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Abstract: Metabolic activities within the gut microbiome are intimately linked to human health
and disease, especially within the context of environmental exposure and its potential ramifications.
Perturbations within this microbiome, termed “gut microbiome perturbations”, have emerged as
plausible intermediaries in the onset or exacerbation of diseases following environmental chemical
exposures, with fluoride being a compound of particular concern. Despite the well-documented
adverse impacts of excessive fluoride on various human physiological systems—ranging from
skeletal to neurological—the nuanced dynamics between fluoride exposure, the gut microbiome,
and the resulting dose–response relationship remains a scientific enigma. Leveraging the precision
of 16S rRNA high-throughput sequencing, this study meticulously examines the ramifications of
diverse fluoride concentrations on the gut microbiome’s composition and functional capabilities
within Wistar rats. Our findings indicate a profound shift in the intestinal microbial composition
following fluoride exposure, marked by a dose-dependent modulation in the abundance of key genera,
including Pelagibacterium, Bilophila, Turicibacter, and Roseburia. Moreover, discernible alterations
were observed in critical functional and metabolic pathways of the microbiome, such as D-lyxose
ketol-isomerase and DNA polymerase III subunit gamma/tau, underscoring the broad-reaching
implications of fluoride exposure. Intriguingly, correlation analyses elucidated strong associations
between specific bacterial co-abundance groups (CAGs) and these shifted metabolic pathways. In
essence, fluoride exposure not only perturbs the compositional equilibrium of the gut microbiota but
also instigates profound shifts in its metabolic landscape. These intricate alterations may provide a
mechanistic foundation for understanding fluoride’s potential toxicological effects mediated via gut
microbiome modulation.

Keywords: fluoride exposure; gut microbiome; functional pathways; toxicity

1. Introduction

Fluorine is an essential element for the normal growth and development of organisms.
However, excessive exposure can lead to fluorosis [1]. Due to the uneven distribution of
chemical elements on the Earth’s crust, some regions contain excessive fluoride, leading to
endemic fluorosis among the local population primarily manifested as dental and skeletal
fluorosis [2]. Additionally, it negatively affects human reproductive development, the liver
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and kidney, and the endocrine, nervous, and genetic systems [2–4]. Drinking water is the
primary source of fluoride exposure. Over 20 countries worldwide have excessive fluoride
concentrations in their groundwater [5]. In China, more than 70 million people are still at
risk of high fluoride exposure [6].

Several mechanisms have been proposed for fluoride-induced diseases, which include
stress pathways, signaling routes, cell cycle dysregulation, cell apoptosis, and epigenetic
changes [7–9]. Increasing evidence suggests that disturbances in the gut microbiota and
their subsequent effects on metabolism and physiological functions play a significant role
in disease development [10]. Given fluoride’s toxicity, it is crucial to elucidate the impact of
high fluoride exposure on the gut microbiota and its metabolism and functions. Excessive
fluoride intake through drinking water induces an immune response, damages the structure
of the caecum and rectum, inhibits the proliferation of intestinal epithelial cells, restricts
glycoprotein secretion, decreases the distribution of goblet cells and hypertrophic cells, and
alters the diversity and composition of the mouse gut microbiome [11–13]. An imbalance
in the gut microbiota might compromise the integrity of the intestinal barrier and directly
lead to diseases [14].

Studies on the effects of fluoride exposure on the gut microbiota have yielded inconsis-
tent results. Research indicates that exposure to 100 mg/L fluoride increases the diversity
and richness of the gut microbiome in Kunming and ICR mice [11,12]. However, other
studies have found no significant changes in the composition and function of the gut micro-
biota in BALB/c mice exposed to a 4 ppm fluoride dose [7]. Population studies have shown
that children with dental fluorosis in high-fluoride-exposure areas have slightly lower
bacterial diversity and richness compared to normal groups [15]. Most current studies are
mouse-based, although some research has confirmed that rats have a gut microbiota more
similar to humans [16]. Moreover, the majority of studies focus on the effects of fluoride
exposure on microbiota diversity and richness, with fewer investigating the dose–response
relationship between fluoride exposure and the gut microbiota.

