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Abstract: Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts
immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional
interactions between microbial tryptophan processing and the host. We focused on how the gut
microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways.
Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to
disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer.
These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication.
Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic
approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further
research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics
and treatments for improving human health.
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1. Introduction

Tryptophan is an indispensable and essential amino acid that plays critical physiologi-
cal roles as a substrate for protein synthesis and its catabolism is an important microen-
vironmental factor that is involvedin cancer immune cell responses [1–3]. Tryptophan
(Trp) is metabolized via three major pathways: more than 90% of dietary tryptophan is
metabolized through the kynurenine pathway, which generates several active metabo-
lites such as kynurenine (Kyn), kynurenic acid (Kna), 3-hydroxykynurenine (3-OHKyn),
3-hydroxyanthranilic acid (3HAA), and quinolinic acid [4]. This pathway is induced by
proinflammatory stimuli and regulated by indoleamine 2,3-dioxygenase (IDO) and tryp-
tophan 2,3-dioxygenase (TDO) enzymes [5,6]. Dysregulation of the kynurenine pathway
has been implicated in cancer, neurodegenerative disorders, and psychiatric diseases [7].
Approximately 5% of dietary tryptophan is metabolized through the indole pathwayby the
gut microbiota into various indole derivatives, including indole, indole-3-acetic acid (IAA),
indole-3-propionic acid (IPA), and others; it primarily occurs in the gut microbiota [8]. The
remaining tryptophan is used to synthesize serotonin and melatonin via the serotonin
pathway in the gut and brain [9] (Figure 1).

In the past decade, the gut microbiota has emerged as a key regulator of tryptophan
metabolism. The colon is home to the densest and most metabolically active community,
which comprises more than 1013 individual microbial cells [10] and expresses diverse
enzymatic activities capable of utilizing tryptophan [11]. Germ-free mice display increased
tryptophan levels along with reduced serotonin, indicating the microbial regulation over
host tryptophan metabolism [12]. Certain bacterial species like Clostridium sporogenes
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and Ruminococcusgnavus have been associated with increased tryptophan catabolism and
production of indole metabolites [13]. Conversely, restoringtryptophan levels has been
shown to result in the expansion of Lactobacillus, which further led to the conversion
oftryptophan into intermediate indole-3-lactic acid (ILA) [14,15].
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Figure 1. The three major pathways of tryptophan metabolism. IDO: indoleamine 2,3-dioxygenase,
TDO: tryptophan 2,3-dioxygenase, TPH: tryptophan hydroxylase, NAD: nicotinamide adenine
dinucleotide, TMO: tryptophan 2-Monooxygenase, TrD: tryptophan Decarboxylase, ArAT: aromatic
amino acid aminotransferase, TNA: tryptophanase.

There is accumulating evidence indicating a bidirectional regulatory axis between
microbial tryptophan metabolism and the host immune–intestinal system [16]. Alter-
ations along this axis have been associated with cancer, inflammatory bowel disease (IBD),
obesity and type 2 diabetes (T2D), chronic kidney disease (CKD), and autism spectrum
disorder (ASD) [12,17–19]. Elucidating the mechanisms of microbial tryptophan modula-
tion could lead to novel therapeutic approaches such as psychobiotics and microbiome-
targeted dietary interventions. This review summarized current literature on the integrated
microbiota-tryptophan metabolic axis in health and disease, mechanisms of cross-talk, and
implications for human health and medicine.

2. Tryptophan-Microbiota Interactions in the Healthy State
2.1. Bacterial Species Associated with Tryptophan Metabolism and Metabolite Production

