy Eating Index; nutrition

1. Introduction

Current antiretroviral therapy (ART) has greatly improved the prognosis of people
living with HIV (PLWH) [1]. However, as AIDS-related deaths have declined, non-AIDS-
related comorbidities have become more apparent [2]. Liver disease, in particular, has
emerged as a leading cause of morbidity and mortality in PLWH [2,3], facilitated by
oxidative stress, viral hepatitis, systemic inflammation, substance use such as alcohol
misuse and cocaine use, and gut microbial translocation [4–6]. The role of the gut–liver axis
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has increasingly been recognized as a significant pathway that may contribute to chronic
liver disease in HIV when considering dietary, genetic, and environmental conditions [4,7].

Microbial translocation occurs along the gut–liver axis when microbes and metabolites
cross the epithelial barrier and travel to the liver [4]. In HIV infection, cells that maintain
gut barrier integrity may be depleted [8], contributing to the translocation of bacterial
lipopolysaccharides (LPS) to the liver and activation of pathways known to upregulate in-
flammatory and fibrotic pathways [4]. Furthermore, the composition of the microbiome has
been shown to be altered in PLWH [9], and in subjects at different stages of liver disease [10].
A gut microbiome metagenomic signature differentiated adults with mild/moderate liver
fibrosis from those with advanced liver fibrosis [11,12]. This metagenomic signature demon-
strated robust accuracy when compared to other non-invasive measures of liver fibrosis
such as the Fibrosis-4 Index (FIB-4) [12]. Loomba et al. describe a decrease in the Firmicutes
phylum and an increase in Proteobacteria as liver disease progresses from non-alcoholic
fatty liver disease (NAFLD) to advanced liver fibrosis [11]. Taken together, this suggests
that even mild forms of liver disease may be characterized by dysbiosis, described as an
imbalance of potentially pathogenic and beneficial microbiota that may have a deleterious
effect on the host [13].

Diet and microbial metabolites have also been investigated for their role in me-
diating liver disease; certain dietary intake patterns may contribute to the initiation
and progression of liver diseases such as excessive intakes of saturated fat [14] and red
and/or processed meat [15]. Other dietary patterns, such as diets rich in whole fruits and
vegetables [16], whole grains [17], dairy [18], and coffee [19], may potentially prevent or
mitigate liver disease. Additionally, bacterial metabolites can contribute to liver disease
by translocating to the liver where they act as ligands, binding to receptors that can
either exacerbate or attenuate liver inflammation depending on the metabolite and other
conditions, such as diet [20].

Given that diet influences the gut microbiome and metabolome [21], which may, in
turn, modulate liver disease [22,23], a leading cause of morbidity and mortality in PLWH [3],
we focus on diet quality among PLWH. Previous studies have reported diet quality to
be poor in some PLWH population groups [24], and because diet is known to play a role
even in the early stages of liver disease [25], exploring associations with diet may help to
improve primary and secondary prevention efforts. Therefore, the purpose of this study
was to explore associations between diet quality, the fecal microbiome, the metabolome,
and liver health in PLWH from the Miami Adult Studies on HIV (MASH) cohort, which is
comprised of mainly low-income, racial/ethnic minority adults that suffer high rates of
substance use among other comorbidities.

2. Materials and Methods

In this cross-sectional study, an analysis was performed on 50 PLWH enrolled in a
pilot study that aimed to characterize gut microbiota and bacterial metabolites in PLWH
who use cocaine. The pilot study participants were randomly sampled from the MASH
cohort. The participants were eligible if they had a confirmed HIV diagnosis, used cocaine
or did not use any illicit drugs, were aged 35–66 years, were not infected with hepatitis C
or hepatitis B, and had no antibiotic use during the three months prior to stool sample
collection. All subjects provided written informed consent to participate. The protocols
were approved by the Institutional Review Board at Florida International University.

Trained research staff administered 24-h dietary recalls to participants using the
multiple-pass method [26]. The majority of participants had their fecal sample collected at
their 18-month cohort visit, and we utilized all four 24-h recalls (one from every sixth-month
cohort visit) to determine usual intake and calculate diet quality. The 24-h recalls were
analyzed using NutriBase Pro software, version 17.2. (CyberSoft, Inc. Phoenix, AZ, USA).
The United States Department of Agriculture (USDA) Healthy Eating Index (HEI)–2015,
which has been validated as a reliable measure of diet quality [27], was used to measure
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diet quality. The USDA HEI uses a scoring system that ranges from 1 to 100, with higher
HEI scores indicating better diet quality [28].

Stool samples from a single bowel movement were collected using the Norgen Biotek
kit (Thorold, ON, Canada). Participants were instructed how to collect their fecal samples
at home according to the manufacturer’s instructions; samples could be stored at room
temperature. Participants were given their stool collection kit on the same cohort visit
as their last 24-h dietary recall. This collection system has been shown to be effective in
minimizing microbiota compositional shifts and may reduce bias in samples collected at
ambient temperatures [29]. The samples were sent in one batch to the University of North
Carolina (UNC) Microbiome Core overnight with ice packs.