Building on preliminary research on the effects of drinking water fluoride on rat gut
microbiota [17], this study aims to analyze the dose–response relationship of fluoride expo-
sure in drinking water to the rat gut microbiota. Initially, 16S rRNA amplicon sequencing
will be employed to observe changes in the gut microbiota and explore dose–response
relationships. Subsequently, predictions on the metagenome’s functions and metabolic
pathways [18] will be made to observe changes in these areas. Lastly, a comprehensive
analysis of the gut microbiota’s composition and function will be conducted to determine
the correlation between the microbial community and its functionality.

2. Materials and Methods
2.1. Animal Experiment

Specific-pathogen-free (SPF) male Wistar rats (4 weeks of age, body weight
127.96 ± 14.01 g) were purchased from Vital River Laboratories (Beijing, China). Rats
were fed with a pelleted rodent diet (Beijing Keao Xieli Feed Co., Ltd., Beijing, China)
and filtered water ad libitum and were maintained in the SPF animal facility of Harbin
Medical University. A total of twenty-five rats were housed under maintained conditions
of a 12:12 h light/dark cycle, constant environmental temperature of 23 ± 3 ◦C, and 40–70%
relative humidity. All experiments were approved by the Ethics Committee of the Endemic
Disease Control Center of Harbin Medical University. After 1 week of acclimation, rats
were randomized into five groups (5 rats/group): control rats received distilled water
alone, and distilled water with 25 mg/L, 50 mg/L, 100 mg/L, and 150 mg/L of NaF was
administered to rats in 4 groups for 12 weeks, respectively. The dosages were chosen based
on previous studies concerning environmental fluoride levels, the toxicities of fluorides,
and the exposure level and duration in rodents (see Section 4). The feces of each rat were
regularly obtained in a sterile tube after animal model realization and stored at −80 ◦C.
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2.2. DNA Extraction and 16S rRNA Gene Sequencing

Total bacterial DNA was extracted from fecal samples using the environmental sample
DNA extraction kit based on the manufacturer’s instructions. Its concentration was moni-
tored on the Qubit PicoGreen fluorescence quantification system (Thermo Fisher Scientific
Inc., Shanghai, China) and purity was detected using 1% agarose gels. The variable region
3 and 4 (V3/V4) of the 16S RNA gene was PCR-amplified and then detected using 2%
agarose gels. The amplifications were purified, quantified, and pooled, and then sequenced
on an Illumina MiSeq sequencer (Genergy Biotechnology, Shanghai, China).

2.3. Sequencing Data Analysis

The raw mate-paired fastq files were merged, quality-filtered, and demultiplexed
to obtain the optimized sequences. USEARCH software verson 11 with UPARSE-OTU
algorithm (http://www.drive5.com/usearch/manual/uparseotu_algo.html (accessed on
5 October 2023)) was applied to cluster the operational taxonomical units (OTUs) with a
threshold of 97% sequence similarity, and the Ribosomal Database Project classifier was
used for taxonomic identification.

2.4. Microbiome Co-Abundance Groups (CAGs)

The abundant genus or species were applied to construct co-abundance groups (CAGs).
The function “cor” was used to calculate their Kendall correlations, which were visualized
with hierarchical Ward clustering with a Spearman correlation distance metric to define
CAGs with function “hcut” in the “factoextra” package. The best number of clusters was
determined according to the number of significance using a pairwise Adonis test among
each group of the Kendall correlation matrix using the “pairwise.adonis” function in the
“pairwiseAdonis” package. The expression levels of CAGs were calculated based on the
sum of relative abundance of the same CAGs.

2.5. Functional Prediction via Tax4fun2 Package

Alterations in the intestinal microbiome do not necessarily signify functional changes [19].
Hence, studying the functional changes resulting from fluoride exposure, rather than
merely the taxonomic composition of the intestinal microbiota, becomes imperative for
understanding its health impacts. We employed the “Tax4fun2” package in R 4.2.3 software
to predict alterations in the functions of the intestinal microbiota [18]. Tax4Fun2, an
upgraded version of the Tax4Fun package, enables rapid functional spectrum predictions
of prokaryotes based on 16S rRNA gene sequences. By integrating user-defined genome
information, it significantly enhances the accuracy and robustness of predictive functional
profiles [18]. Firstly, user-supplied 16S rRNA gene sequences are searched against the
16S rRNA reference sequences via BLAST using the runRefBlast function [18]. 16S rRNA
gene sequences are aligned with reference sequences provided by Tax4Fun2 to identify
closely related sequences. Secondly, functional predictions are subsequently calculated
using the makeFunctionalPrediction function. During this step, the OTUs table supplied
by the user is summarized based on the results of the next-neighbor search. Based on
these search results, the abundance of operational taxonomic units (OTUs) for each sample
is summarized, creating an association matrix (AM) that includes the functional profiles
of identified reference sequences from the 16S rRNA search. Predicted profiles are later
summarized based on KEGG pathways. Only OTUs passing a defined similarity threshold
(default = 97%) are considered in the functional prediction [18]. In brief, the amplicon
sequence variants were applied to predict the abundance of gene families (function) and
MetaCyc pathways.

