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Abstract: Cancer stem cells (CSCs) are considered to play a key role in the development and progres-
sion of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism
reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe
and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and
observed differences in lipid metabolism between patients with high and low stemness indices. Then,
tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demon-
strated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome
and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism,
and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties.
SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding
the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to
be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics
of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and
unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness.
These findings may contribute to the development of a strategy for targeting lipid metabolism to
inhibit CSCs in PDAC treatment.

Keywords: pancreatic ductal adenocarcinoma; cancer stem-like cells; lipid metabolism reprogramming;
sphingolipid metabolism; SPHK1

1. Introduction

Pancreatic cancer is one of the most fatal cancers, ranking the seventh leading cause of
cancer-related deaths worldwide [1], and has been predicted to become the second most
common cause of cancer-related deaths by 2030 [2]. As the most common histological type,
pancreatic ductal adenocarcinoma (PDAC) accounts for the majority of the incidence and
mortality of pancreatic cancer cases [3]. Its strong heterogeneity endows PDAC with the
feature of high lethality, which is thought to be closely related to a small group of cells that
are characterized by self-renewal, unique plasticity and metabolism, and high proliferative
capacity [4,5], known as cancer stem cells (CSCs) [6,7]. Therapy resistance of PDAC
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CSCs [8] is also mainly responsible for the limited survival benefit of chemotherapeutic
agents, targeted therapy and immunotherapy for PDAC patients [9,10]. Thus, an in-depth
understanding of CSCs in PDAC is urgently needed and may provide a foundation to
explore new therapeutic strategies for clinical practice.

Metabolic reprogramming is one of the major hallmarks of tumorigenesis [11]. PDAC
cells rely on altered metabolism pathways, including enhanced aerobic glycolysis [12,13],
deregulation of lipid metabolism [14,15], raised branched-chain amino acids and glutamine
routes [16,17], and increased nucleotide metabolism [18,19], to support their unlimited
proliferation and metastasis [20]. Recent studies suggest that due to the heterogeneity
of tumors, unique metabolism characteristics play a distinctive role in maintaining the
pluripotency and tumorigenic capacity in PDAC CSCs [21,22]. PDAC CSCs are supposed
to facilitate the metabolic flip from glycolytic to oxidative [21,23]. In addition, glutamine
dependence is not limited to PDAC cells, as CSCs also rely on glutamine metabolism to
promote tumor growth [24,25]. It is well acknowledged that CSCs can reprogram their
cellular metabolism to support their continuous proliferation and tumorigenesis [20,26,27],
while the understanding of the lipid metabolism disorder in CSCs is limited and unilateral.
Several lipid metabolites [28,29] or lipid-metabolism-related genes (LMRGs) [30–32] have
separately been reported to play important roles in maintaining the stemness and enhancing
tumor metastasis. It is worth noting that tumor metabolic remodeling is a dynamic process;
thus, studying changes in metabolic pathways may be more appropriate than directly
studying the role of specific metabolite differences. Observed changes due to stemness
acquisition in CSCs often encompass large numbers of structurally related lipids, and recent
developments in technologies, such as lipidomic and machine learning, enable researchers
to explore the lipid metabolism pathways and more comprehensively underline altered
lipid metabolism in tumorigenesis [33]. In an attempt to explain the lipid metabolism
characteristics of PDAC CSCs, only one institution has carried out a proteomic analysis and
subsequently a comprehensive proteomic and lipidomic report on pancreatic cancer stem-
like cells (CSLCs). They have reported that fatty acid synthesis, especially biosynthesis
of unsaturated FAs, and mevalonate pathways, with downregulation of LDHA (Lactate
Dehydrogenase A) and upregulation of genes involved in FA elongation, are essential in
PDAC CSLCs [34,35]. Despite multi-omics characterization of PDAC CSCs suggesting the
importance of lipid metabolic alterations, explorations on further characterization are still
deficient. On the one hand, studies of lipid metabolism in PDAC CSCs were performed
only on one traditional CSCs model. On the other hand, it appears that CSCs are extremely
reliant on the enzymes involved in the lipid metabolism, but there is currently no research
on transcriptomics that combines the stemness phenotypes of the patient’s tumor and the
CSCs model.

In this study, we explored the difference in the lipid metabolism in patients with
high and low stemness indices using single sample gene set enrichment analysis (ssGSEA)
algorithms based on the data from the Cancer Genome Atlas (TCGA). Then, to overcome
the limitation of the traditional CSCs model by sorting CSC of PDAC based on the identified
“stem cell surface markers”, we used 3D soft fibrin-gel as the culture medium to select
malignant tumor cells with high tumorigenicity in PDAC by adjusting the mechanical
stress, defined as tumor-repopulating cells (TRCs), which has been successfully applied in
many tumors, such as liver cancer, melanoma, lung adenocarcinoma, etc. [36,37]. Lipidomic
combined with transcriptome analysis has been carried out and the results suggested that
fatty acid metabolism, sphingolipid metabolism and glycerophospholipid metabolism
alterations were mostly observed in PDAC TRCs. Further investigations revealed that
SPHK1, encoding the key enzyme SPHK1 (sphingosine kinases 1) to catalyze sphingosine
to generate S1P (sphingosine-1-phosphate) in sphingolipid metabolism, contributed to
promote the stemness of PDAC, which may be a promising therapeutic target in PDAC.
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2. Materials and Methods
2.1. Patients’ Data Collection and Analysis

The mRNA expression profiles and clinical features of PDAC patients were down-
loaded from the TCGA data portal (https://portal.gdc.cancer.gov/, accessed on 20 Novem-
ber 2022). The stemness indices were assigned to every PDAC patients from TCGA (tumor,
n = 179), which were calculated by using ssGSEA algorithms [38] and one-class logistic
regression machine learning (OCLR) algorithms [39]. The stemness gene set was obtained
from Miranda’s studies and applied to the ssGSEA algorithm to calculate ssGSEA-based
stemness indices (Table S1) [38]. The mean (the standard error of the mean (SEM)) of the
stemness indices using the ssGSEA algorithm was 2.069 (0.011), and patients with stemness
indices of less than 2.058 (mean-SEM) and over 2.080 (mean + SEM) were classified into
the low stemness group and the high stemness group, respectively. PDAC is formally
staged using a tumor node metastasis (TNM) system based on the eighth edition of the
American Joint Committee on Cancer Staging Manual [40]. Student’s t-test was used to
assess the relationship of clinical information and stemness indices and the results were
plotted using the “ggplot2” (http://cran.r-project.org/package=ggplot2, accessed on 25
November 2022) package. The Kaplan–Meier (K–M) curve was plotted using the “survival”
package (https://cran.r-project.org/package=survival, accessed on 25 November 2022) to
achieve the survival analysis of patients with high or low stemness indices. The “DESeq2”
R package was employed to identify the differential expressed genes (DEGs) between pa-
tients with high or low stemness indices. Enrichment analysis of the DEGs was conducted
as follows.

