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Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide.
The in-depth study of genes and metabolites related to nucleotide metabolism will provide new
ideas for predicting the prognosis of HCC patients. This study integrated the transcriptome data of
different cancer types to explore the characteristics and significance of nucleotide metabolism-related
genes (NMGRs) in different cancer types. Then, we constructed a new HCC classifier and prognosis
model based on HCC samples from TCGA and GEO, and detected the gene expression level in the
model through molecular biology experiments. Finally, nucleotide metabolism-related products in
serum of HCC patients were examined using untargeted metabolomics. A total of 97 NMRGs were
obtained based on bioinformatics techniques. In addition, a clinical model that could accurately
predict the prognostic outcome of HCC was constructed, which contained 11 NMRGs. The results
of PCR experiments showed that the expression levels of these genes were basically consistent
with the predicted trends. Meanwhile, the results of untargeted metabolomics also proved that
there was a significant nucleotide metabolism disorder in the development of HCC. Our results
provide a promising insight into nucleotide metabolism in HCC, as well as a tailored prognostic and
chemotherapy sensitivity prediction tool for patients.

Keywords: nucleotide metabolism; hepatocellular carcinoma; prognosis signature; molecular
classification; chemotherapy sensitivity; tumor immune microenvironment

1. Introduction

Hepatocellular carcinoma (HCC) is one of the dominant types of cancer all over
the world [1]. HCC is the third leading cause of mortalities among all malignancies in
the world [2–4]. In addition, effective prognostic indicators would be a boon for these
patients. Thus, it is urgent to develop and verify new prognostic signals to predict the
clinical prognosis of HCC patients at an early stage in order to improve the survival rate
of patients.

Nucleotide is the basic building block of organisms, and it is an essential raw material
for producing nucleic acid to sustain cell proliferation [5]. Nucleotide metabolism is in a
state of dynamic equilibrium, which is important for maintaining normal physiological
functions of cells [6,7]. Recently, researchers have affirmed that abnormal nucleotide
metabolism enhances the growth of tumors and suppresses the normal immune responses
in the tumor microenvironment [8]. For example, disrupting the homeostasis of the pools
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of nucleotides can produce mutations that influence antigen presentation and, ultimately,
the immune response to the tumor [9,10]. Targeting nucleotide metabolism also provides
new directions for the development of novel antitumor-specific drugs [11,12]. Therefore,
focusing on the reprogramming of the nucleotide metabolism will provide new ideas
for predicting prognostic outcomes in HCC patients. Moreover, the clinical relevance
of nucleotide metabolism-related genes (NMRGs) in predicting outcomes and guiding
chemotherapeutic strategies for patients with HCC remains unknown to the best of our
knowledge. Thus, the development of the HCC risk stratification tool using NMRGs
is promising.

In the present research, we will systematically evaluate the potential of NMRGs in
predicting the prognosis of HCC patients using a bioinformatics approach and establish a
risk score signal based on NMRGs to predict the clinical outcome of HCC patients. This
model could be utilized in making clinical decisions and providing individualized care.
To further validate the credibility of the model, we examined the expression of NMRGs
in the model at the cellular level by molecular biology experiments. Ultimately, we used
non-targeted metabolomics to detect the nucleotide metabolism-related products in serum
samples of patients with HCC, further supporting our study from the metabolic point of
view. We are optimistic that the findings of this investigation will avail a greater and new
insight into the diagnosis and management of HCC. Additionally, it will be essential in
availing a theoretical basis for upcoming nucleotide metabolism studies.

2. Materials and Methods
2.1. Data Collection and Processing

Firstly, 97 NMRGs were obtained based on the following dataset from the Molec-
ular Signatures Database (MSigDB): REACTOME_METABOLISM_OF_NUCLEOTIDES.
RNA-sequencing (RNA-seq) and the matched clinical characteristics were derived from the
TCGA database. The samples that were obtained contained 373 and 49 HCC patient sam-
ples and normal samples, respectively. RNA-seq, along with clinical data obtained from the
Gene Expression Omnibus (GEO) database (GSE14520), were used for external validation.
Patients who did not have information on their survival were excluded from further analy-
sis. To facilitate batch normalization, the “sva” package in R was employed. In addition,
the TCGA database was another database that was utilized to acquire SNV, transcriptome
profiles, CNV, methylation data, and pan-cancer transcriptomes’ clinical features.