2.6. Statistical Analysis

The differences of abundances in the gut microbiome of phylum among groups were
detected using an ANOVA test, and the pairwise differences between groups were identified
via Tukey correction. Linear regression was applied to explore the relationship between

http://www.drive5.com/usearch/manual/uparseotu_algo.html
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fluoride exposures and gut microbiome/CAGs/functions, and then expressed as Pearson
correlations. Spearman correlations between abundance in CAGs and MetaCyc pathways
were performed to identify the association. All statistical analysis was conducted in R
4.2.3 software (R Foundation for Statistical Computing, Vienna, Austria). A two-tailed
p value < 0.05 was defined as statistically significant.

3. Results
3.1. Distribution of the Gut Microbiome with Fluoride Exposure

The gut microbiomes among the control and different NaF groups were dominated
by taxa belonging to Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria in de-
scending order (Figure 1 and Table 1). A significant difference was only observed in the
abundances of Proteobacteria among groups (p value = 0.043), and the result of the pairwise
test showed that the 150 mg/L F group may have higher abundances than the 50 mg/L F
group (adjusted p value = 0.046).
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Figure 1. Mean relative abundance of the most abundant phylum and genus in the rats’ gut micro-
biome composition.

Table 1. Relative abundance of the most abundant phyla in the rats’ gut microbiome composition
(mean ± SD).

Phylum Control 25 mg/L F 50 mg/L F 100 mg/L F 150 mg/L F F p Value

Firmicutes 81.12 ± 18.73 78.33 ± 9.95 75.97 ± 13.54 86.36 ± 6.66 80.84 ± 9.48 0.490 0.743
Bacteroidetes 17.71 ± 18.35 20.55 ± 9.75 23.09 ± 13.51 12.62 ± 6.76 17.94 ± 9.75 0.502 0.735
Proteobacteria 0.25 ± 0.11 0.35 ± 0.19 0.24 ± 0.12 0.35 ± 0.13 0.51 ± 0.12 2.995 0.043
Actinobacteria 0.31 ± 0.24 0.27 ± 0.12 0.24 ± 0.12 0.22 ± 0.09 0.29 ± 0.15 0.283 0.885

3.2. Influence of Fluoride Exposure on Gut Microbiome in Genus

To clearly identify differences in gut microbiome structure among fluoride exposure
groups, co-abundance correlations were clustered into four groups based on an Ado-
nis test (Figure 2A). Significant associations were not observed between CAG1/CAG2
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and fluoride exposure (p value > 0.05). CAG3 has a positive association with fluoride
exposure, which means the relative abundance of CAG3 rises with increasing fluoride
exposure doses, while CAG4 was negatively associated with fluoride exposure, which
means the relative abundance of CAG4 decreases with increasing fluoride exposure doses
(Figure 2B). Genera in Bilophila, Holdemania, Pelagibacterium, and Ruminococcaceae from
CAG3 (Figure 2C and Table S1) were also found to be positively correlated with fluoride
exposure, while Corynebacterium, Lachnospiracea incertae sedis, Roseburia, and Turicibacter
from CAG4 (Figure 2C and Table S1) were negatively correlated with fluoride exposure.
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Figure 2. (A) Kendall correlations between genera clustered using hierarchical Ward method with
a Spearman correlation distance metric. The primary genera attributed to the most CAGs are
(proportion > 10%) CAG1 (Unclassified Lachnospiraceae, Ruminococcus, and Unclassified Clostridiales),
CAG2 (Prevotella and Unclassified Porphyromonadaceae), CAG3 (Unclassified Ruminococcaceae), and
CAG4 (Turicibacter, Lachnospiracea incertae sedis, Roseburia, and Clostridium sensu stricto). (B) The linear
association between fluoride exposure and CAGs. (C) Boxplots show the effect of fluoride exposure
on the gut microbiome in each genus with the Pearson correlation.