The 16S ribosomal RNA (rRNA) gene amplicon sequencing was also conducted by
the UNC Microbiome Core. All samples were processed within the same batch with the
same lot of reagents. Amplification was performed using 12.5 nanograms of total DNA
from the fecal samples, which was used to amplify the V4 region of the bacterial 16S rRNA
gene using universal primers [30]. Each 16S rRNA gene amplicon was purified using
the AMPURE XP reagent (Beckman Coulter, Indianapolis, Indiana, USA). A limited cycle
Polymerase Chain Reaction program was applied to each sample. Illumina sequencing
adapters and dual-index barcodes index 1 (i7) and index 2 (i5) (Illumina, San Diego, CA,
USA) were added to the amplicon target. The final libraries were purified using AMPURE
XP (Beckman Coulter) reagent and quantified and normalized before pooling. The libraries
were denatured with NaOH, diluted with hybridization buffer, heat-denatured, and loaded
on the MiSeq reagent cartridge (Illumina) and MiSeq instrument (Illumina). Paired-end
sequencing with dual reads and automated cluster generation was completed according to
the manufacturer’s instructions.

We obtained 200 µL of fasting blood plasma from the MASH cohort specimen reposi-
tory that was obtained within three months of fecal sample collection and sent to Metabolon
Inc. (Morrisville, NC, USA) for detection and analysis using metabolomics-non-targeted
gas chromatography/mass spectrometry (GC-MS) and liquid chromatography/mass spec-
trometry (LC-MS).

Liver fibrosis was determined via the non-invasive FIB-4, calculated from age, se-rum
aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), and platelet
count [31]. The negative predictive value of a FIB-4 < 1.45 cut-off to exclude advanced liver
fibrosis was reported to be 90% with 70% sensitivity. A cut-off of FIB-4 > 3.25 had a positive
predictive value of 65% for advanced liver fibrosis with 97% specificity [31]. However,
only one participant in this pilot study had a FIB-4 > 3.25. Thus, we classified participants
with FIB-4 < 1.45 as “advanced liver fibrosis/cirrhosis likely excluded”, and those with
FIB-4 ≥ 1.45 as “unable to exclude advanced liver fibrosis/cirrhosis”.

Illumina Bcl2Fastq 2.18.0.12 was used to change the sequencing output from the
Illumina MiSeq platform to the fastq format and demultiplex. QIIME 2 2018.11 was utilized
to process the resulting paired-end reads [32]. The QIIME 2 invocation of cutadapt was
used to trim the index and linker primer sequences. DADA2 through QIIME 2 was used to
process the resulting paired end reads. Taxonomic identifiers with respect to Green Genes
release 13_08 were assigned to the amplicon sequencing units from DADA2. The read
counts of amplicon sequence variants (ASVs) were retrieved from QIIME 2, aggregated at
the genus level, and normalized for each sample to adapt to one.

Linear discriminant analysis effect size (LefSe) was performed to assess the differen-
tial abundance of bacterial taxa. Phyloseq R package [33], was utilized to perform per-
mutational multivariate analysis of variance (PERMANOVA) with Unifrac distances [34].
Unifrac distance matrix was computed with phyloseq R package [33], while PER-MANOVA
analysis was performed with vegan R library [35]. Metabolomics analysis data process-
ing included data imputation of missing values using k-nearest neighbor (kNN) impu-
tation [36], outlier detection via kNN clustering, normalization with log2 scaling, and
quality control using kNN and variance stabilizing normalization (VSN) combined [37].
Wilcoxon rank-sum tests were used to determine statistical significance between the vari-



Metabolites 2023, 13, 271 4 of 15

ables. The proportionality between effect size and statistical significance was explored with
volcano plots. Pathway detection and differential analysis were performed with MetaboDiff
R package [38]. Partial least squares–discriminant analysis (PLS-DA) was used to find
discriminative metabolites [39].

Demographic data (age, sex, race, ethnicity, education level, income, food insecurity)
were self-reported. Alcohol and tobacco use were self-reported, while substance use was
determined with urine toxicology. Anthropometric data, including height and weight,
were measured by trained research staff. HIV serostatus and years living with HIV were
obtained by self-report and confirmed with medical documentation. HIV viral load and
cluster of differentiation 4 (CD4) cell count were abstracted from medical records with
participants’ written approval and ART use, regimen, and adherence were self-reported
by participants.

Descriptive continuous variables are presented as mean ± SD and categorical variables
are presented as No. (%). To test for differences in demographics, t-tests were performed
for continuous variables and chi-squared tests were employed for categorical variables.
Fisher’s exact test was utilized in cases of small cell counts. The mean total HEI score for
the sample was compared to the mean HEI score for Americans as reported by the National
Center for Health Statistics [40], using a one sample t-test. Spearman’s correlation was
used to test for associations between HEI scores and FIB-4 scores. t-tests were utilized to
test for differences in mean HEI score by FIB-4 score. Results were considered statistically
significant at two-tailed p < 0.05. All statistical analyses were performed using SAS software,
Version 9.4 (SAS, Inc., Cary, NC, USA).