2.2. Pan-Cancer Analysis

Currently, inadequate research has been conducted to determine the link between
nucleotide metabolism and malignancies. As a result, the differences in NMRGs in various
malignancies are described inadequately. SNV, CNV, methylation, and mRNA expression
data were examined and graphically illustrated as heatmaps to avail a pan-cancer summary
of NMRGs. Moreover, a univariate Cox regression analysis between the mRNA expression
and OS to probe into the value of NMRGs in the prognoses of patients with various
malignancies was conducted using R version 4.0.3 and TBtools version 1.098 [13].

Single sample gene set enrichment analysis (ssGSEA) was used to calculate NMRG
scores in every sample of each cancer to reveal the differential function of pathways
regulated by NMRGs in various kinds of human tumors. Samples were categorized into
two groups, one with the top 30% of NMRG scores and the other with the worst 30%. Gene
set enrichment analysis (GSEA) was used to investigate the differences in pathway activity
between the two groups based on the transcriptomes of the two groups.

2.3. Differentially Expressed Prognostic NMRG Identification

The “limma” packages were utilized to uncover the differentially expressed NMRGs
between HCC and normal tissues (FDR < 0.05, fold change > 1.5). Next, 97 NMRGs screened
out were put into univariate Cox regression analysis to acquire the genes with prognostic
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significance (p < 0.05). Afterward, the intersection of the two sets of genes was taken to
obtain 32 NMRGs for subsequent analysis, as shown by the Venn diagram.

2.4. Non-Negative Matrix Factorization (NMF) Clustering Determination of NMRG
Modification Subtypes

The HCC samples from the TCGA database were clustered by the NMF based on the
expression data of 32 NMRGs. The range for the cluster count, k, was set from 2 to 10. The
R package “NMF” calculated the common membership matrix’s average contour width.
On the basis of the dispersion, cophenetic, and silhouette metrics, the ideal cluster numbers
were established. Afterward, the samples are split into two distinct molecular subtypes C1
and C2.

2.5. Gene Set Variation Analysis (GSVA) and NMRGs Different Expression Analysis

The NMRG scores of individual patients with HCC were computed by the “GSVA”
package in R, which could serve as an indicator of nucleotide metabolism activities. Then,
the “Wilcox.test” function in R and a T-test were employed to compare the difference in the
scores and expression of NMRG between two clusters, respectively.

2.6. Differences in the Prognosis, Immune Checkpoint Genes, and Drug Sensitivity between
Distinct NMRG-Based Clusters

The prognostic efficacy of clusters was assessed using Kaplan–Meier analyses, with
the progression-free interval (PFI), disease-specific survival (DSS), disease-free interval
(DFI), and overall survival (OS), as standards. Subsequently, the “Wilcox.test” function
in R was adopted to explore the disparity between infiltration levels of typically immune
checkpoint genes (ICGs). Additionally, we used pRRophetic [14], the R software that
predicts the clinical chemotherapeutic response utilizing the expression levels of tumor
genes, to calculate the semimaximum inhibitory concentration (IC50) of commonly used
chemotherapeutic drugs in the HCC cohort. A Wilcoxon signed-rank test, on the other hand,
determined if the difference in the IC50 between two clusters is statistically significant.
A decreased semi-inhibitory mass concentration of the drug in malignant cells is always
associated with a smaller IC50, indicating that the cancer cells are more susceptible to
the medicine.

2.7. DEG Identification and Functional Analysis

DEGs between two clusters based on NMRGs were identified by the limma package,
with the thresholds established as FDR < 0.05 and fold change > 1.5, which was further
subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and GO
functional enrichment analyses using the R package “clusterProfiler”.

2.8. Construction and Verification of a Prognostic Signature Based on NMRGs

The 32 differentially expressed and prognostically significant NMRGs obtained previ-
ously were incorporated in the least absolute shrinkage and selection operator (LASSO)
Cox regression signature to develop the powerful prognostic signature. The risk score of
each patient is calculated using the “Prediction” function in R, and then HCC patients in
TCGA and GEO groups were classified into high- and low-risk groups as per the median
risk score, and comparisons of their prognoses were done. To additionally test the viability
of the risk score-based predictive signature in patients with HCC in the TCGA as well as
GEO datasets, the principal component analysis (PCA) and the t-distributed stochastic
neighbor embedding (t-SNE) analyses were done. Using the “survival ROC” R package
version 4.0.3, time-dependent receiver operating characteristic (ROC) curves and AUC
values were obtained to ascertain the specificity and sensitivity of the risk score.