2.2. Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses
were performed by using the “clusterProfiler” [41] package of R and visualized by apply-
ing the “ggplot2” package. Enrichment gene sets, including c2.cp.kegg.v7.4.symbols and
h.all.v7.5.1.symbols, were obtained from the Molecular Signatures Database (MSigDB) [42].
Gene set variation analysis (GSVA) was utilized to calculate the enrichment score of these
oncogenic signatures [43]. The correlation between SPHK1 and pathway scores was an-
alyzed via Spearman correlation. The “pheatmap” R package was used for clustering
heatmaps with standardization processing “scale = row”.

2.3. Cell Line and Cell Culture

PDAC cell lines (MiaPaCa-2, PANC−1) were obtained from the American Type Cul-
ture Collection (ATCC) and were preserved at the Liver Cancer Institute, Zhongshan
Hospital, Fudan University (Shanghai, China). All cells passed conventional quality control
tests, which was consistent with the findings reported by the ATCC. The culture condi-
tions for the cell lines were complete medium, consisting of Dulbecco’s modified Eagle’s
medium (DMEM; GNM12800-2, GENOM, Jiaxing, Zhejiang, China) supplemented with
10% fetal bovine serum (FBS; 10270-106, Gibco, Grand Island, NY, USA) and 1% penicillin-
streptomycin (1719675, Gibco, Grand Island, NY, USA), in a humidified ThermoForma
incubator (Thermo Fisher Scientific, Waltham, MA, USA) with 37 °C and 5% CO2, as
described in a previous study [44].

2.4. Culture of PDAC TRCs

A previous study showed that TRCs cultured in the 3D fibrin gels represented an
available CSLCs [37]. Thus, we cultured PDAC-TRCs as previously described [36]. Specifi-
cally, MiaPaCa-2 or PANC−1 cells were trypsinized and resuspended in complete medium,
and then mixed with an equal volume 2 mg/mL salmon fibrinogen (SEA-133, Sea Run
Holdings Inc., Freeport, ME, USA) diluted with T7 buffer (50 mM Tris-HCl, 150 mM NaCl,
pH 7.4). Next, 100 U/mL thrombin (SEA-135, Sea Run Holdings Inc., Freeport, ME, USA)
diluted with T7 buffer was added at a 1:50 ratio to the cell suspension to form cell mixture.
The complete medium was added to cell plates after incubation for 30 min in a humidified
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ThermoForma incubator (Thermo Fisher Scientific, Waltham, MA, USA) with 37 ◦C and
5% CO2, and the cells were sequentially cultured for 72 h. The resulting PDAC-TRCs were
used for subsequent experiments.

2.5. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

The mRNA of 2D−cultured cells or PDAC TRCs was extracted by using an RNAeasyTM

kit (R0026; Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s
recommended procedure, and then reversely transcribed into cDNA by using Hifair® V
one-step RT-gDNA digestion SuperMix Kit (11141ES60, Yeasen, Shanghai, China) accord-
ing to manufacturer’s instructions. Then, the conditions of qRT−PCR were set as follows:
initial denaturation at 95 ◦C for 5 min; and 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s,
which was performed using SYBR Green kit (11202ES08) on QuantStudio5 fluorescence
quantitative PCR system (Applied Biosystems, Foster City, CA, USA). The sequences of
all primers were displayed in Table 1. The 2∆∆CT method was used to calculate the rela-
tive gene expression change with β-actin as the internal normalization. Each experiment
was performed with three independent replicates, and the results were displayed as the
mean ± SD.

Table 1. The sequences of all primers.

Name Forward Primer Reverse Primer

β-actin CCACGAAACTACCTTCAACTCC GTGATCTCCTTCTGCATCCTGT
Sox2 CCTACAGCATGTCCTACTCGCA CTGGAGTGGGAGGAAGAGGTAAC
CD24 CTCCTACCCACGCAGATTTATTC AGAGTGAGACCACGAAGAGAC
CD133 GTACAACGCCAAACCACGACT CGCACACGCCACACAGTAA
ESA CACCAGTCTTCTTACCAAACACG AGTCCATTAGGCAGTATCTCCAAG
SPHK1 CAGCTCTTCCGGAGTCACGT CGTCTCCAGACATGACCACCA

2.6. RNA Interference

To silence the expression of SPHK1, the cells were transfected with siRNA by applying
riboFECTTM CP (C10511-05, RIBOBIO, Guangzhou, Guangdong, China). The targeted
sequence of siSPHK1 was GAGGCUGAAAUCUCCUUCATT.

2.7. Western Blotting

Western blotting was performed as described in our previous study [45]. Rabbit
monoclonal to SPHK1((ab302714)) was purchased from Abcam.

2.8. Transwell Assays

Transwell assays were used to assess the invasion and migration ability of PDAC
TRCs. For migration assays, 10,000 cells were placed into the upper chamber with DMEM
medium, while for invasion assays, 10,000 cells were plated into the upper chamber, which
was precoated with Matrigel (356234, BD Biosciences, San Jose, CA, USA) diluted at 1:8
with DMEM medium. Then, 800 µL of DMEM medium containing 20% FBS was added
to the lower chamber and the cells were cultured for 48 h. Then, the cells in the upper
chamber were carefully removed. The cells passing through the membrane filter were
stained with 0.1% crystal violet solution (V5265, Sigma, St. Louis, MO, USA) and recorded
by using a microscope and counted using Image J software (National Institutes of Health,
Bethesda, MD, USA). Each experiment was performed with three independent replicates,
and the results were displayed as the mean ± SD.

2.9. Reagent and Intervention Process

S1P (HY-108496) was purchased from MCE. The preparation of stock solution and
storage were conducted according to the manufacturer’s recommended procedure. When
PDAC TRCs transfected with si-SPHK1 were cultured in 3D gel for 5 days, exogenous S1P
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(10 µM) was supplemented and the growth of TRCs was continuously observed. In the
Transwell assays, 10 µM S1P was added to the lower chamber in the testing group.