3. Results
3.1. Demographics

The characteristics of the study sample are presented in Table 1. The average age was
55 ± 6.8 years, 58% were male, 68% were non-Hispanic Black, 40% had obtained less than
a high school level education, 68% had an annual income of less than USD 12,500, and
98% were on ART. Participants with and without FIB-4 ≥ 1.45 were similar in age, sex,
race/ethnicity, education level, income, smoking, alcohol use, cocaine use, body mass index
(BMI), food insecurity, ART use and adherence, viral load, and years living with HIV. There
were also no significant differences between participants with and without FIB-4 ≥ 1.45 by
ART regimen. However, the mean CD4 cell count was significantly lower in participants
with FIB-4 ≥ 1.45 compared to participants with FIB-4 < 1.45 (p = 0.007).

Table 1. Characteristics of Study Participants.

Variable 1 Total
n = 50

FIB-4 < 1.45
n = 36

FIB-4 ≥ 1.45 2

n = 14
p

Age, years 55 ± 6.8 54.5 ± 7.5 56.2 ± 4.6 0.437
Sex, male 29 (58.0) 19 (52.8) 10 (71.4) 0.341
Race/ethnicity 0.538

White non-Hispanic 3 (6.0) 3 (8.3) 0
Black non-Hispanic 34 (68.0) 22 (61.1) 12 (85.7)

White Hispanic 12 (24.0) 10 (27.8) 2 (14.3)
Other 1 (2.0) 1 (2.8) 0

Education level
<High school 20 (40.0) 17 (47.2) 3 (21.4) 0.227

High school diploma/GED 18 (36.0) 12 (33.3) 6 (42.9)
Some college + 12 (24.0) 7 (19.4) 5 (35.7)

Annual income 0.525
<USD 12,500 34 (68.0) 24 (66.7) 10 (71.4)

USD 12,500–USD 35,000 14 (28.0) 11 (30.6) 3 (21.4)
≥USD 35,000 2 (4.0) 1 (2.8) 1 (7.1)
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Table 1. Cont.

Variable 1 Total
n = 50

FIB-4 < 1.45
n = 36

FIB-4 ≥ 1.45 2

n = 14
p

Tobacco use 26 (52.0) 17 (47.2) 9 (64.3) 0.196
Non-smoker 24 (48.0) 19 (52.8) 5 (35.7)

Every day smoker 13 (26) 10 (27.8) 3 (21.4)
Some days smoker 13 (26) 7 (19.4) 6 (42.9)

Hazardous alcohol use 3 7 (14.0) 5 (13.9) 2 (14.3) 1.000
Cocaine use 25 (50.0) 17 (47.2) 8 (57.1) 0.754
Obesity 4 20 (40.0) 16 (44.4) 4 (28.6) 0.445
Food insecurity 5 6 (12.0) 3 (8.3) 3 (21.4) 0.331
On ART 49 (98.0) 36 (100.0) 13 (92.9) 0.280
ART regimen

Multi-class combination products 46 (92.0) 35 (97.2) 11 (78.6) 0.061
NRTI 0 0 0 -

NNRTI 1 (2.0) 0 1 (7.1) 0.280
Protease inhibitors 7 (14.0) 4 (11.1) 3 (21.4) 0.384

Fusion inhibitors 0 0 0 -
Entry inhibitors 0 0 0 -

HIV integrase strand transfer
inhibitors 5 (10.0) 3 (8.3) 2 (14.3) 0.611

Pharmacokinetic enhancers 0 0 0 -
Post-attachment inhibitor 0 0 0 -

ART adherence 6 0.53 ± 1.3 0.41 ± 1.1 0.85 ± 1.7 0.316
Virally suppressed 7 34 (68.0) 27 (75.0) 7 (50.0) 0.105
CD4 lymphocyte count, cells/µL 634.6 ± 337.1 694.9 ± 367.0 479.4 ± 172.3 0.007 *
Years living with HIV 17.6 ± 8.2 17.5 ± 7.8 17.8 ± 9.4 0.922

1 Data are presented as mean ± standard deviation and n (%). 2 FIB-4 score ≥ 1.45 was defined as “unable to
exclude advanced liver fibrosis/cirrhosis”. 3 Hazardous alcohol use was defined as having a score of ≥4 for
men and ≥3 for women on the Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) Questionnaire.
4 Obesity was defined as having a body mass index (BMI) of ≥30 kg/m2. 5 Food insecurity was defined as having
a score of ≥3 on the USDA Household Food Security Survey Module. 6 ART adherence is reported as the mean
number of missed ART doses in the previous two weeks. 7 Virally suppressed was defined as <50 copies of HIV
per mL of blood. * p-value < 0.05. Abbreviations: ART, antiretroviral therapy; CD4, cluster of differentiation 4;
FIB-4, Fibrosis-4 Index; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside/nucleotide
reverse transcriptase inhibitor.