3.3. Effect of Fluoride Exposure on Gut Microbiome in Species

Co-abundance correlations were clustered into six groups based on the Adonis test
(Figure 3A). With the exception of CAG1, no significant association with fluoride exposure
was observed in the other CAGs. CAG1 has a positive association with fluoride exposure,
which means the relative abundance of CAG3 rises with increasing fluoride exposure doses
(Figure 3B). Species in Unclassified Pelagibacterium, Candidatus Soleaferrea massiliensis, Parabac-
teroides distasonis, Uncultured bacterium adhufec108, Unclassified Bdellovibrionales, Unclassified
Ruminococcaceae, Bacteroidales bacterium ph8, Bacteroides fragilis (T), Uncultured Kopriimonas
sp., Unclassified Odoribacter, Parabacteroides goldsteinii, Unclassified Alphaproteobacteria, Bac-
teroides uniformis, Uncultured Erysipelotrichales bacterium, and Uncultured Desulfovibrionaceae
bacterium from CAG1 (Figure 3C and Table S2) were also found to be positively correlated
with fluoride exposure.
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Figure 3. (A) Kendall correlations between species clustered using hierarchical Ward method with
a Spearman correlation distance metric. The primary species attributed to the most CAGs are
(proportion >10%) CAG1 (Unclassified Ruminococcaceae), CAG2 (Uncultured rumen bacterium), CAG3
(Unclassified Prevotella, Uncultured bacterium and Unclassified Porphyromonadaceae), CAG4 (Uncultured
Firmicutes bacterium, Rumen bacterium NK4A214 and Unclassified Clostridium IV), CAG5 (Unclassified
Lachnospiraceae), and CAG6 (Ruminococcus sp., Uncultured bacterium adhufec and Unclassified Blautia).
(B) The linear association between fluoride exposure and CAGs. (C) Boxplots show the effect of
fluoride exposure on the gut microbiome in each species with Pearson correlation (due to space
limitations, only some figures are shown).

3.4. Functional Changes in the Gut Microbiome with Fluoride Exposure

Figure 4 and Table S3 show that the biological functions of the gut microbiome were
significantly associated with fluoride exposure. Metabolism pathways including energy
metabolism and metabolism of terpenoids and polyketides were strongly positively cor-
related with fluoride exposure (Figure 5, Tables 2 and 3) and strongly correlated with
CAG3 in genus, CAG4 in genus, and CAG1 in species abundance (Figure 6). Further-
more, Genetic Information Processing pathways including Translation; Folding sorting,
and degradation; and Transcription were negatively correlated with fluoride exposure
(Figure 5, Tables 2 and 3). Finally, Human Diseases pathways including drug resistance:
antimicrobial, drug resistance: antineoplastic, and infectious diseases: viral were negatively
correlated with fluoride exposure, while cardiovascular diseases was positively correlated
(Figure 5, Tables 2 and 3). Meanwhile, it also was negatively correlated with CAG3 in genus
and CAG1 in species abundance (Figure 6).

Table 2. Correlation coefficients between MetaCyc pathways of level 3 and fluoride exposure.

MetaCyc Pathways of Level 3 Correlation Coefficient p Value

Metabolism 0.723 <0.001
Genetic Information Processing −0.426 0.034

Human Diseases −0.451 0.024
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Table 3. Correlation coefficients between MetaCyc pathways of level 2 and fluoride exposure.

MetaCyc Pathways of Level 3 MetaCyc Pathways of Level 2 Correlation Coefficient p Value

Genetic Information Processing Translation −0.399 0.048
Genetic Information Processing Folding, sorting, and degradation −0.482 0.015
Genetic Information Processing Transcription −0.401 0.047

Human Diseases Drug resistance: Antimicrobial −0.442 0.027
Human Diseases Drug resistance: Antineoplastic −0.411 0.041
Human Diseases Infectious diseases: Viral −0.556 0.004
Human Diseases Cardiovascular diseases 0.399 0.048