2.10. Subcutaneous Tumors in Mice

Four-week-old male nude (nu/nu) mice were obtained from the Shanghai Institute of
Material Medicine (Shanghai, China), Chinese Academy of Science. All mice were randomly
allocated to 2D group or TRC group (n = 18 for each group). For subcutaneous tumors,
single-cell suspensions of PANC−1 and PANC−1 TRCs were injected with gradient cell
density (2 × 104, 2 × 105, 2 × 106, n = 6 for every group) on the right side of the armpit of
the nude mice. The animal study protocols were performed in accordance with the Guide
for the Care and Use of Laboratory Animals stipulated by the National Academy of Sciences
and the National Institutes of Health (NIH publication 86-23, revised 1985) and approved by
the Animal Care and Use Committee of Zhongshan Hospital, Fudan University, Shanghai,
China (Approval No. 2020-135 and date of approval 2 November 2020).

2.11. RNA-Seq

The total RNA of 2D−cultured cells or PDAC TRCs (three replicates for each cell type)
was extracted by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and the quantity
and purity were monitored using NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA)
as well as Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). OligodT-magnetic-beads
(25-61005, Thermo Fisher, Waltham, CA, USA)-enriched mRNAs were fragmented. cDNAs
were synthesized from the fragmented RNA using a Reverse Transcriptase (Invitrogen
SuperScript™ II Reverse Transcriptase, Carlsbad, CA, USA), and then sequenced using
Illumina Novaseq™ 6000 (LC Bio Technology Co., Ltd., Hangzhou, Zhejiang, China). The
obtained RNA-Seq raw data were uploaded to the Sequence Read Archive (SRA) database
of the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/, accessed on 20 October 2023) with the accession number PRJNA-1020096.

2.12. The Procedure for LC-MS-Based Lipidomic Analysis

The samples of 2D−cultured PANC−1 cells or PANC−1 TRCs (four biological repli-
cates for each cell type) were collected and were added into 1 mL of pre-cooled methanol
with an internal standard (1 µg/mL of tridecanoic acid and n-valine). After vortexing
for 1 min, the mixtures were stored at −80 ◦C ThermoForma incubator (Thermo Fisher
Scientific, Waltham, MA, USA). Then, the sample preparation, lipidomic data acquisition,
data preprocessing, and peak annotation were performed as described in our previous
study [46].

2.13. Bioinformatics Analysis of Lipidomic Data

The lipid profile levels obtained above were loaded into an open access tool BioPAN,
on LIPID MAPS Lipidomic Gateway (https://lipidmaps.org/biopan/, accessed on 25 July
2022) [47]. BioPAN calculates statistical scores for all possible lipid pathways to predict
which are active or suppressed in PANC−1-TRCs samples compared to the PANC−1 cells
samples. In brief, BioPAN workflow utilizes Z-score, which takes into account both the
mean and the standard deviation to assume normally distributed data of lipid subclasses
and determines a reaction or pathway to be significantly modified at a p-value < 0.05
(equivalent to Z-score > 1.645). The calculation of the Z-score was detailed by Gaud et al. [48].

2.14. Statistical Analysis

All plots and statistical analyses were conducted using R 4.3.1 and GraphPad Prism
9.5.0. Student’s t-tests (two-tailed) and one-way analysis of variance (ANOVA) were
used to compare the means of two or more samples. The predictable value of SPHK1
expression was assessed using univariate and multivariate Cox analysis. As for the cellular
experiments, each experiment was performed with at least three independent replicates,
and the results are displayed as the mean ± SD. A p-value of less than 0.05 was considered
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statistically significant, unless otherwise indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,
p < 0.0001; ns, not significant.

3. Results
3.1. Correlation between Stemness Indices via ssGSEA Algorithms and Clinicopathological
Characteristics of PDAC Patients

At first, we calculated the stemness indices using ssGSEA algorithms for each patient
in TCGA-PDAC patients (n = 179) using RNA-seq data (Table S1). Then, according to the
stemness indices, we ranked the patients from low to high (Figure 1A) and investigated
the relationship between the indices and clinicopathological features including age, sex,
pathological grade of tumor, N stage, T stage and TNM stage (Figure 1B–G). The results
showed that patients with a higher pathological grade (Figure 1D, G2 vs. G1, p = 0.0018, and
G3 vs. G1, p = 0.0016) or patients diagnosed with a higher T stage (Figure 1F, T3/4 vs. T1/2,
p = 0.039) had significantly higher stemness indices. Moreover, the patients were divided
into high (n = 82) and low stemness groups (n = 82) according to the aforementioned
method, and survival analysis was conducted to compare these two groups. The K-M
curve results showed that patients in the high stemness group suffered shorter median OS
(high stemness group vs. low stemness group, 17.0 vs. 34.8 months, p = 0.0011, Figure 1H)
and median DFS (high stemness group vs. low stemness group, 13.1 vs. 20.4 months,
p = 0.0007, Figure 1I). Cox multivariate analysis with significant factors obtained from the
univariate analysis (p < 0.05) was carried out to further assess the relationship between
tumor stemness and patients’ OS (Table 2) and it was found that patients belonging to the
low stemness group was an independent favorable prognosis factor for PDAC (HR = 0.594,
95% CI, 0.379–0.932, p = 0.023). However, the stemness indices using OCLR algorithms
(Table S2) were not associated with patients’ OS (p = 0.15) and tumor dedifferentiation, as
reflected in the histopathological grade (Figure S1). Taken together, these data suggested
that the stemness indices using the ssGSEA algorithms could effectively distinguish PDAC
patients and were consistent with the degree of tumor dedifferentiation and prognosis.
Thus, we assumed that these stemness indices could be used to better describe and quantify
CSCs in patients’ tumors.

Table 2. Univariate and multivariate Cox regression analysis determined the independent prognostic
role of stemness.

Variable n Univariate Cox Analysis Multivariate Cox Analysis
HR 95% CI p HR 95% CI p

Age
Old
(> 65) 86 1 NA

Young (≤65) 78 0.775 0.506–1.190 0.241

Sex
Female 89 1 NA
Male 75 0.799 0.523–1.220 0.300

TNM Stage
I 20 1 NA
II 134 2.11 0.965–4.620 0.062
NA 8

Grade

G1 29 1 1
G2 86 1.980 0.987–3.960 0.055 1.501 0.746–3.018 0.255
G3/4 47 2.590 1.250–5.340 0.010 * 1.807 0.876–3.726 0.109
Gx 2