3.2. Diet Quality in PLWH

The mean total HEI score of the sample (45.67 ± 11.54) was significantly lower
(p < 0.0001) compared to the HEI score for Americans (µ = 59) [40]. Table 2 shows
dietary intake and dietary quality as measured by the HEI. On average, participants had
low HEI component scores for total fruit (2.16 ± 1.80), whole fruit (1.48 ± 1.94), total
vegetables (2.53 ± 1.43), whole grains (2.80 ± 3.25), dairy (2.32 ± 1.80), and mono- and
polyunsaturated fats (0.27 ± 1.01), indicating low intake of these foods. The participants
also had low average HEI component scores for saturated fat (6.37 ± 3.04), refined grains
(4.22 ± 3.62), sodium (3.93 ± 3.46), and added sugar (6.39 ± 2.90), indicating high intake
of these foods.

3.3. Diet Quality and FIB-4

Compared to participants with FIB-4 ≥ 1.45, participants with FIB-4 < 1.45 had sig-
nificantly higher intake of dairy (p = 0.006) and dairy HEI component scores (p = 0.036)
(Table 2). Using Spearman’s correlation, FIB-4 score was significantly inversely correlated
with dairy HEI component score (r = −0.31, p = 0.027). A significant inverse correlation was
also observed between FIB-4 score and seafood and plant protein HEI component score
(r = −0.320, p = 0.022). There were no significant differences found in total HEI score
between participants with and without FIB-4 ≥ 1.45, and there were no correlations found
between total HEI score and FIB-4 score using Spearman’s correlation.
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Table 2. Dietary intake and HEI scores of study participants by FIB-4 Score.

Variable 1 Max Possible Score Total
n = 50

FIB-4 < 1.45
n = 36

FIB-4 ≥ 1.45 2

n = 14 p

Total caloric intake (kcal) – 2087 ± 757 2200 ± 804 1795 ± 540 0.089
Adequacy components:

Total fruit HEI score 3 5 2.16 ± 1.80 2.13 ± 1.86 2.23 ± 1.70 0.872
Total fruit intake (cups) – 1.01 ± 1.35 1.13 ± 1.55 0.69 ± 0.56 0.142
Whole fruit HEI score 4 5 1.48 ± 1.94 1.50 ± 1.89 1.45 ± 2.14 0.930

Whole fruit intake (cups) – 0.51 ± 0.98 0.60 ± 1.10 0.28 ± 0.49 0.167
Total vegetable HEI score 5 5 2.53 ± 1.43 2.64 ± 1.50 2.23 ± 1.22 0.370

Total vegetable intake (cups) – 1.22 ± 0.91 1.31 ± 0.91 1.00 ± 0.91 0.292
Greens & beans HEI score 5 5 4.05 ± 1.56 4.23 ± 1.46 3.60 ± 1.79 0.205

Greens & beans (cups) – 0.66 ± 0.60 0.74 ± 0.62 0.47 ± 0.52 0.157
Whole grains HEI score 10 2.80 ± 3.25 2.61 ± 3.30 3.26 ± 3.18 0.533

Whole grains intake (oz) – 1.00 ± 1.47 0.95 ± 1.45 1.12 ± 1.56 0.720
Dairy HEI score 6 10 2.32 ± 1.80 2.65 ± 1.77 1.47 ± 1.65 0.036 *

Dairy intake (cups) – 0.61 ± 0.47 0.73 ± 0.48 0.33 ± 0.29 0.006 *
Total protein foods HEI score 5 5 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 1.000

Protein intake (oz) – 10.90 ± 4.45 10.74 ± 4.52 11.34 ± 4.41 0.672
Seafood and plant proteins HEI score 5,7 5 4.15 ± 1.44 4.31 ± 1.35 3.74 ± 1.63 0.214

Seafood/plant protein intake (oz) – 3.03 ± 2.45 3.35 ± 2.61 2.21 ± 1.82 0.141
Fatty acids HEI score 8 10 0.27 ± 1.01 0.24 ± 1.02 0.37 ± 1.00 0.688

Polyunsaturated fatty acid intake (g) – 4.84 ± 5.41 5.17 ± 5.94 3.99 ± 3.78 0.493
Monounsaturated fatty acid intake (g) – 6.87 ± 6.19 7.51 ± 6.85 5.21 ± 3.72 0.135

Moderation components:
Saturated fatty acid HEI score 10 6.37 ± 3.04 6.43 ± 2.88 6.21 ± 3.53 0.822
Saturated fatty acid intake (g) – 25.72 ± 13.33 27.00 ± 13.48 22.41 ± 12.82 0.278

Refined grains HEI score 10 4.22 ± 3.62 4.19 ± 3.63 4.28 ± 3.72 0.939
Refined grains intake (oz) – 7.37 ± 4.40 7.66 ± 4.52 6.63 ± 4.16 0.462

Sodium HEI score 10 3.93 ± 3.46 3.81 ± 3.45 4.24 ± 3.61 0.694
Sodium intake (g) – 3.48 ± 1.16 3.63 ± 1.09 3.10 ± 1.30 0.151

Added sugar HEI score 10 6.39 ± 2.90 6.34 ± 3.05 6.52 ± 2.59 0.845
Added sugar intake (% energy) – 0.13 ± 0.06 0.14 ± 0.07 0.13 ± 0.06 0.775