The gut microbiota regulates tryptophan metabolism through microbial enzyme pro-
duction and conversion into bioactive metabolites [11]. The comparison of conventional
mice and germ-free mice showed increased tryptophan availability and reduced kynurenine
and serotonin pathway metabolites, indicating microbial catabolism of tryptophan [20–23].
While the majority of ingested proteins are typically digested and absorbed in the small
intestine, it is worth notingthat depending on dietary protein intake, a substantial quantity
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of proteins and amino acids may transit to the colon [24] where they undergo degrada-
tion by a diverse community of commensal bacteria. Specifically, bacterial catabolism of
proteins is more pronounced in response to higher dietary protein intake, a reduction in
carbohydrate availability within the colon, elevated colonic pH, and an extended transit
time through the colon [25–27]. This shift towards bacterial proteolytic fermentation is
a consequence of the gradual depletion of carbohydrate substrates from the proximal to
the distal colon [28]. As a result, the concentration of phenolic compounds, generated
through the degradation of aromatic amino acids, is notably more than fourfold higher
in the distal colon when compared to the proximal colon [26]. It is important to note that
bacterial specialists in proteolysis exhibit lower growth potential compared to generalists
and specialists in saccharolysis/lipolysis. This suggests that proteolytic specialists are
favored when ecological pressures for rapid bacterial growth are reduced [29]. Nonetheless,
it is worth mentioning that the conversion of tryptophan into indole and its derivatives is
not exclusive to proteolytic specialists or limited to the distal colon. For example, certain
bacterial species such as Lactobacilli have been shown to catabolize tryptophan in the stom-
ach and ileum of mice [30]. Numerous bacterial species have been documented to possess
the capability to metabolize tryptophan into indole and related derivatives (Table 1).

Table 1. Microbiota-derived tryptophan metabolites and gut microbiota (↑ represents an increase,
↓ represents a decrease).

Tryptophan
Metabolism Producers Diet

Influence
Impact on

Metabolism Impact on Microbes Reference

Indole

Bacteroides thetaiotaomicron

High-fat diet Indole
Production↓

Bacteroides spp.↓
Escheichia coli↑
Clostridium↓

[11,31,32]

Bacteroides ovatus
Clostridium limosum

Clostridium bifermentans
Clostridium malenomenatum
Clostridium lentoputrescens

Clostridium tetani
Clostridium tetanomorphum

Enterococcus faecalis
Escheichia coli

Fusobacterium nucleatum
Haemophilus influenza

Proteus vulgaris
Paracolobactrumcoliforme

Salmonella enterica
. . .for more see [33]

Indole-3-acetic acid
(IAA)

Bacteroides thetaiotaomicron

High-fat diet IAA
Production↓

Bifidobacterium spp.↓
Bacteroides↓

Bifidobacterium
adolescentis↓

[31,34–38]

Bacteroides ovatus
Bacteroides fragilis

Bifidobacterium adolescentis
Bifidobacterium pseudolongum

Clostridium difficile
Clostridium lituseburense

High-fiber diet IAA
Production↑

Bifidobacteriumadolescentis↑
Clostridium difficile↓

Clostridium sporogenes
Escherichia coli

Eubacterium hallii
Eubacterium cylindroides

. . .for more see [39]

Indole-3-acrylic
acid (IA)

Clostridium sporogenes

High-fiber diet IA
production ↑ Parabacteroides distasonis↑ [40,41]

Peptostreptococcusrussellii
Peptostreptococcusanaerobius
Peptostreptococcusstomatis
Parabacteroides distasonis

. . .for more see [42]

Indole-3-propionic
acid (IPA)

Clostridium sporogenes High-fat diet IPA
Production↓ Clostridiumsporogenes↓

[43–50]

Clostridium caloritolerans
Clostridium botulinum

High-fiber diet IPA
Production↑

Clostridium↑
Bifidobacterium↑

Lactobacillus↑
Peptostreptococcus↑

Peptostreptococcusasaccharolyticus
Peptostreptococcusrussellii

PeptostreptococcusanaerobiusCC14N
Peptostreptococcusstomatis Ketogenic diet IPA

Production↓ Lactobacillus murinus ↓. . .for more see [51]
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Table 1. Cont.

Tryptophan
Metabolism Producers Diet

Influence
Impact on

Metabolism Impact on Microbes Reference

Indole-3-lactic acid
(ILA)

Anaerostipeshadrus

High-fat diet ILA
Production↓

Eubacterium↓
Eubacterium rectale↓
Anaerostipescaccae↓

Bifidobacterium
adolescentis↓

[37,52]

Anaerostipescaccae
Bacteroides thetaiotaomicron

Bacteroides eggerthii
Bacteroides ovatus

Bifidobacterium adolescentis
Bifidobacterium bifidum

Bifidobacterium pseudolongum
Clostridium bartlettii

Clostridium sporogenes
Escherichia coli

High-fiber diet ILA
Production↑

Lactobacillus↑
Megamonas↑

Eubacterium rectale
Eubacterium cylindroides

Faecalibacteriumprausnitzii
Lactobacillus murinus
Lactobacillus paracasei
Lactobacillus reuteri