Lymph
node stage

N0 45 1 1
N1/2 114 2.100 1.230–3.580 0.007 * 1.875 1.052–3.343 0.033 *
Nx 5

Tumor
stage

T1/2 28 1 1
T3/4 134 2.020 1.040–3.930 0.038 * 1.237 0.597–2.563 0.567
Tx 2

Stemness
index

High 82 1 1
Low 82 0.486 0.313–0.756 0.001 * 0.594 0.379–0.932 0.023 *

HR, hazard ratio; CI, confidence interval; NA, not available; * means p < 0.05.
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Figure 1. Correlation between stemness indices using ssGSEA and clinical features in PDAC patients.
(A) An overview of the distribution of relative stemness indices in PDAC patients (n = 179) and the
classification of stemness groups (high stemness > mean + SEM, n = 82; low stemness < mean—SEM,
n = 82; NA~ mean ± SEM, n = 15). (B–G) Boxplots of stemness indices for PDAC patients stratified
by clinical features including age, sex, pathological grade of tumor (2 Gx removed), N stage (5 Nx
removed), T stage (2 Tx removed) and TNM stage (8 NA removed). OS K-M curve (H) and DFS
K-M curve (I) showed the outcomes of PDAC patients in the high stemness group and low stemness
group. (J) Venn diagram shows the overlapped genes between LMRGs and DEGs of the two stemness
groups. (K) GO and (L) KEGG enrichment analysis of the overlapped genes. *, p < 0.05; and
**, p < 0.01; Student’s t-test. ssGSEA, single sample gene set enrichment analysis; PDAC, pancreatic
ductal adenocarcinoma; DFS, disease-free survival; K-M curve, Kaplan–Meier curve; OS, overall
survival; LMRGs, lipid-metabolism-related genes; DEGs, differential expressed genes; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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3.2. Difference in Lipid Metabolism in Patients with High and Low Stemness Indices

More and more studies have shown that the dysregulation of lipid metabolism may
be one of the most unique metabolic hallmarks of cancer, providing important targets for
therapeutic interventions. To comprehensively elucidate the functional roles of deregulated
lipid metabolic genes in PDAC patients, we selected 1543 LMRGs whose GO annotations
included lipid-metabolism-related pathways. About 4.7% (205/4369) DEGs between tu-
mors with high (n = 82) and low (n = 82) stemness indices are LMRGs (Figure 1J). To
understand the characteristics of the lipid metabolism of PDAC, GO and KEGG enrich-
ment analysis (Figure 1K,L and Tables S3 and S4) were performed and several specific
genes and lipid metabolic pathways were identified, including fatty acid metabolism, glyc-
erolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, etc.
(Tables S3 and S4).

3.3. Characteristics of PDAC TRCs as an Available CSLCs Model

In order to better study the characteristics of the lipid metabolism of PDAC CSCs,
we cultured human PDAC cell lines in 3D soft fiber gel to obtain PDAC TRCs, PANC−1
TRCs and MIA PaCa−2 TRCs, based on the method that our research team has previously
confirmed to culture CLSCs in other tumor species [36,37]. PANC−1 TRCs and MIA
PaCa−2 TRCs gradually formed clone spheres in 3D soft fiber gel, and the morphological
changes from day 1 to day 5 are shown in Figure 2A. The qRT-PCR experiment results
showed a significant increase in the expression of classic CSC surface markers CD133,
CD24, ESA, and Sox2 in PANC−1 TRCs and MIA PaCa−2 TRCs compared to PANC−1
and MIA PaCa−2, respectively (Figure 2B). The transwell assays showed that PANC−1
TRCs and MIA PaCa−2 TRCs migrated to and invaded the lower chamber earlier than
PANC−1 and MIA PaCa−2, and PANC−1 TRCs and MIA PaCa−2 TRCs exhibited more
cell migration and invasion than their control groups within the same period of time
(Figure 2C). These results proved that PANC−1 TRCs and MIA PaCa−2 TRCs captured a
stronger tumorigenesis and metastasis ability than PANC−1 and MIA PaCa−2 in vitro.

In order to verify the malignant biology of TRCs in vivo, we constructed a subcuta-
neous tumor model in nude mice. PANC−1 cells and PANC−1 TRCs were inoculated with
gradient cell density on the right side of the armpit near the back of the nude mice, and
the tumorigenesis was observed daily. As shown in Table 3, the tumorigenesis rates of
PANC−1 TRCs reached 83.3% at one month, while no tumor was observed in the 2 × 104

PANC−1 group (Figure 2D and Figure S2A). Moreover, it was observed that the tumor
formation time was earlier, and the tumor volume in the PANC−1 TRC group was larger
after the same observation time (30 days) (Figure 2D and Figure S2B), further confirming
the notable self-renewal and tumorigenic properties of PDAC TRCs.

Table 3. Comparison of subcutaneous tumor development between PANC−1 and PANC−1 TRCs in
nude mice.

Number of Cells PANC−1 TRCs PANC−1 Cells

2 × 106 100.0% (6/6) 66.7% (4/6)
2 × 105 100.0% (6/6) 66.7% (4/6)
2 × 104 83.3% (5/6) 0

3.4. Identification of Lipid Metabolism Pathways in PDAC TRCs via RNA-seq

Since PDAC TRCs were proved to present CSCs features, PANC−1 TRCs and MIA
PaCa−2 TRCs were used to explore the lipid metabolism characteristics of PDAC CSCs
in gene expression level. About 7125 DEGs between PANC−1 and PANC−1 TRCs, as
well as 9999 DEGs between MIA PaCa−2 and MIA PaCa−2 TRCs, were detected via
RNA-seq (Figure 3A,B). As shown in Figure 3C, genes in set 2 (n = 531) were the LMRGs
among DEGs of PANC−1 and PANC−1 TRCs, and genes in set 3 (n = 666) were the
LMRGs among DEGs of MIA PaCa−2 and MIA PaCa−2 TRCs. Genes in set 4 (n = 306)
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represented the overlapped genes between LMRGs set and the set 1 (common DEGs of
TRCs and normal 2D−cultured cells, n = 3864). The top three altered KEGG pathways of
PANC−1 TRCs LMRGs (Figure 3D and Table S5) were fatty acid metabolism, sphingolipid
metabolism and fatty acid degradation pathways, and the related LMRGs’ expression
is shown in Figure 3F. When comparing MIA PaCa−2 TRCs with MIA PaCa−2, the top
three altered KEGG pathways (Figure 3E and Table S6) were the glycerophospholipid
metabolism, fatty acid metabolism and sphingolipid metabolism pathways, and the related
LMRGs’ expression is shown in Figure 3G. It was obvious that fatty acid metabolism, and
sphingolipid metabolism were commonly detected as the most altered pathways. Overall,
the lipid metabolism pathways’ alteration in PDAC TRCs in different cell lines was similar,
and the involved LMRGs may be different types of one genotype. In addition, the overlap
of DEGs (set 4, n = 306, Figure 3C) with consistent trends in the two cell lines was analyzed
for KEGG enrichment, and the results showed that glycerolipid metabolism, fat acid
degradation, and sphingolipid metabolism pathways were the most significant changes in
the lipid metabolism pathways (Figure S3 and Table S7). Despite numerous DEGs and lipid
metabolic modifications in the common consistent trends set or between individual cell
lines, each of our analysis identified sphingolipid metabolism as a key element regulating
the phenotypes shift between TRCs and normal 2D−cultured cancer cells.