HEI total score 9 100 45.67 ± 11.54 46.08 ± 11.52 44.60 ± 11.96 0.689

1 Values are presented as mean ± SD. 2 FIB-4 score ≥ 1.45 was defined as “unable to exclude advanced liver
fibrosis/cirrhosis”. 3 Includes 100% fruit juice. 4 Includes all forms except juice. 5 Includes legumes (beans and
peas). 6 Includes all milk products (milk, yogurt, cheese, and fortified soy beverages since these are nutritionally
similar to dairy products). 7 Includes seafood, nuts, seeds, soy products (other than beverages), and legumes
(beans and peas). 8 Ratio of poly- and monounsaturated fatty acids to saturated fatty acids. 9 All scoring standards
were adopted from “United States Department of Agriculture: Food and Nutrition Service: Center for Nutrition
Policy and Promotion (CNPP). How the HEI Is Scored”; https://www.fns.usda.gov/how-hei-scored (accessed 30
December 2020). * p-value < 0.05. Abbreviations: FIB-4, Fibrosis-4 Index; HEI, Healthy Eating Index.

3.4. Fecal Microbial Taxa by FIB-4 Score

By utilizing LefSe, this study found that the relative abundances of butyrate-
producing taxa such as Ruminococcaceae, Roseburia species (spp.), and Lachnospiraceae
were higher in participants with FIB-4 < 1.45. The relative abundances of the Fir-
micutes phylum, Clostridiales order, Clostridia class, Peptococcaceae, Coriobacteriaceae,
Paraprevotellaceae, Mogibacteriaceae, and Oxalobacteraceae families, and the genera Oscillospira,
Coprococcus, Gemmiger, and Slackia were also higher in participants with FIB-4 < 1.45. On
the other hand, the relative abundances of the Bacteroidales and Cardiobacteriales orders,
Bacteroidia class, Bacteroidetes phylum, Cardiobacteriaceae family, and Cardiobacterium
genus were higher in those with FIB-4 ≥ 1.45 (Figure 1). Using PERMANOVA, however,
the variance in metagenomics was not significantly different between participants with
and without FIB-4 ≥ 1.45 (p = 0.671) (Table A1).

https://www.fns.usda.gov/how-hei-scored
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Figure 1. Differential relative abundance of participants with and without FIB-4 ≥ 1.45. Figure 1
displays the results of the LEfSe analysis, which identifies the most differentially abundant taxa
between participants with and without FIB-4 ≥ 1.45. FIB-4 score ≥ 1.45 was defined as “unable
to exclude advanced liver fibrosis/cirrhosis”. Taxa enriched in participants with FIB-4 < 1.45 are
indicated with a positive LDA score in green, and taxa enriched participants with FIB-4 ≥ 1.45
are indicated with a negative score in red. Abbreviations: FIB-4, Fibrosis-4 Index; LDA, linear
discriminant analysis; LEfSe, linear discriminant analysis effect size.

3.5. Microbial Metabolites by FIB-4 Score

Participants with FIB-4 < 1.45 had significantly higher levels of caffeine (p = 0.045)
and related metabolites trigonelline (p = 0.008) and 1-methylurate (p = 0.023). Partici-
pants with FIB-4 ≥ 1.45 had significantly higher levels of 3-methylhistidine (p = 0.001), a
metabolite associated with chronic diseases such as obesity and type II diabetes (Figure 2).
Figure 3 displays the class prediction plot based on the first two principal components of
the PLS-DA and shows separate clustering of participants with and without FIB-4 ≥ 1.45
(CV error = 0.308). We reported microbial metabolites that were significantly different
between participants with and without FIB-4 ≥ 1.45 (as determined by Wilcoxon test),
with an absolute difference >0.5 determined via volcano plot (Figure A1), as contributing
most to class separation by PLS-DA, and correlated with FIB-4 score (Table 3). Sev-
eral microbial metabolites related to lipid pathways including pregnen-diol disulfate
(r = 0.333, p = 0.018), 9,10-dihydroxy-12-octadecenoic acid (9,10-diHOME) (r = 0.454,
p = 0.0009), and octadecanedioylcarnitine (r = 0.375, p = 0.007) were significantly corre-
lated with FIB-4 ≥ 1.45 (Table 3).
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Figure 2. The most differentially expressed metabolites in participants with and without FIB-4 ≥ 1.45.
Figure 2 displays metabolites that differed significantly in participants with and without FIB-4 ≥ 1.45
determined by p < 0.05 in Wilcoxon test. FIB-4 score ≥ 1.45 (“high” FIB-4 label) was defined as “unable to
exclude advanced liver fibrosis/cirrhosis”. (A) Methylhistidine, beta-alanine, and histidine metabolism;
(B) niacin metabolism and biomarker for consumption of coffee, legumes and soy products; (C) biomarker
of caffeine consumption; (D) methyl-branched fatty acids involved in lipid transport and metabolism;
(E) a crystalline acid obtained from cinchona bark, coffee beans, carrot leaves, apples, peaches, vegetables,
etc., that is implicated in the perceived acidity of coffee; (F) the product of the metabolism of methylxanthines
(caffeine, theophylline, and theobromine). Abbreviations: FIB-4, Fibrosis-4 Index.
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Figure 3. PLS-DA score plot for participants with and without FIB-4 ≥ 1.45. Figure 3 displays the
class prediction plot representing bacterial metabolites separating participants with and without
FIB-4 ≥ 1.45 the most based on the first two principal components of the PLS-DA model. FIB-4 score
≥ 1.45 (“high FIB-4” label) was defined as “unable to exclude advanced liver fibrosis/cirrhosis”. Each
point on the graph represents a participant, with blue circles representing participants with FIB-4 ≥
1.45 and orange triangles representing participants with FIB-4 < 1.45. Abbreviation: PLS-DA, partial
least squares–discriminant analysis.
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Table 3. Microbial metabolites that significantly differentiated participants with and without FIB-4 ≥ 1.45. 1