Megamonas hypermegale
. . . for more see [53]

Indole-3-
aldehyde(IAld)

Lactobacillus johnsonii

High-fiber diet IAId
Production↑ Lactobacillus↑ [54]

Lactobacillusreuteri
Lactobacillusacidophilus
Lactobacillusgallinarum

. . . for more see [30]

Indole-3-
acetaldehyde

(IAAld)
Escherichia coli / / / [55]

Tryptamine

Firmicutes C. sporogenes

High-fat diet Tryptamine↓ Bacteroides↓
Escheichia coli↑ [52,56]

Clostridium sporogenes
Escherichia. coli

Ruminococcusgnavus
Bacteroides

3-methylindole
(skatole)

Bacteroides thetaiotaomicron

High-fat diet complex
manner / [57,58]

Butyrivibriofibrisolvens
Clostridium bartlettii

Clostridium drakei
Eubacterium rectale

Megamonas hypermegale
Parabacteroides distasonis

. . . for more see [57]

Indoleamine 2,3 dioxygenase 1 (IDO1) is one of the immune checkpoint blockade
genes and is highly expressed in many types of tumor cells; it is the most well studied of the
enzymes that initiate tryptophan’s catabolism into kynurenine (Kyn) [59,60]. Tryptophan
(Trp) metabolism commits to assisting cancer cells to evade immune surveillance [61,62].
Trp depletion inhibits T cells through the activation of general control non-derepressible
protein 2 (GCN2) and down-regulation of the mTORC1 complex [63,64]. In addition, the
overexpression of IDO and the accumulation of Kyn in tumor tissue can activate regulatory
T (Treg) cells, therefore suppressing the functions of effector T (Teff) cells and natural killer
(NK) cells and promoting angiogenesis of the tumor [62,65–68]. There are many studies that
have shown reduced Trp levels and increased Kyn pathway metabolites in CRC patients,
indicating increased IDO1 activity [69–71]. In addition, Trp metabolism by intestinal
microbes may have a role in maintaining immune system stability within the body [72].
Recent research confirmed that intestinal microbes can convert tryptophan into indole and
related derivatives. For instance, microbes altered the relative abundance of tryptophan
metabolites including indole-3-acetic acid (IAA) and indole-3-acetaldehyde (IAAId) in cecal
contents [73,74], which serve as endogenous ligands of the aryl hydrocarbon receptor (AhR).
Furthermore, AhR activation promotes the maintenance of ILC3 cells that strengthen the
integrity of intestinal mucosa by secreting IL-22 which enhances epithelial barrier function
and reduces the number of Treg cells [75]. Thus, the regulation of tryptophan metabolism
by intestinal microbes is crucial for host immunity.

Specific bacterial strains have been associated with increased tryptophan catabolism
and production of bioactive metabolites. For instance, Clostridium sporogenes and Ruminococ-
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cusgnavus possess tryptophanase and generate indole derivatives such as indole-3-acetic
acid (IAA) [13,76]. Bacteroides thetaiotaomicron generates indole-3-propionic acid (IPA),
which can modulate gut barrier function [77]. Lactobacillus spp. can indirectly promote
colonic serotonin synthesis by increasing TPH1 expression [78–80]. These microbial trypto-
phan metabolites serve important functions in maintaining intestinal homeostasis. Indole
increases the expression of tight junction proteins and mucins to enhance epithelial in-
tegrity [81]. IPA promotes intestinal homeostasis by regulating transcript and protein levels
of AhR target genes and suppressing cytokine production [82].