3.5. Alteration in Lipid Metabolism in PDAC TRCs via Lipidomic Analysis

Due to the similarity between the enrichment results of differential LMRGs in PANC−1
and PANC−1 TRC and the results of common differential LMRGs in the two cell lines,
lipidomic analysis based on LC-MS was performed in PANC−1 TRC and PANC−1 to
explore the differences in lipid metabolism products and further understand the lipid
metabolism characteristics of PDAC CSCs. Principal component analysis (PCA) revealed
a difference in lipidome in two groups (Figure S4). Thirteen types of lipids, including
435 lipid metabolites, were detected. In addition to varying trends in fatty acids with
different chain lengths, it was also found that sphingosine (SPB), ceramide (Cer), phos-
phatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), and
triglycerides (TG) significantly increased in TRCs, while dihydroceramide (dhCer), diglyc-
erides (DG), and lysophosphatidylcholine (LPC) significantly decreased in TRCs. The
lipidomic analysis was performed via BioPAN [48], which combined current knowledge
of lipid metabolism and predicted genes to compare two biological conditions to identify
activated or suppressed pathways using Z-score values (Table S8). The results of fatty
acid metabolism were showed in Figure 4A. In general, palmitic acid (FA 16:0) and stearic
acid (FA 18:0) were the most common FA in PANC−1 and PANC−1 TRC. Meanwhile, the
longer chain FA and the extremely long chain fatty acids (FA 24:1) were found significantly
increased in PANC−1 TRC. Consistent with this finding, the BioPAN network map of FA
metabolism showed that the elongation of FA was the most significantly activated pathway
in the FA metabolism pathway, including the monounsaturated fatty acids (FA (18:1)→
FA (20:1)→ FA (22:1)→ FA (24:1), Z-score = 5.965), saturated fatty acids (FA (16:0)→ FA
(18:0)→ FA (20:0)→ FA (22:0)→ FA (24:0)→ FA (26:0)→ FA (28:0), Z-score = 3.516), and
polyunsaturated fatty acids [FA (20:4)→ FA (22:4)→ FA (24:4)→ FA (24:5)→ FA (24:6),
Z-score = 2.737]. In sphingolipids metabolism (Figure 4B), active reaction chains (dhCer→
Cer→ SPB, Z-score = 5.171; SM→ Cer→ SPB, Z-score = 4.704) and suppressed reaction
chains (SPB→ Cer→ SM, Z-score = 4.577) jointly lead to a significant accumulation of
sphingosine in PANC−1 TRC. The reaction chain of PE generated by DG and PS in the
glycophoric metabolism reaction is activated, while the reaction chain of PE as a substrate
(PE→ PC→ LPC, Z-score = 4.224, PE→ PC→ PS, Z-score = 3.869) is suppressed, leading
to an increase in PE in PANC−1 TRC (Figure 4C). Furthermore, we validated and analyzed
the predicted genes in the BioPAN analysis with RNA-seq data. It was found that these
elongations of very-long-chain FA genes ELOVL2, ELOVL6, and ELOVL7 were significantly
overexpressed in TRC groups. DEGS2 actively catalyzing dhCer→ Cer→ SPB reaction
chains, and CERS5 suppressing the generation of Cer by SPB, and ASAH1 involved in both
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reactions were significantly overexpressed. These results were consistent with the genes
predicted as active or suppressed in BioPAN. The results of metabolite differences (Z-score)
in lipidomic, and consistency between changes in metabolic genes and metabolites, high-
lighted that the up-regulation of the sphingolipid metabolism pathway played the most
special role in the lipid metabolic remodeling process of PDAC TRCs.
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Figure 2. CLSCs’ characteristics of PDAC TRCs. (A) Morphology of PDAC TRCs growing in 3D soft
gel fibers at days 1–5. (B) q-RT PCR showed expression of CSCs surface markers in PDAC TRCs
and normal PDAC cells (mean ± SD, n = 3, t-test). (C) Transwell experiment showed migration and
invasion abilities of PDAC TRCs and normal PDAC cells (mean ± SD, n = 3, t-test). (D) Morphology
of subcutaneous tumors and tumorigenesis ability in nude mice of PDAC TRCs and normal PDAC
cells (n = 6 for every gradient cell density in each cell type). *, p < 0.05; **, p < 0.01; ***, p < 0.001; and
****, p < 0.0001; ns, not significant. CLSCs, cancer stem-like cells; TRCs, tumor-repopulating cells;
ESA, erythropoiesis-stimulating agent; Sox2, sex-determining region Y-box 2; q-RT PCR, quantitative
reverse transcription polymerase chain reaction.
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Figure 3. Identification of lipid metabolism reprogram pathways in PDAC TRCs via transcriptome
analysis. (A) Volcano plots of DEGs of PANC−1 and PANC−1 TRCs (up-regulated genes in red and
down-regulated in blue, n = 7125). (B) Volcano plots of DEGs of MIA PaCa−2 and MIA PaCa−2
TRCs (up-regulated genes in red and down-regulated in blue, n = 9999). (C) Venn diagram shows the
overlapped genes between LMRGs and the DEGs of TRCs and the source normal 2D cells. Genes
in set 2 (n = 531) were the LMRGs among DEGs of PANC−1 and PANC−1 TRCs and genes in set 3
(n = 666) were the LMRGs among DEGs of MIA PaCa−2 and MIA PaCa−2 TRCs. Genes in set 4
(n = 306) represented the overlapped genes between LMRGs set and the set 1 (common DEGs of
PDAC TRCs and normal 2D−cultured cells, n = 3864) (D) Top 10 entries in KEGG enrichment
pathway of genes in set2. (E) Top 10 entries in KEGG enrichment pathway of genes in set 3.
(F) Heatmap of genes enriched in top 3 entries in KEGG enrichment pathway of genes in set 2
(relative high expression in red and relative low expression in blue). (G) Heatmap of genes enriched
in top 3 entries in KEGG enrichment pathway of genes in set 3 (relative high expression in red and rel-
ative low expression in blue). PDAC, pancreatic ductal adenocarcinoma; TRCs, tumor-repopulating
cells; DEGs, differential expressed genes; LMRGs, lipid-metabolism-related genes.
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Figure 4. Lipid network generated using BioPAN software combined with alternation metabo-
lites and related genes in PANC−1 TRCs compared to the normal 2D−cultured PANC−1 cells.
(A) BioPAN fatty acids networks. FA graphs exported from BioPAN tool for PANC−1 TRCs com-
pared to PANC−1. Green nodes correspond to active FAs and green shaded arrows to active pathways.
Reactions with a positive Z score have green arrows, while negative Z scores are colored purple.
Pathways options: PANC−1 TRCs condition of interest, PANC−1 control condition, lipid type,
active status, subclass level, reaction subset of lipid data, p value 0.05, and no paired data. LMRGs
of DEGs in red (up−regulated) of PANC−1 TRCs compared to PANC−1 cells using RNA−seq
were consistent with the genes predicted as active (arrow) in BioPAN. (B,C) BioPAN lipid networks.
Lipid network graphs exported from BioPAN for PANC−1 TRCs compared to PANC−1. Green
nodes [glycerophospholipid metabolism in circle (B) and sphingolipid metabolism in square (C)]
correspond to active lipids and green shaded arrows to active pathways. Reactions with a positive Z
score have green arrows while negative Z scores are colored purple. Pathways options: PANC−1
TRCs condition of interest, PANC−1 control condition, lipid type, active status, subclass level, reac-
tion subset of lipid data, p value 0.05, and no paired data. LMRGs of DEGs in red (up−regulated)
or in blue (down−regulated) ofPANC−1 TRCs compared to PANC−1 cells using RNA−seq were
consistent with the genes predicted as active (arrow) or suppressed (Long line truncated by short
dash) in BioPAN. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant; t-test. TRCs,
tumor-repopulating cells; FA, fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated
fatty acid; SFA, saturated fatty acid; Cer, ceramide; dhCer, dihydroceramide; SPB, sphingosine; SM,
sphingomyelin; LPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphoserine;
LPE, lysophos-phatidylethanolamine; PC, phosphatidylcholine; CL, cardiolipin; TG, triglycerides;
DG, diglycerides.
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3.6. Identification of SPHK1 as a Key Lipid-Metabolism-Related Stemness Gene in PDAC