Biochemical Super Pathway Sub Pathway Metabolite PLS-DA Effect Size Spearman r Spearman p-Value
Pregnen-diol disulfate * Lipid Pregnenolone steroids 32,562 0.249 0.333 0.018
1-stearoyl-GPS (18:0) * Lipid Lysophospholipid 45,966 −0.253 −0.283 0.047

1,3-dimethylurate Xenobiotics Xanthine metabolism 32,391 −0.090 −0.292 0.040

2-deoxyuridine Nucleotide Pyrimidine metabolism,
uracil containing 52,602 0.262 0.344 0.015

Serotonin Amino acid Tryptophan metabolism 2342 −0.059 −0.316 0.025

Inosine 5-monophosphate
(IMP) Nucleotide

Purine metabolism,
(hypo)xanthine/

inosine containing
2133 −0.174 −0.396 0.004

1-stearoyl-2-oleoyl-GPS
(18:0/18:1) Lipid Phosphatidylserine (PS) 19265 −0.192 −0.391 0.005

Cysteine-glutathione
disulfide Amino acid Glutathione metabolism 35,159 −0.074 −0.288 0.042

2-hydroxy-4-
(methylthio)butanoic acid Amino acid Methionine, cysteine, SAM,

and taurine metabolism 63,739 0.109 0.299 0.035

AMP Nucleotide Purine metabolism,
adenine containing 32,342 −0.204 −0.503 0.0002

9,10-diHOME Lipid Fatty acid, dihydroxy 38,399 0.213 0.454 0.001
6-oxopiperidine-

2-carboxylate Amino acid Lysine metabolism 43,231 0.227 0.280 0.049

Octadecanedioylcarnitine
(C18-DC) * Lipid Fatty acid metabolism (Acyl

carnitine, dicarboxylate) 61,867 0.134 0.375 0.007

S-methylcysteine sulfoxide Amino acid Methionine, cysteine, SAM,
and taurine metabolism 43,378 −0.004 −0.317 0.025

Table 3 displays microbial metabolites that satisfied the following conditions: (1) they were significantly different
between participants with and without FIB-4 ≥ 1.45 (as determined by Wilcoxon test); (2) they had an absolute
difference >0.5 determined via volcano plot; (3) they were found to contribute most to class separation by PLS-DA;
and (4) they correlated with FIB-4 score via Spearman’s correlation. 1 FIB-4 score ≥ 1.45 was defined as “unable to
exclude advanced liver fibrosis/cirrhosis”. Rows in light grey indicate FIB-4 < 1.45 and rows in dark grey indicate
FIB-4 ≥ 1.45. * Indicates a compound that has not been confirmed based on a standard, but Metabolon Inc. is
confident in its identity. Abbreviation: PLS-DA, partial least squares-discriminant analysis.

4. Discussion

This analysis aimed to explore associations between diet quality, the fecal microbiome,
the metabolome, and liver health in PLWH with and without FIB-4 ≥ 1.45 (n = 14 vs. n = 36,
respectively). The participants in this study displayed poorer diet quality compared to
the general U.S. population [40]. While the participants had similar sociodemographic,
substance abuse, and HIV characteristics, except for CD4 cell count, which was lower in
participants with FIB-4 ≥ 1.45, those with FIB-4 < 1.45 had higher intakes of dairy, and
we observed an inverse correlation between FIB-4 and seafood and plant protein HEI
component score. We did not find a significant relationship between total HEI score and
FIB-4, suggesting specific dietary components may be a better target for dietary interven-
tions aimed to prevent liver disease in PLWH. Participants with FIB-4 < 1.45 had higher
relative abundances of butyrate-producing taxa, as well as greater amounts of caffeine and
related metabolites. These findings are relevant to low-income, marginalized populations
of PLWH, who tend to have poor quality diets [24], and increased morbidity and mortality
due to liver disease and other comorbidities [3]. Improving diet quality in vulnerable
PLWH by targeting specific dietary components may help to simplify and personalize
dietary interventions to prevent the development or progression of liver disease.