2.2. Influence of Diet on the Microbiota-Ryptophan Axis

Numerous studies have established associations between specific dietary patterns and
the risk of cancer in humans [83–86]. Consumption of diets characterized by high fiber content,
abundant fruits, yogurt, whole grains, extra virgin olive oil, vegetables, and limited intake of
animal products has been consistently linked to a reduced risk of cancer [87–90]. Conversely,
a higher risk of cancer has been associated with the consumption of highly processed foods,
for instance, diets rich in animal fats and red meat and lower in dietary fiber intake [91,92].
Additionally, dysbiosis in the gut microbiome, as a consequence of a Western dietary pattern,
has been correlated with colorectal cancer [93]. Diet plays a central role in shaping the
composition of the microbiome, impacting various microbial communities responsible for
maintaining physiological homeostasis, modulating immune responses, and facilitating the
breakdown of complex polysaccharides [94–96]. Therefore, it is important to explore the
intricate connections between diet, the microbiome, and cancer. Recent evidence indicates that
diet has an apparent effect on both the composition of the intestinal microbes and tryptophan
metabolism. High-fat diets have been associated with decreased production of indole and
increased levels of kynurenine metabolites by certain bacterial species [97]. Compared to the
high-protein-low-fiber diet, the high-fiber-low-protein diet favored the microbial production
of indole-3-acetic acid, indole-3-lactic acid, indole-3-aldehyde, and indole-3-propionic acid in
both proximal colon and distal colon compartments of the Simulator of the Human Intestinal
Microbial Ecosystem (SHIME) [54]. The SHIME is a unique gut model that simulates the
entire gastrointestinal tract, including the stomach, small intestine, and various regions of the
colon. It is the only in vitro model that combines the entire gastrointestinal transit into one
system. Unlike the Reading model [27], the SHIME utilizes peristaltic pumps to connect the
different compartments [98]. In addition, skatole (3-methylindole) is a product of bacterial
fermentation of tryptophan in the intestine, and its metabolite indole-3-carbinole (I3C) protects
wild type mice against intestinal cancer development and reduces hepatic steatosis in mice fed
a high-fat diet [99]. In summary, diet powerfully influences the microbiota-tryptophan axis by
modulating the composition and metabolic output of the gut microbiome. Further research
is elucidating how specific dietary components shape microbial tryptophan processing and
production of bioactive catabolites relevant to health and disease.

2.3. Effects of Probiotics and Prebiotics on Tryptophan Metabolism

Supplementation with Lactobacillus and Bifidobacterium probiotics has been demonstrated
to boost plasma tryptophan levels, increase serotonin production, and modify tryptophan
catabolism in animal models. Specific probiotic strains can reduce inflammation-induced
IDO expression, thus preserving tryptophan levels and enhancing its availability [100]. More-
over, specific probiotics and prebiotics have demonstrated beneficial effects on tryptophan
metabolism through the kynurenine pathway. For instance, administering Bifidobacterium
infantisto germ-free mice was able to elevate the Kna levels with no effect on the Kyn con-
centration and therefore normalized the kynurenine-to-tryptophan ratio in these mice [101].
Prebiotic fructo-oligosaccharides increased the relative abundance of Lactobacillus and Bifi-
dobacterium and tryptophan levels in the human intestinal tract [102]. Clinical studies have
shown that combining probiotics like Lactobacillus rhamnosusGG with prebiotics further ele-
vates plasma tryptophan levels compared to each intervention alone [103]. This synergistic
effect may be attributed to enhanced growth of tryptophan-producing bacteria [104].
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These findings highlight how gut microbes and substrates modulate host tryptophan
metabolism. Probiotic bacteria and prebiotic fibers can collectively influence tryptophan avail-
ability, catabolism, and the production of bioactive metabolites by promoting the growth and
metabolic activities of beneficial gut microbiota. Therefore, understanding the specific mecha-
nisms behind microbial tryptophan utilization and metabolite production is essential for gaining
deeper insights into this bidirectional interaction crucial for intestinal health.

3. Dysregulation of Gut Microbiota in Disease States
3.1. Evidence for Dysbiosis Disrupting the Axis in Cancer, IBD, Mood Disorders, and ASD

It is widely accepted that the dysbiosis of gut microbiota has been associated with
disruptions in tryptophan metabolism along the kynurenine and serotonin pathways,
contributing to the pathogenesis of several diseases.