Taking into account the comprehensive integrated transcriptomic and lipidomic analy-
sis, the up-regulation of the sphingolipid metabolism pathway was found to be the most
significant lipid metabolic remodeling process of PDAC TRCs. This finding was also sup-
ported by patient data analysis. The LMRGs in DEGs of PDAC patients in the high stemness
group and in the low stemness group were enriched in the sphingolipid metabolism bi-
ological process via GO analysis and the sphingolipid metabolism pathway via KEGG
analysis (Figure 1J,K). To identify the key genes of PDAC CSCs’ sphingolipid metabolism,
the 25 common genes of sphingolipid metabolic process among GO enrichment results
(Figures 5A and S3A) were further screened using the thresholds (|logFoldChange| > 1
and FDR < 0.05). A total of 14 LMRGs were significantly differently expressed between
PANC−1 TRC and PANC−1 (Figure 5B), and 8 of them were significantly different in the
high stemness group and in the low stemness group, among which only the expression
differences in SPHK1, SPTLC3, HEXB, GAL3ST1, and ASAH1 were consistent in the CSLCs
model and patients’ grouping by stemness indices (Figures 5C and S5). Moreover, survival
analysis (Figure 5D) showed that patients with high expression of SPHK1 suffered a shorter
median OS (p = 0.029) and shorter median disease-free survival (DSS, p = 0.0069) than those
with low expression, and that patients with SPTLC3 high expressed had poor median OS
(p = 0.0086) and median DFS (p = 0.0015). No significant survival difference was found to
be in association with the expression of HEXB, GAL3ST1, and ASAH1 (Figure S5B). The
expression level of SPHK1 (p = 0.007) was significantly positively correlated with the tumor
proliferation signature instead of SPTLC3 (p = 0.616) using ssGSEA analysis (Figure 5E). In
addition, a positive correlation between the expression of SPHK1 and malignant biological
signaling pathways of CSCs including TGF-beta, P53 pathways, and EMT markers [49] was
observed as well (Figure 5F). Accordingly, SPHK1 was considered as a key LMRG involved
in stemness and prognosis in PDAC.

3.7. SPHK1 Promotes the Malignant Behaviors of PDAC-TRC by Promoting Stemness

Finally, the biologic function of SPHK1 was evaluated in PDAC-TRC. The expres-
sion of SPHK1 was silenced using siRNA in PANC−1 TRC as well as MIA PaCa−2 TRC,
being validated via qRT-PCR and Western blotting (Figure 6A,B). Silencing SPHK1 sig-
nificantly inhibited the clonogenicity of both PANC−1 TRC as well as MIA PaCa−2 TRC
(Figure 6C), and significantly decreased the migration and invasion ability of PANC−1
TRC as well as MIA PaCa−2 TRC (Figure 6D). By the fifth day of cultivation of PDAC
TRCs transfected with siSPHK1, exogenous supplementation of S1P was performed, which
recovered the clonogenic ability of TRCs. Exogenous supplementation of S1P to normal
2D−cultured PANC−1 and MIA PaCa−2 cells also resulted in enhanced migration and
invasion (Figure S6). These results suggest that SPHK1 played a crucial role in promoting
malignant behaviors in PDAC TRC. In addition, we evaluated the effect of SPHK1 on
promoting stemness in PDAC TRC. Silencing SPHK1 significantly decreased the expression
of multiple CSCs biomarkers, such as CD133, CD24, Nanog and Sox2 (Figure 6E), which
were up-regulated in PDAC TRC compared to 2D−cultured PDAC cells. Taken together,
SPHK1 may drive the malignant behaviors of PDAC-TRC by promoting stemness.



Metabolites 2023, 13, 1132 14 of 22Metabolites 2023, 13, x  16 of 25 
 

 

 

Figure 5. Identification of the key stemness LMRGs in PDAC. (A) Heatmap of gene expression (rel-

ative high expression in red and relative low expression in blue) which were enriched in sphin-

golipid metabolic process by GO enrichment analysis. (B) Volcano plot of the lipid-relative DEGs 

between PANC−1 TRC and PANC−1. Plots in red (up-regulated) or in blue (down-regulated) with 

gene names representing significant DEGs (|logFoldChange| > 1 and FDR < 0.05) enriched in sphin-

golipid metabolic process. (C) The correlation between the five genes (SPHK1, SPTLC3, HEXB, 

GAL3ST1, and ASAH1) and stemness indices by ssGSEA (**, p < 0.01; ***, p < 0.001; and ****, p < 

0.0001; t-test). (D) OS and DFS curves of PDAC patients from TCGA clustered by the expression of 

SPHK1 and SPTLC3 with quartile as group cutoff. (E) The correlation between the two genes 