Few studies have examined diet quality of PLWH in the U.S. using the HEI. Our study
is novel in that we assessed diet quality in a sample of low-income, racial/ethnic-minority
PLWH by utilizing multiple 24-hour recalls collected over 18 months to calculate HEI
scores. Weiss et al. investigated diet quality in PLWH using the HEI and reported poorer
diet quality in PLWH compared to HIV-negative participants including significantly lower
seafood, plant protein, and beneficial fatty acid consumption [24]. Our study concurs with
Weiss et al. in that our sample of underserved PLWH had poorer diet quality compared to
the general U.S. population [40]. However, our sample of low-income PLWH had poorer
diet quality, with an average HEI score of 45.7, than those in Weiss et al., which had an
average total HEI score of 51.3 [24]. Volpe et al. also used the HEI to assess diet quality in
PLWH [41]; however, the average total HEI score of our sample of vulnerable PLWH was,
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again, much lower (45.7 vs. 61.7) [41]. This could be due to differences in eligibility criteria,
as Volpe et al. excluded obese participants [41].

Fibrosis-4 index score was weakly inversely correlated with intake of dairy. Our
findings in PLWH might be explained by Kratz et al., who showed dairy fat intake was as-
sociated with improved glucose tolerance, hepatic insulin sensitivity, and reduced liver fat
in a sample of adults living without HIV [18]. The potential hepatoprotective role of dairy
consumption may be due to specific components of dairy, such as the trans-palmitoleate
present in dairy fat described by Kratz et al. [18]. Our study also found an inverse correla-
tion between FIB-4 score and seafood and plant protein intake. If confirmed, it could be
recommended that PLWH consume more dairy products and replace processed red meat
with seafood and plant protein, being that excessive saturated fat and red/processed meat
intake have been associated with liver disease [15]. Research into federal programs and
policy should be considered to understand the feasibility of these recommendations for
underserved and vulnerable populations.

This study did not find any relationships between total HEI score and FIB-4 score.
This could be due to the small sample size of the study and unequal distribution of
participants with and without FIB-4 ≥ 1.45 (n = 14 vs. n = 36, respectively), making
it difficult to detect differences in total HEI score, which is comprised of 13 different
HEI component scores. Additionally, the MASH cohort, the source of the recruited
participants, is composed mainly of low-income, racial/ethnic-minority adults that
suffer high rates of substance use and food insecurity [42]. This may have contributed to
the low total HEI scores seen in both participants with and without FIB-4 ≥ 1.45. These
findings are in agreement with Weiss et al., who also did not find statistically significant
differences in total HEI score, but instead found significant differences in multiple HEI
component scores [24].

Participants with FIB-4 < 1.45 had higher relative abundances of beneficial, butyrate-
producing taxa Ruminococcaceae, Roseburia, and Lachnospiraceae. Butyrate, a short-chain
fatty acid (SCFA), is an energy source for enterocytes and helps to maintain gut barrier
function [43]. Potentially due to their role in the maintenance of gut barrier integrity, SCFA
have been shown to have a hepatoprotective effect [44]. Previous studies have reported
significant decreases in these taxa in cirrhotic patients [45]. Liu et al. found these taxa to be
associated with dietary quality using the HEI [46]. Furthermore, LPS, a marker of bacterial
translocation that is known to upregulate inflammatory cells in the liver via the gut–liver
axis [4], has been reported to be negatively associated with these taxa [45]. Taken together,
these findings indicate that beneficial microbiota, such as those that produce butyrate
and other SCFA, may be important in maintaining gut barrier integrity and preventing
translocation of pathogenic microbial products to the liver via the gut–liver axis, which
may prevent or attenuate liver fibrosis in PLWH [20].

We reported higher relative abundances of Firmicutes in participants with FIB-4 < 1.45,
which concurs with the gut microbiome metagenomic signature reported by Loomba et al.,
which distinguished mild/moderate liver fibrosis from advanced fibrosis [11]. How-
ever, this study focused on PLWH and considered dietary quality which differs from
Loomba et al. [11]. On the other hand, in participants with FIB-4 ≥ 1.45, we found higher
relative abundances of the Bacteroidetes phylum and Bacteroidales order. Bacteroidales
have been associated with alcoholic liver disease in mice [47]. The Bacteroidetes phylum,
however, has been reported previously to be less abundant in NAFLD [22] and cirrho-
sis [10], but enriched in nonalcoholic steatohepatitis (NASH) [23]. This suggests that
different stages of liver disease may present with important differences in gut micro-
biome composition. Despite finding higher relative abundances of butyrate-producing
bacterial taxa in participants with FIB-4 < 1.45 and some potentially pathogenic bacterial
taxa in those with FIB-4 ≥ 1.45, we did not find significant differences in the variance of
metagenomics between participants with and without FIB-4 ≥ 1.45. This could be due to
the small sample size, unequal distribution of participants with and without FIB-4 ≥ 1.45,
and use of a non-direct estimation of liver fibrosis that classified participants as either
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FIB-4 < 1.45 (advanced liver fibrosis/cirrhosis likely excluded) or FIB-4 ≥ 1.45 (unable
to exclude advanced liver fibrosis/cirrhosis). Given that previous studies have reported
differences in microbial composition by liver fibrosis severity [11,12], this could have
contributed to the lack of variance in metagenomics seen. Also worth noting is the
possibility of ART interruption influencing liver health due to an increase in HIV viral
load [48,49]. We did find that participants with FIB-4 ≥ 1.45 had a lower mean CD4 cell
count, but there were no significant differences in the proportions of participants who
were virally suppressed or the mean number of missed ART doses in the previous two
weeks in participants with and without FIB-4 ≥ 1.45.