Tryptophan can be degraded to generate kynurenine metabolites. The increased expres-
sion of indoleamine enzymes IDO/TDO associated with cancer drives tryptophan degrada-
tion, resulting in the formation of N-formylkynurenine. This compound is then hydrolyzed
by kynurenine formamidase to produce kynurenine. Kynurenine can subsequently follow
two pathways: either forming kynurenic acid or undergoing a cascade of enzymatic reactions
to yield NAD+ [105–107]. Previous studies have found that one or more of these enzymes
were increased in tumors of the pancreas, breast, and brain [108–110]. Previousstudies have
demonstrated thattumor-produced kynurenine suppresses cancer immune surveillance. Kyn
produced by tumor cells can be exported into the tumor microenvironment, causing T cell
inactivation and preventing tumor cell clearance. Kyn can also act as an endogenous ligand
for theAhR transcription factor, indicating a cell-autonomous role [111–113]. It is believed
that AhR activation by tumor-derived Kyn triggers a gene expression program that leads
to paracrine immune cell suppression [111]. Additionally, this AhR activation promotes
cancer cell proliferation and migration in a cell-autonomous way [114]. Previous studies have
shown that the expression of AhR is increased in many cancers, for instance, stomach, liver,
prostate, head and neck, breast, brain, and skin cancers [111,115–120]. This would suggest
thatregulating the expression of AhR plays an important role in tumor aggression.

Colorectal cancer (CRC) is one of the main factors contributing to morbidity and
mortality, comprising nearly 12% of all annually diagnosed cancers and cancer-related
deaths worldwide [121]. In CRC patients, a depletion of tryptophan metabolism by gut
microbes such as Fusobacteria, Enterobacteriaceae, and Clostridia coincides with shunting
of tryptophan catabolism toward pro-tumorigenic kynurenine metabolites rather than
serotonin synthesis [122]. Recent evidence has demonstrated that Lactobacillus gallinarum
and its derived ICA could improve anti-PD1 efficacy in CRC by associating with the
inhibition of the IDO1/Kyn metabolic circuit as well as the antagonism of Kyn binding to
AhR receptors on T cells to inhibit Treg differentiation [123–125].

Inflammatory bowel diseases (IBDs) including Crohn’s disease and ulcerative colitis,
reveal the significantly differentmetabolic level of Trpbetween healthy individuals and
patients. These patients have lower levels of Trp in the serum and feces than healthy
subjects [126,127]. Inflammatory bowel disease (IBD) patients exhibit lower concentrations
of the AhRagonist IAA in their feces [127]. Interestingly, previous studies have reported an
elevated presence of Kyn or higher Kyn/Trp ratios in IBD patients, indicating enhanced
tryptophan metabolism through the Kyn pathway during active IBD [128].Additionally,
there is an enrichment of Th17 cells and a reduction in Treg cells which can produce anti-
inflammatory IL-4 and IL-10, attributed to the interaction of indole metabolites and kynure-
nine with the AhR on immune cells [77,129]. In general, kynurenine, as an endogenous
ligand of AhR, can induce AhR activation when generated in the tumor microenvironment.
This function is associated with cancer immunosuppression and sustained activation of
AhR, encouraging tumor growth, and affects immune defense [130,131]. However, under
inflammatory conditions, AhR activation decreases cytokine production (including TNF,
IFNγ, IL-7, IL-12, IL-17, and IL-6) in the intestine, defective AhR activationdetrimentally
affects intestinal homeostasis [132]. Appropriate levels of AhR activation are required to
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maintain intestinal homeostasis. Decreased levels of indole derivatives like IAld can impair
intestinal epithelial integrity by inhibiting AhR [30].

In obesity, the relationship between obesity and gut microbiota is a two-way street.
Recent studies indicate that the ratio of Firmicutes-to-Bacteroidetes is not a significant factor in
human obesity [133]. It is rather important to focus on distinct bacteria which are associated
with obesity such as the family Christensenellaceae and the genera Akkermansia, Bifidobacteria,
Methanobacteriales, and Lactobacillus [134]. The levels of bacterially generated tryptophan
metabolites, including indoles, IPA, and indole sulfuric acid (ISA), are diminished in the
blood samples of individuals with type 2 diabetes when compared to lean controls. Elevated
serum concentrations of IPA have also been linked to a decreased prevalence of T2D [134].
Several indole derivatives resulting from the gut microbiota’s conversion of tryptophan play
a role in the development of metabolic syndrome. For instance, IAA-induced IL-35+ Breg
cells have the potential to influence obesity induced by a high-fat diet [135]. Targeting
microbial tryptophan catabolism may support weight management efforts.

Autism spectrum disorder (ASD) has been associated with both microbial depletion
of tryptophan via the kynurenine pathway and decreased production of serotonin by select
bacteria in the gut [136]. These alterations may relate to pathological changes in behavior
and social function. Modulating the gut microbiota through dietary interventions has
yielded some improvements in behavioral symptoms in autistic children [137]. Optimizing
microbial tryptophan metabolism may support microbiota-gut-brain axis communication
and ameliorate autism severity.