2.9. Creating a Predictive Nomogram That Incorporates Clinical Characteristics and Risk Scores

The clinical data, which comprised age, gender, grade, and stage as well as the
risk score of every patient in TCGA cohorts, were retrieved. The statistically significant
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indicators (p < 0.05) from the univariate Cox survival analysis of each indicator were then
incorporated into the multivariate Cox survival analysis. These markers were regarded
as independent prognostic variables (p < 0.05) in the multivariate Cox survival analysis.
A nomogram was constructed utilizing the above clinical features and risk score. The
nomogram’s discriminating power and prediction accuracy were then assessed using
calibration curves. The prediction performance was also assessed using the time-dependent
ROC curve.

2.10. Reagents

Cell culture-related reagents such as Dulbecco’s Modified Eagle Medium (DMEM),
Minimum Essential Medium (MEM), and Roswell Park Memorial Institute 1640 Medium
(RPMI-1640) were purchased from Gibco (Grand Island, NE, USA). PCR-related reagents
were purchased from Accurate Biology (Changsha, China). Methanol, isopropanol, acetoni-
trile, formic acid, and ammonium acetate of mass spectrometry grade were supplied by
Fisher Scientific (Fair Lawn, NJ, USA). Ammonium bicarbonate and methyl tert-butyl ether
(MTBE) of mass spectrometry level were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Ultra-pure water (18.2 MΩ) was prepared by a Milli-Q water purification system
(Merck KGaA, Darmstadt, Germany).

2.11. Cell Culture

The human HCC cell lines (HuH7, HepG2, and Hep3B2.1–7) were purchased from
Procell Life Science & Technology (Wuhan, China). The L-02 cell line (human normal
hepatocytes) was purchased from BeNa Culture Collection (Beijing, China). Briefly, HuH7
and L-02 were, respectively, grown in DMEM high glucose medium (Gibco, Grand Island,
NE, USA) and RPMI-1640 medium, while HepG2 and Hep3B2.1–7 were incubated in MEM
medium, all of which containing 10% fetal bovine serum and 1% penicillin-streptomycin
solution. All the cells were incubated in a cell incubator under 37 ◦C with a concentration
of 5% CO2.

2.12. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

The total RNA in the HuH7, HepG2, Hep3B2.1–7, and L-02 cell lines was extracted by
the conventional Trizol method and the cDNA was obtained using a reverse transcription
kit (Accurate Biology, Changsha, China). Furthermore, the expressed level of target gene
was detected by using SYBR Green I fluorescent dye-based assay and β-actin was used as
the internal reference gene. RNA level was analyzed and quantified by 2-∆∆Ct. The primer
sequences of the genes were shown in Supplementary Table S1.

2.13. Participants and Criteria

Serum samples from HCC patients (n = 26) and healthy individuals (n = 26) were
obtained from the biological sample bank of the First Affiliated Hospital of Dalian Medical
University (collected from November 2016 to December 2019). In addition, the study has
been approved by the Ethics Committee of the First Affiliated Hospital of Dalian Medical
University (No. PJ-KS-KY-2021–129). Inclusion criteria for the HCC group included:
(1) signed informed consent for collection and use of biological samples and aged≥18 years;
(2) the pathological diagnosis is HCC; (3) follow-up information is complete; (4) no other
malignant tumors and no prior anti-tumor treatment was performed before surgery; (5) the
biological sample is complete. Exclusion criteria include: (1) new adjuvant or chemical
therapy before surgery; (2) accidental death during operation or postoperative relapse
resulting in death within one month; (3) the follow-up information is incomplete or the
biological sample is missing. Serum samples from the control group (CON group) were
obtained from healthy individuals on physical examination and matched the sex and age
composition of the HCC group.