(SPHK1 and SPTLC3) and tumor proliferation signature using ssGSEA analysis. (F) The correlation 

between SPHK1 and TGF-beta, P53 pathways, and EMT markers using ssGSEA analysis (n = 179, 

Spearman correlation analysis). SPHK1, sphingosine kinases 1; PDAC, pancreatic ductal adenocar-

cinoma; GO, Gene Ontology; DEGs, differential expressed genes; SPTLC3, serine palmitoyltransfer-

ase 3; HEXB, beta-hexosaminidase; GAL3ST1, galac-tose-3-O-sulfotransferase 1; ASAH1, N-acyl-

sphingosine amidohydrolase 1; ssGSEA, single sample gene set enrichment analysis; DFS, disease-

Figure 5. Identification of the key stemness LMRGs in PDAC. (A) Heatmap of gene expression (rela-
tive high expression in red and relative low expression in blue) which were enriched in sphingolipid
metabolic process by GO enrichment analysis. (B) Volcano plot of the lipid-relative DEGs between
PANC−1 TRC and PANC−1. Plots in red (up-regulated) or in blue (down-regulated) with gene
names representing significant DEGs (|logFoldChange| > 1 and FDR < 0.05) enriched in sphingolipid
metabolic process. (C) The correlation between the five genes (SPHK1, SPTLC3, HEXB, GAL3ST1,
and ASAH1) and stemness indices by ssGSEA (****, p < 0.0001; t-test). (D) OS and DFS curves of
PDAC patients from TCGA clustered by the expression of SPHK1 and SPTLC3 with quartile as group
cutoff. (E) The correlation between the two genes (SPHK1 and SPTLC3) and tumor proliferation
signature using ssGSEA analysis. (F) The correlation between SPHK1 and TGF-beta, P53 pathways,
and EMT markers using ssGSEA analysis (n = 179, Spearman correlation analysis). SPHK1, sphingo-
sine kinases 1; PDAC, pancreatic ductal adenocarcinoma; GO, Gene Ontology; DEGs, differential
expressed genes; SPTLC3, serine palmitoyltransferase 3; HEXB, beta-hexosaminidase; GAL3ST1,
galac-tose-3-O-sulfotransferase 1; ASAH1, N-acylsphingosine amidohydrolase 1; ssGSEA, single
sample gene set enrichment analysis; DFS, disease-free survival; OS, overall survival; TGF-beta,
transforming growth factor-beta; EMT, epithelial mesenchymal transition.
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Figure 6. Effect of silencing SPHK1 by transfected siRNA to PDAC TRCs compared to the negative
control (NC). (A) The mRNA level of SPHK1 in PDAC TRCs transfected with siSPHK1 and NC via
qRT-PCR (mean ± SD, n = 3, t-test). (B) The expression of SPHK1 in PDAC TRCs transfected with
siSPHK1 and NC via Western blotting. (C) Effect of silencing SPHK1 compared to NC on the colony
growth of PDAC TRCs (mean ± SD, n = 3, t-test). (D) Effect of silencing SPHK1 compared to NC
on the migration and invasion ability of PDAC TRCs via transwell assay (mean ± SD, n = 3, t-test).
(E) Effect of silencing SPHK1 compared to NC on the expression of CSCs markers (ESA, CD133, Sox2
and CD24) detected via qRT-PCR (mean ± SD, n = 3, t-test). *, p < 0.05; **, p < 0.01; ***, p < 0.001; and
****, p < 0.0001; ns, not significant. SPHK1, sphingosine kinases 1; PDAC, pancreatic ductal adenocarci-
noma; TRCs, tumor-repopulating cells; qRT-PCR, quantitative reverse transcription polymerase chain
reaction; S1P, Sphingosine 1-phosphate; CSCs, cancer stem cells; ESA, erythropoiesis-stimulating
agent; Sox2, sex-determining region Y-box 2.
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4. Discussion

CSCs are thought to contribute to tumor heterogeneity, which is an essential and
distinct feature of PDAC. The stemness indices calculated using the ssGSEA algorithm
rather than OCLR algorithm were applied in our study to describe and quantify CSCs.
Transcriptome and lipidomic analysis on PDAC TRCs, proved to be an available CSCs
model, found that the up-regulation of the sphingolipid metabolism pathway played the
most special role in the lipid metabolic remodeling process. Finally, we identified SPHK1 as
the key stemness gene involved in sphingolipid metabolism. This understanding of CSCs
and lipid metabolism reprogramming paved the way for developing novel therapeutic
strategies of PDAC, and SPHK1 might be an appropriate target candidate.

CSC represents a small group of cells with infinite proliferative capacity, which is
considered the main cause of metastasis and therapeutic resistance [38]. Therefore, the
targeted eradication of CSCs will be an important progress in PDAC treatment. However,
it how to best define CSCs and the extent to which different tumor types can develop
to tumor mass are still controversial. Despite these controversies, increasing evidence
suggests that stem-cell-associated features, often referred to as “stemness”, are biologically
important in cancer [50], and are strongly related to poor outcomes in a wide variety of
cancers [51,52]. An innovative OCLR on transcriptome was used to obtain the stemness
indices (mRNAsi), which has been proven to stratify recognized undifferentiated BRCA,
AML, and gliomas [39]. However, in our study, the stemness indices using OCLR failed
to find an association with tumors’ undifferentiated state and patients’ outcomes. The
possible reason may be related to Alex Miranda’s findings in reproducing the OCLR
algorithm, as the OCLR algorithm precludes an unbiased assessment of the relationship
between stemness and tumor immunity [38]. Therefore, we adopted the ssGSEA algorithm
mentioned in Alex Miranda’ report to calculate the stemness indices. The results showed
that higher stemness indices were correlated with more advanced clinical stages, a higher
degree of oncogenic dedifferentiation, and worse outcomes, and that the classification of
patients into high and low stemness group accordingly could be an independent prognostic
predictor. Since the stemness indices using the ssGSEA algorithm can stratify recognized
undifferentiated cancers, they were used to provide an approach to explore comprehensive
lipid metabolism pathways on undifferentiated cancers in patients. Although it is currently
unclear whether the stemness indices obtained from a large number of tumor samples
represent a rare true CSCs population, our findings may advance the development for
quantitating PDAC stemness, and provide a basis for the therapeutic targeting of the
stemness phenotype itself.