In depression and anxiety disorders, previous studies have reported a shift in the
composition of gut microbes with the capacity to synthesize serotonin and engage with
the gut–brain axis. Reduced levels of Lactobacillus and Bifidobacterium spp., coupled with
an elevated relative abundance of Alistipes and Ruminococcusgenera, exhibit associations
with alterations in tryptophan metabolites along the kynurenine pathway among affected
patients [138]. Interventions restoring beneficial serotonin-producing bacteria may hold
promise for mood disorders.

3.2. Potential Mechanisms of Tryptophan Modulation by Specific Microbes

Gut microbes may modulate tryptophan and its downstream metabolites through
several mechanisms. Tryptophancan be transaminated into indole-3-pyruvic acid via an
unstable intermediate by the action of tryptophan aminotransferase [139]. In addition to
formation from the kynurenine pathway, kynurenic acid can also be formed from indole-3-
pyruvic acid via the unstable kynurenic acid intermediate generated with participation of
reactive oxygen species (ROS) [140]. In addition, microbiota can stimulate TPH1 activity
by its metabolites (e.g., butyrate), directly influencing serotonin and probably melatonin
synthesis [141]. The gut microbes play a significant role in tryptophan metabolism, special-
izing in production of indoles [11]. They metabolize Trp into indole by tryptophanase, into
tryptamine by decarboxylase (ALAAD), and into indole-3-pyruvic acid by Trp aminotrans-
ferase. The gut microbes amplify the variety of tryptophan catabolites through oxidative
and reductive pathways generating various indole derivatives. IPYAcan be converted into
other indole derivatives such as ILA, IA, IPA, and also into IAAId, which can then be
further processed into indole-3-acetic acid (IAA) and IAld [17]. These compounds are pro-
duced by gut microbiota and can be detected in the circulation, feces, and urine [142–144].
When absorbed into the circulation, indole can also be transformed into indoxyl sulfate,
which has been linked to chronic kidney diseases and cardiovascular issues [145]. However,
other indole derivatives such as ILA, IAA, IPA, and IAld play important roles in main-
taining intestinal homeostasis, promoting barrier integrity, stimulating epithelial renewal,
and regulating mucosal immune responses [30,81,146,147]. Indole is a potent ligand for
AhR [148] and is the main bacterial metabolite of tryptophan. It has been shown to have
various protective effects in the gastrointestinal tract. These include regulating bacterial
motility, promoting antibiotic resistance, inhibiting invasion of host cells by virulent bacte-
ria, ameliorating intestinal inflammation, suppressing the production of proinflammatory
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chemokines, and increasing the production of anti-inflammatory cytokines [149]. To sum
up, indole derivatives are also endogenous ligands of AhR, including tryptamine, skatole,
IA, IAA, ILA, IAld, IAAld, and IPA [30,150–154].

Bacterial genes not only metabolize tryptophan-derived metabolites but also provide
substrates that can fuel critical host metabolic pathways, such as short-chain fatty acids
(SCFAs) [155]. Propionate, butyrate, and acetate make up the specific SCFAs. In addition,
the role of SCFAs in protecting against gut inflammation and regulating colonic Treg
homeostasis has been well demonstrated [156,157]. For instance, SCFAs decrease STAT1
expression leading to the inhibition of the IFNγ dependent and STAT1-driven transcription
of IDO1. In addition, butyrate impairs IDO1 transcription through a second mechanism in
a STAT1-independent manner, which may be attributed to its histone deacetylase (HDAC)
inhibitory properties [155]. Moreover, butyrate is able to down-regulate IDO1 expression in
human intestinal epithelial cells [158]. As we discussed before, the kyn pathway is closely
related to the tumor immune escape mechanisms, with the prerequisite for this process
being that kynurenic acid is synthesized by IDO1.Thus, microbes can directly and indirectly
control tryptophan metabolism through multiple integrated pathways.