Metabolism Energy metabolism 0.561 0.004
Metabolism Metabolism of terpenoids and polyketides 0.688 <0.001
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The results of the predictions indicate that fluoride exposure exhibits a strong positive
dose–response relationship (up-regulation) with functions like D-lyxose ketol-isomerase,
alanine-synthesizing transaminase, Fis family transcriptional regulator, CoA-dependent
NAD(P)H sulfur oxidoreductase, 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydro-
lase (decyclizing), and nickel transport system permease protein. Conversely, it displays a
strong negative dose–response relationship (down-regulation) with functions like DNA
polymerase III subunit gamma/tau, F-type H+-transporting ATPase subunit gamma, F-type
H+-transporting ATPase subunit a, and F-type H+-transporting ATPase subunit c. Fluoride
exposure has a pronounced positive dose–response relation (up-regulation) with metabolic
pathways like metabolism of terpenoids and polyketides and energy metabolism, while it
has a pronounced negative dose–response relation (down-regulation) with pathways like
viral infectious diseases and folding, sorting, and degradation.
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3.5. Associations between Functional Alterations and Gut Microbiome

The association analysis between functional alterations and the gut microbiome pre-
sented correlations ranging from −0.69 to 0.65. Significant positive correlations were found
in Genus CAG3/Species CAG1 with MetaCyc pathways of level 2, such as metabolism
of terpenoids and polyketides (Spearman’s correlation 0.60/0.62) and energy metabolism
(0.49/0.57), and with MetaCyc pathways of level 3, such as metabolism (0.58/0.64). Mean-
while, a negative correlation was observed with MetaCyc pathways of level 2, such as drug
resistance: antimicrobial (−0.67/−0.59) and infectious diseases: viral (−0.65/−0.62), and
with MetaCyc pathways of level 3, such as human diseases (−0.59/−0.50) (Figure 6).

For the genus CAG4, significant positive correlations were found with MetaCyc path-
ways of level 2, such as infectious diseases: viral (Spearman’s correlation 0.60), drug
resistance: antineoplastic (0.41), and drug resistance: antimicrobial (0.40), while a negative
correlation was observed with MetaCyc pathways of level 2, such as energy metabolism
(−0.69) and metabolism of terpenoids and polyketides (−0.68), and with MetaCyc path-
ways of level 3, such as metabolism (−0.79) (Figure 6).

In all, the three fluoride exposure-associated CAGs were significantly correlated with
the metabolism of terpenoids and polyketides and thallium, energy metabolism, drug
resistance: antimicrobial, and infectious diseases: viral (Figure 6A).

4. Discussion

In this study, we investigated the impact of varying concentrations of fluoride ex-
posure on alterations in the gut microbial community and its functional changes. The
research demonstrates significant dose–response changes in the composition of the gut
microbiome in rats due to fluoride exposure. Moreover, these disturbed intestinal bacteria
are closely associated with alterations in many gut microbiota-related functions, indicating
that fluoride exposure not only interferes with the bacterial abundance but also significantly
alters the functional characteristics of the gut microbiota, leading to a disruption in the
host’s homeostasis post exposure.

The gut microbiota, including micro-organisms, their genomes, and the surrounding
environment in the gut, has received unprecedented attention in the past decade [20]. In-
creasing evidence suggests that metabolic activities within the gut microbiota are intricately
linked to human health and disease [21]. Several crucial functions executed by the gut
microbiota are now widely recognized, encompassing polysaccharide digestion, biosyn-
thesis of vitamins and nutrients, colonization resistance, and modulation of the immune
system [21–25]. Moreover, the influence of the gut microbiota on the host’s metabolism and
physiology extends beyond the intestine, impacting distant organs such as the liver, mus-
cles, and brain [21,25]. Different gut bacteria have certain functions. For instance, Bilophila
is conditionally pathogenic in healthy human hosts, which promotes intestinal inflamma-
tory effects, intestinal barrier defects, systemic inflammation, bile acid dysmetabolism,
and changes in the functional profile of the microbiome [26]. Turicibacter strains lead to
changes in host bile acid profiles, and were positioned as modulators of host fat biology [27].
Roseburia has been proved to be a probiotic that can prevent intestinal inflammation and
maintain energy homeostasis by producing metabolites [28]. The composition and function
of the gut microbiota can be easily influenced by various intrinsic and extrinsic factors [29],
and exposure to exogenous pollutants can lead to functional dysregulation of the gut mi-
crobiota [24,25,29]. More research is suggesting that the detrimental functional alterations
in the gut microbiota due to exposure to these external pollutants might be associated with
increased disease risk [21].