In this study, caffeine and related metabolites trigonelline and 1-methylurate were
found in greater amounts in participants with FIB-4 < 1.45. Caffeine is most commonly
consumed in coffee, and a recent study reported that coffee consumption significantly
lowers the risk of NAFLD and hepatocellular carcinoma, potentially due to active chemical
compounds present in coffee such as caffeine [19]. Caffeine has been reported to be anti-
inflammatory in nature and has demonstrated immunomodulatory effects that occur in
amounts relevant to normal human consumption [50]. The results of this study indicate that
caffeine may be partly responsible for the health benefits of regular coffee consumption.

Participants with FIB-4 ≥ 1.45 had higher levels of 3-methylhistidine, a metabolite
that has been associated with obesity and type II diabetes [51]. A FIB-4 ≥ 1.45 was also
correlated with several microbial metabolites related to lipid pathways, including pregnen-
diol disulfate, 9,10-diHOME, and octadecanedioylcarnitine. Alterations in lipid metabolism
have been described in NAFLD, alcoholic liver disease, cirrhosis, and viral hepatitis [52].
Further research is needed to define the role these metabolites may have in liver disease
development and progression.

5. Conclusions

We present the first study aimed at exploring associations between diet quality,
the fecal microbiome, the metabolome, and liver health in a sample of low-income,
underserved, racial/ethnic-minority, vulnerable PLWH. Strengths of this study include
the use of a multi-omics approach, validated measure of diet quality, and recruitment of
participants from the MASH cohort which allowed for utilization of multiple 24-h recalls
collected over 18 months, leading to a more comprehensive assessment of diet quality.
However, the limitations of this study should be noted. Namely, the small sample
size, the unequal distribution of participants with and without FIB-4 ≥ 1.45, the cross-
sectional design, which does not allow for temporality or causality to be established,
and the use of the FIB-4, an indirect measure of liver fibrosis. Additionally, lack of a
control group consisting of participants without HIV precluded the ability to explore
the relationship of HIV itself with the variables of interest. Nevertheless, our findings
provide preliminary evidence that specific dietary components, such as dairy, caffeine,
seafood, and plant protein may be associated with liver health by way of the microbiome
and metabolome, and if confirmed, may potentially be targeted in dietary interventions
aimed to reduce liver-related morbidity and mortality in underserved and vulnerable
PLWH. Future randomized controlled trials that incorporate multi-omics approaches
are needed to fully understand the relationships between diet quality, the intestinal
microbiome, the metabolome, and liver fibrosis in PLWH.
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Appendix A

Table A1. Permutational multivariate analysis of variance (PERMANOVA) metagenomics analysis
(UniFrac similarity).

d.f. Sum of Squares Mean Square F R2 p-Value

FIB-4 ≥ 1.45 1 1 0.3375 0.3375 0.9446 0.0192 0.671

Table A1 displays the results of the PERMANOVA analysis. The variance in metagenomics between participants
with and without FIB-4 ≥ 1.45 was not significantly different. 1 FIB-4 score ≥ 1.45 was defined as “unable to
exclude advanced liver fibrosis/cirrhosis”. Abbreviation: FIB-4, Fibrosis-4 Index; PERMANOVA, permutational
multivariate analysis of variance.
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Figure A1. Volcano plots to identify microbial metabolites that significantly differed between
participants with and without FIB-4 ≥ 1.45. Figure A1 displays the volcano plots that were used to
determine statistically significant metabolites that had an absolute difference in means (dm) >0.5
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between those with and without FIB-4 ≥ 1.45. The X-axis shows the difference in means of the
concentrations of the metabolites after the variance-stabilizing normalization, while the Y-axis shows
a negative log of p-value determined by Wilcoxon rank-sum tests without false discovery rate
(left plot) and with Benjamini–Hochberg p-value correction (right plot). Blue points (upper right)
show metabolites that have significantly higher concentrations in the cohort with FIB-4 ≥ 1.45
(dm > 0.5, p-value < 0.05), while green points (upper left) show metabolites that have significantly
higher concentrations in the group with FIB-4 < 1.45 (dm < −0.05, p-value < 0.05). The two vertical
dotted lines represent the two thresholds showing dm >0.5, while the dotted horizontal line represents
a p-value threshold of 0.05 (i.e., negative log p-value of 1.3). FIB-4 score ≥ 1.45 was defined as “unable
to exclude advanced liver fibrosis/cirrhosis”. Abbreviation: FIB-4, Fibrosis-4 Index.
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