3.3. Contribution to Pathogenesis of Immune, Metabolic, and Disease Progression

Dysregulation of tryptophan metabolism contributes to disease progression. Acti-
vation of the kynurenine pathway leads to immunosuppression, facilitating tumor es-
cape [159]. The induction of TDO2 transcription is driven by proinflammatory cytokines
such as IFNγand downstream factors including NF-κB and C/EBPβ [160]. Additionally,
activation of the AhR by kynurenine establishes a positive feedback loop, further stimu-
lating IDO1 expression [161]. IDO1 exhibits significant overexpression and is indicative
of a poor prognosis in numerous malignancies, with a high IDO1 transcript level serving
as a universal adverse prognostic factor in solid tumors. Moreover, heightened IDO1
expression correlates with tumor differentiation, distant metastasis, and an advanced clini-
cal stage [162,163]. Proinflammatory cytokines, such as IFNγ, interleukin-1β (IL1β), and
tumor necrosis factor alpha (TNFα), activate IDO1 expression via the JAK/STAT path-
way [164,165]. Furthermore, similar to TDO2, a high level of IDO1 transcription in cancer
cells is sustained through an AhR-IL6-STAT3-driven positive feedback mechanism [166].
Therefore, dysregulation of tryptophan metabolism can lead to immunosuppression and
activate the kynurenine pathway, further resulting in significant overexpression of IDO1,
which is associated with a poor prognosis in various malignancies. However, the indole
derivativesmetabolized by gut microbiota can regulate the expression of IDO1, which even-
tually affects the immune response. Overall, disrupted microbial tryptophan metabolism
contributes substantially to immune, metabolic, and disease progression.

4. Therapeutic Opportunities
4.1. Targeting the Microbiota-Tryptophan Axis for Disease Treatment and Prevention

The gut microbiota plays a crucial role in regulating tryptophan metabolism and
diverting tryptophan catabolism towards the production of bioactive compounds that
influence immunity, metabolism, neurotransmission, and more. This discovery has indicated
novel therapeutic opportunities to target the dysregulated microbiota-tryptophan axis for the
prevention or treatment of diverse conditions like cancer, inflammatory bowel disease, mood
and cognitive disorders, and neurodevelopmental illnesses [22,58,150,167]. Administering
certain indole derivatives in animal models has been shown to have positive effects. For
instance, IAA administration resulted in ameliorative colitis symptoms [32]. Administration
of IAld has anti-inflammatory effects in treating DSS-induced colitis and improving intestinal
inflammation caused by bacterial infections [30]. Additionally, it has been found to increase
the production of IL-22, further suppressing inflammatory responses [168]. Moreover, the
significant effectiveness of indole-3-acetate (I3A) in reducing steatosis and inflammation
in mice models highlights its potential as a safe treatment option for non-alcoholic fatty
liver disease (NAFLD) [169]. Administration of IPA has been shown to significantly induce
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expressionof IL-10 receptor protein 1 in cultured intestinal epithelial T84 cells, which further
supports the role of IPA in the maintenance of intestinal immunity [82].

A reduction in IFN-γ production during immune activation and a significant increase
in plasma tryptophan levels following chronic administration of Bifidobacteria were ob-
served in the rat experiment [101]. In addition, previous research showed that serotonin
can be produced by Lactobacillus plantarum in arginine decarboxylase broth (ADB) [170].
Lactobacillus rhamnosus GG has been reported to promote butyrate production, ultimately
stimulating TPH1 activity by butyrate and regulating serotonin synthesis [141,171]. In
addition, Lactobacillus amylovorus and Lactobacillus plantarum PS128 have been reported
to regulate serotonin synthesis as well [79,80]. These probiotics counteract inflammation-
induced tryptophan depletion, suggesting therapeutic utility in depression, anxiety, and
other disorders associated with dysregulated tryptophan metabolism [100]. Prebiotic fibers
like galacto-oligosaccharides that stimulate indigenous Lactobacillus and Bifidobacterium
growth increased SCFAs levels in clinical studies [172], which are the substrates that can
mediate tryptophan metabolism in the host. Fecal microbiota transfer from healthy donors
modulatedtryptophan and serotonin levels, which indicates microbiota transplantation
as another modulatory strategy [78,173]. Potential strategies aim to favorably restructure
the gut microbial community and functional capacity to rectify imbalances in tryptophan
metabolism through probiotics, prebiotics, fecal microbiota transplantation, and combi-
natorial therapies. Ongoing investigations aim to identify the most promising probiotic
strains, efficacious prebiotics, and optimal microbiota compositional and functional profiles
to beneficially impact the microbiota-tryptophan axis across diverse disease contexts.