In this study, we have mapped the specific lipid metabolism features of PDAC TRCs
by combining the changes in lipid metabolites via lipidomic analysis and the expression of
genes encoding metabolic enzymes via transcriptomic analysis. To understand the relation-
ship of the stemness phenotype itself and the lipid metabolism, 3D soft fibrin gel [36] was
used to culture PDAC TRCs by adjusting matrix stiffness, a significant physical property of
ECM, which exerts a vital role in PDAC stemness regulation [53]. The results of malignant
behaviors and overexpressed CSCs’ makers verified PDAC TRCs as an available CSLCs
model. Of note, we not only showed the enhancement of fatty acid prolongation in PDAC
CSCs consistent with previous studies [34,35], but also found the unique changes in sphin-
golipid metabolism in PDAC CSCs for the first time. Sphingolipids are not only important
structural components of biological membranes, but also bioactive molecules that play a
predominant role in signal transduction, cell growth, differentiation, and programmed cell
death and thus affect tumor suppression or survival [54]. De novo sphingolipid begins
with the condensation of serine and palmitoyl-CoA by serine palmitoyltransferase (SPT) to
form dhCer, and endogenous ceramides synthesized after dihydroceramide desaturation
by dihydroceramide desaturase (DES). Ceramide is also generated via sphingomyelin
hydrolysis by sphingomyelinases (SMases) and via glucosylceramide breakdown. In ad-
dition, the salvage pathway for ceramide generation utilizes the recycling of sphingosine
by CERS1–6 [55,56]. Ceramide is a core molecule in sphingolipids’ metabolism. Although
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cellular stress can induce the accumulation of ceramide and mediate cancer cell death [57],
the active metabolism of ceramide has been confirmed in various tumors [58,59]. Ceramide
can be converted to ceride-1-phosphate (C1P) [60] and SM [58], respectively, and is also
utilized as a precursor for the generation of glycosphingolipids (GSL) including glucosylce-
ramide and lactosylceramide [61]. Ceramide is hydroxylated by ceramidases (CDases) to
yield sphingosine, which is phonologically late, by SPHK1 (also known as SK1) or SPHK2
(also known as SK2) to generate S1P [62]. In our study, we observed a slight increase
in ceramide levels in TRCs, which may be related to the active metabolism of ceramide
due to its role as a substrate for generation of sphingolipids with pro-survival functions.
Different from the previous study’s results that the increasing GSL [61] and C1P [60] in
PDAC contribute to malignant metastasis and tumor progression, the significantly elevated
sphingosine was observed in PDAC TRCs. The accumulation of sphingosine was the result
of the significantly inhibited salvage pathway with the significantly activated sphingosine
generation pathway. In addition, our study found a significant decrease in dhCer.

It is hypothesized that CSCs, due to their unlimited proliferation, are in a long-term
high demand for energy and cell division substances, resulting in significant changes in
enzyme quantity instead of enzyme activity through which bio-reactions in the normal cells
may be precisely regulated. Our results demonstrated that the significantly changing lipid
reaction chain is coordinated with the trend of changes in key genes involved. For example,
we observed the enhanced DEGS2's consumption amount of dhCer as reported in colorectal
cancer [63], the significantly inhibited salvage pathway by overexpressed CERS5, and the
activated sphingosine generation pathway by overexpressed ASAH1. Moreover, we found
that SPHK1, the gene encoding the key enzyme catalyzing S1P from sphingosine, was
observed to be overexpressed not only in PDAC TRCs but also in PDAC patients with high
stemness indices, and overexpressed SPHK1 predicted worse prognosis of PDAC patients.
The findings were consistent with the quantification of SPHK1 in PDAC specimens via
immunohistochemistry, indicating high SPHK1 expression is independently associated
with lymphatic invasion and unfavorable prognosis in PDAC patients [64]. Overexpression
of SPHK1 facilitates the retention of endothelial progenitor cells at the progenitor stage [65]
and promotes the proliferation of neural progenitor/stem cells [66]. And the involvement
of the SPHK1 in CSC functioning has been recently investigated in several malignancies,
including glioblastoma [67], melanoma [68], hepatocellular carcinoma [69], and breast
adenocarcinoma [70]. Therefore, we hypothesized that SPHK1 plays an important role in
maintaining the stemness of PDAC. The ssGSEA analysis demonstrated that the expression
level of SPHK1 was significantly positively correlated with TGF-beta, P53, EMT, and
tumor proliferation signals, in accordance with the results that SPHK1 are involved in
CSCs markers expression, and the sphericity, migration, and invasion abilities of PDAC
TRCs. Another study also demonstrated that SPHK1 upregulation may play a potential
role in early neoplastic transformation of inflammatory lesions in long-standing chronic
pancreatitis patients [71]. Mebendazolee was proved to be used as a potential therapeutic
agent for treating PDAC, because it selectively inhibited SPHK1 more than SPHK2 and
regulated the levels of sphingolipids [62]. In addition, the inhibitor of SPHK1 was reported
to be effective in the combination treatment of PDAC [72], and can enhance the therapeutic
effect of gemcitabine [73].

Nevertheless, limitations exist in this study. First, although this study has compre-
hensively considered the transcriptome of patients’ tumors and the transcriptome and
lipidomic characteristics at the cell level, our findings still need to be further verified in
preclinical models such as PDX or PDO considering the unique tumor microenvironment
of PDAC. Secondly, it is necessary to further explore the stemness phenotype of PDAC by
combining single cell sequencing or metabolomics, which can more accurately reflect the
role of lipid metabolism in PDAC. Finally, the treatment of CSCs remains at the theoretical
level; therefore, targeted treatment of SPHK1 or sphingolipid metabolism should be more
considered in combination therapy for exploration.
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5. Conclusions

In this study, we explored the lipid metabolism reprogramming pathway in PDAC
with high or low stemness indices. The sphingolipid metabolism pathway was associated
with tumor stemness and SPHK1 was found to play an important role in promoting
stemness and malignant behaviors in PDAC-TRC. Furthermore, SPHK1 was strongly
correlated with patients’ prognosis and a malignant-tumor-behavior-related signature
in PDAC patients. These findings provide a novel strategy for targeting tumor lipid
metabolism to inhibit CSCs in PDAC.
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indices by OCLR and clinical features in PDAC patients; Figure S2: Tumor bearing nude mice
display and tumor volumes statistics; Figure S3: Supplementary enrichment analysis of PDAC
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compared to normal tissue; Figure S8: Classification of stemness by 33% percentile and 66% percentile
stemness indices and subsequent features analysis in PDAC patients; Figure S9: The correlation
between the key genes enriched in sphingolipid metabolism biological process and stemness indices
by top/bottom 1/3; Table S1: Stemness indices by ssGSEA algorithms; Table S2: Stemness index by
OCLR; Table S3: GO enrichment results of differential expressed LMRGs between patients with high
and low stemness indices stratified by mean indices (n = 82); Table S4: KEGG enrichment results
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results of differential expressed LMRGs between patients with high and low stemness indices by the
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