Numerous studies highlight that excessive fluoride exposure has adverse effects on
human health, primarily resulting in dental and skeletal fluorosis [2] as well as unfavorable
impacts on human reproductive development, the liver, kidney, endocrine system, nervous
system, and genetics [2–4]. In recent years, there has been growing attention on soft tissue
lesions associated with excessive fluoride exposure [30]. Studies have shown that fluoride
metabolism is five times faster in rodents than in humans [31]. The fluoride doses used
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in the current study (25, 50, 100, and 150 mg/L NaF corresponding to 11.3, 22.6, 45.2,
and 67.8 mg/L fluoride ion, respectively) are equal to environmental levels. Although
the World Health Organization sets the guideline limit for fluoride in drinking water at
1.5 mg/L [32], the levels of fluoride in drinking water in endemic fluorosis areas are up
to 16 mg/L [33]. Moreover, fluoride can be ingested from food and the air. Thus, the
doses in this study were supposed to mimic the real human exposure in areas of endemic
fluorosis. Research indicates that excessive fluoride exposure can impair the organism’s
intestinal morphology and ultrastructure, leading to gastrointestinal diseases [12,34,35]. For
instance, after exposure to 100 mg/L sodium fluoride for 90 days, C57BL/6J mice exhibited
disrupted small intestine tissue structure and ultrastructural disorder, with a marked
decrease in the ratio of villus height to crypt depth [36]. Exposure to 50 mg/L and 100 mg/L
fluoride (calculated as fluoride ion) for 70 days resulted in severe structural damage to the
rats’ colon and rectum, with a significant inhibition of epithelial cell proliferation [12,13].
However, the current research on the effects of fluoride exposure on the gut microbiota
remains relatively limited [7,11,15]. Studies have found that environmental chemicals
can directly impact gut bacteria by interrupting specific metabolic pathways or gene
expressions, leading to differential selective pressures. This, in turn, reshapes the gut
microbial community due to the unique set of metabolic pathways and genomes possessed
by different bacterial species [37]. (Some environmental chemicals can directly affect the gut
bacteria by interrupting specific metabolic pathways or gene expression, leading to distinct
selection pressures, hence shaping the gut microbial community due to the uniqueness of
the set of metabolic pathways and genome possessed by different bacterial species.) The
potential mechanism behind the impact of fluoride exposure on the intestinal microbiota is
likely related to the changes observed; however, the specific mechanisms remain unclear
and warrant further research.

The current study indicates that exposure to fluoride induces significant dose-responsive
alterations in the composition of the intestinal microbiome. Notably, different fluoride
concentrations showed a positive correlation with CAG3 in different genera, with the
genera Bilophila, Holdemania, Pelagibacterium, and Ruminococcaceae significantly positively
correlated with fluoride concentrations. A plethora of studies demonstrate that there is a
marked increase in the genus Bilophila among patients with diabetic nephropathy [38–40],
IgA nephropathy [41], intrahepatic cholestasis of pregnancy [42], autism-related Bilophila
abundance increase [43], and ovarian premature aging mice [44]. Additionally, an increase
in both the Bilophila and Ruminococcaceae genera affects the reproductive performance
of sows [45]. Chronic hepatitis B patients showed a correlation between an increase in
the genus Holdemania and a heightened risk of chronic hepatitis B [46]. Elevated blood
urea nitrogen levels in children with idiopathic nephrotic syndrome positively correlate
with the Ruminococcaceae genus [47]. Moreover, patients with conditions such as diabetic
nephropathy [38], liver–kidney transplantation [48], hepatitis C virus (HCV) infection [49],
non-alcoholic fatty liver [50], liver fibrosis [51], polycystic ovary syndrome [52], thyroid can-
cer [53], Parkinson’s disease [54], autism spectrum disorder [55], multiple sclerosis [56], and
spinal cord injury [57] all show a significant rise in the relative abundance of the Ruminococ-
caceae genus. After exposure to perfluorooctanesulfonic acid, there was a trend of increased
abundance of Ruminococcaceae, but only the high-dose group was significantly higher than
the control group [58]. This suggests that fluoride exposure-induced augmentation of the
aforementioned intestinal microbes might further be associated with pathological changes
in the kidneys, liver, and nervous system, reproductive development, and the thyroid.