4.2. Combination with Immunotherapies and IDO Inhibitors

Since tryptophan metabolism regulates immune cell responses, modulating the
microbiota-tryptophan axis may provide synergistic benefits when combined with cancer
immunotherapies. Previous research has revealed that an abundance of gut-resident Lac-
tobacillus correlates with IDO1 activity and Th17 cells. Supplementation of SIV-infected
macaques with Lactobacillus spp. can reduce IDO1 activity and may have the capacity to
mitigate the loss of gut barrier-promoting human Th17 cells [174]. Bacterial populations,
specifically Bifidobacterium longum, Collinsellaaerofaciens, and Enterococcus faecium, exhibit
increased prevalence among individuals who respond favorably to treatment. Conversely,
the effectiveness of immune checkpoint blockade therapies is attenuated in the presence
of antibiotic administration [175–177], which indicates that the combination of certain gut
microbes and IDO inhibitors could be a promising treatment. While most current research is
focused on the synergistic effects of microbiota and PD-L1 inhibitors, there remains limited
literature regarding the concurrent use of IDO1 inhibitors. In fact, IDO inhibitors have led
to disappointing results in clinical trials, including epacadostat (INCB024360), BMS-986205,
indoximod, navoximod, KHK2455, LY3381916, MK-7162, and NLG802. Notably, clinical
trials combining IDO1 inhibitors with other immunotherapies such as PD1 and PD-L1 im-
mune checkpoint inhibitors may be a promising method [178]. However, the combination
of microbiota modulation and IDO1 inhibition holds great promise for enhancing the effi-
cacy of immune checkpoint inhibitors. Such combinatorial therapies highlight the potential
of targeting dysregulated tryptophan catabolism using the gut microbiota to overcome
tumoral immune suppression and improve outcomes across diverse malignancies.

5. Challenges and Limitations of Microbiota-Based Therapies

However, several challenges remain in translating insights from the microbiota-tryptophan
axis into viable therapeutic interventions. There aremany critical questionsthat need to be
addressed, for instance, identifying optimal single or combined bacterial strains and efficacious
doses and timing, understanding inter-individual variability in clinical responses and the impact
of diet, and elucidating causal mechanisms linking gut microbiome structure to tryptophan
processing. Safety, tolerability, long-term effects, production challenges, and regulatory ap-
proval also require further study, particularly for combining microbial therapeutics with small
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molecules. In addition, the temporal sequence and causal relationships between microbiota
alterations and tryptophan pathway disruptions need to be precisely delineated and mapped
across different disease settings and populations. Despite current limitations, therapeutically
manipulating the gut microbiota and tryptophan metabolism holds remarkable promise for
modulating immunity, metabolism, neurotransmission, and more.

6. Summary

In conclusion, the gut microbiota plays a pivotal role in regulating tryptophan
metabolism along the kynurenine and serotonin pathways through microbial enzyme produc-
tion and metabolite generation. Preclinical models and human studies support a regulatory
microbiota-tryptophan axis influencing immune function, metabolism, neurotransmission,
and disease states. Diet is another key factor influencing the microbiota-tryptophan axis,
with high-fat diets decreasing beneficial indole-producing bacteria and increasing tryptophan
degradation, while high-fiber diets have the opposite effect. Dysbiosis and disrupted micro-
bial control over tryptophan catabolism contributes to pathogenesis of cancer, IBD, mood
disorders, obesity, ASD, and more. The gut microbiota modulates tryptophan availability
through direct enzymatic activity as well as production of metabolites like short chain fatty
acids that influence host cell tryptophan metabolism (Figure 2). Therapeutic targeting of the
microbiota-tryptophan axis through probiotics, prebiotics, and microbiota transplantation
shows promise but requires further optimization. Overall, a complex bidirectional relation-
ship exists between gut microbes and host tryptophan metabolism, with intricate effects on
physiology and disease. Further research on these interactions may enable novel diagnostics
and therapies that harness the microbiota-tryptophan axis to improve human health.
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Figure 2. The impact of different diets on microbiota structure leads to tryptophan metabolism
abnormalities. A high-fat diet reduces the levels of indole derivatives and inactivates AhR attenuated
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diet can improve the efficacy of immune checkpoint therapy through specific bacterial strains. Such
actions are associated with the IDO1/Kyn metabolic circuit as well as the antagonism of Kyn binding
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