In contrast, different fluoride concentrations were negatively correlated with CAG4 in
different genera. The genera Corynebacterium, Lachnospiracea incertae sedis, Roseburia, and
Turicibacter showed a significant negative correlation with fluoride concentrations. Recent
studies revealed a significant decrease in the relative abundance of Corynebacterium in de-
pression model rats compared to controls [59]. Patients with conditions such as polycystic
ovary syndrome [60], IgA nephropathy [61], Parkinson’s disease [54], and non-alcoholic
fatty liver [62] all display a marked reduction in the abundance of Lachnospiracea incertae
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sedis. Studies suggest that as the abundance of Lachnospiracea incertae sedis increases, lev-
els of indolyl sulfate, formyl sulfate, and phenylacetylglutamine in circulation decrease,
correlating with improved renal function [63]. Kidney diseases, including diabetic kid-
ney disease (DKD) [64], chronic kidney disease (CKD) [65], and end-stage renal disease
(ESRD) [66], are associated with a notable decrease in the Roseburia genus, potentially
linked to its involvement in butyrate production, indole synthesis, and mucin degrada-
tion [67]. Autoimmune diseases show a marked reduction in Roseburia abundance in
autoimmune disease mice [68], and patients with IgA nephropathy also exhibit a signifi-
cant reduction in Roseburia compared to healthy individuals [62]. Neurological conditions
such as schizophrenia [69], Parkinson’s disease [70], and spinal cord injury [71], as well
as reproductive disorders like infertility, show a decrease in the number of Roseburia [72].
Compared to controls, benign prostatic hyperplasia rat groups displayed a marked reduc-
tion in Turicibacter [73], as did unilateral ureteral obstruction (UUO) rats [74]. This implies
that fluoride exposure-induced diminishment of the aforementioned intestinal microbes
might further correlate with pathologies in autoimmunity, the kidneys, liver, and nervous
system, and reproductive development. The current study indicated that fluoride exposure
causes a certain up-regulation of metabolic pathways like metabolism of terpenoids and
polyketides and energy metabolism, while it causes a certain down-regulation of pathways
like viral infectious diseases and folding, sorting, and degradation. Concurrently, strong
correlations exist between these metabolic pathways and CAGs. In summation, these
functional and metabolic pathway changes may represent potential mechanisms by which
fluoride exerts toxicity by affecting the intestinal microbiota. In summation, our results
suggest that the bacteria sensitive to fluoride in a fecal sample could be a biomarker of
fluoride exposure, and these functional and metabolic pathway changes may be used to
further explore the mechanism of bacteria in the pathogenesis of fluorosis.

The concept of intestinal microbiota toxicity has been increasingly recognized. Intesti-
nal microbiota toxicity refers to the structural and functional changes in the gut microbial
community caused by exposure to certain environmental chemicals, potentially leading to
a series of adverse health consequences [75]. Environmental exposure is a significant risk
factor for a range of human diseases that overlap with those associated with gut microbial
composition [76,77]. Consequently, microbial community toxicity may represent the miss-
ing link between environmental exposure and microbial community-associated human
diseases [75]. At present, this has not received adequate attention, and the dose–response
relationship of gut microbiota toxicity has largely remained unexplored. In this study,
we investigated the toxicity of fluoride on the gut microbiota and further explored the
dose-response relationship between them.

5. Conclusions

We analyzed the effects of fluoride exposure at various concentrations on the gut mi-
crobial community and its functions in rats. Exposure to different concentrations of fluoride
significantly altered the composition of the gut microbiota, showing a dose–response rela-
tionship with changes in the abundance levels of multiple bacterial genera. The functions
and metabolic pathways of the gut microbiota experienced substantial alterations post fluo-
ride exposure, also displaying a dose–response relationship. Moreover, correlation analyses
identified that some gut bacterial CAGs (co-abundance groups) were highly associated
with the altered metabolic pathways of the gut microbiota. In summary, fluoride exposure
not only disrupted the gut microbiota composition in terms of abundance but also affected
its functions and metabolic pathways. This study explored the pathogenesis of fluorosis
and provided a clue for the biomarkers of fluoride exposure.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo13111159/s1: Table S1: Correlation coefficient between
gut microbiome in genera and fluoride exposure; Table S2: Correlation coefficient between gut
microbiome in species and fluoride exposure; Table S3: Correlation coefficient between functional
alterations and fluoride exposure.
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