Metabolites 2023, 13, 1116 5 of 18

2.14. Serum Sample Pretreatment and Non-Targeted Metabolomics Analysis

The pretreatment procedures of serum samples were divided into two parts, namely,
extraction of polar small molecule metabolites and lipids. Briefly, to extract the polar
metabolites, we added 150 µL of the serum sample to a 96-DeepWell plate followed by
600 µL of methanol solution. After the mixture was vortexed for 5 min, it was centrifuged
at 5300 rpm for 20 min. The supernatants were divided into two 200 µL aliquots, and trans-
ferred to two individual 450 µL 96-well plates, and the liquid was lyophilized by a freeze
dryer. Finally, the residual was redissolved prior to non-targeted metabolomics testing. Ad-
ditionally, to extract the lipids, we added 20 µL of serum sample to a 1.5 mL microcentrifuge
tube, followed by 120 µL of methanol solution and vortexed for 3 min. Then, 360 µLof
methyl tertbutyl ether (MTBE) and 100 µL of ultra-pure water were sequentially added
after oscillating for 3 min, and then the mixture was centrifuged at 13,000× g for 15 min.
Similarly, the lipid layer was lyophilized and dissolved prior for the test. UltiMate 3000
ultra-high performance liquid chromatographic system and the Q-Exactive quadrupole
-Orbitrap high resolution mass spectrometer (Thermo Fisher Scientific, Fair Lawn, NJ,
USA) were used for non-targeted metabolomics analysis. For more information about
metabolomics-related processes, please referred to the Supplementary Materials.

3. Results
3.1. Pan-Cancer Introduction with Respect to Differences in NMRGs

A chart displaying the research steps is provided in Figure 1. TCGA availed CNV,
SNV, methylation, mRNA expression profiles, and survival data for 97 NMRGs in all
kinds of malignancies for the pan-cancer study. We analyzed NMRG-related SNV data to
ascertain the frequency as well as the variant types in every cancer subtype. As revealed in
Supplementary Figure S1A, SKCM, UCEC, LUSC, LUAD, and STAD all had substantial
SNV of NMRGs. The frequency of SNV of the NMRGs was 75.17% (2703 of 3596 tumors).
Missense mutations were the predominant SNP type, according to the examination of
variant types. The top five mutated genes, as determined by SNV percentage analyses, were
CAD, DPYD, XDH, AK9, and AMPD1, with respective mutation percentages of 8%, 8%,
8%, 7%, and 6% (Supplementary Figure S1B). Moreover, to examine the genetic aberrations
of NMRGs in malignancy, the percentage of CNV was evaluated and the findings revealed
that, in general, CNV occurred at remarkable frequencies in a majority of cancer types
(Figure 2A,B). In addition to CNV, aberrant DNA methylation of the promoter is linked to
tumorigenesis [15]. The methylation of the promoter can modulate gene expression. We
observed that most NMRGs in the 20 cancer types exhibited complex methylation patterns.
However, TXNRD and ENTPD3 consistently showed hypermethylation in several tumors,
while NME3, UPP2, and XDH showed the opposite (Figure 2C).
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Figure 2. Panoramic view of nucleotide metabolism-related genes (NMRGs) in pan-cancer. (A,B) His-
togram displays the frequency of copy number variation (CNV) for each NMRG in each tumor type
((A) amplification; (B) deletion). (C) Heatmap displays the differential methylation of NMRGs in
cancers; hypermethylated and hypomethylated genes are denoted with red and blue, respectively
(Wilcoxon rank-sum test). (D) Histogram (upper panel) and heatmap demonstrate the number of
significant DEGs and the fold change and FDR of NMRGs, respectively, in each cancer. Substantially
upregulated and downregulated genes are denoted with red and green, respectively. (E) NMRGs’
survival profiles across cancers.

Besides genetic alterations, each cancer type’s altered NMRG gene expression patterns
were investigated using differential expression analysis between the malignant and nearby
normal tissues. With the exception of pancreatic cancer tissues, we ascertained that most
gene expression levels in cancer tissues varied in contrast with those in normal tissues.
RRM2 and TK1 had remarkably increased expression levels in several cancers (Figure 2D).
Afterward, utilizing univariate Cox regression of mRNA expression and OS, risky NMRGs
with HR > 1 and p-Value < 0.05 as well as protective NMRGs with HR < 1 and p-Value < 0.05
were detected, as displayed in Figure 2E.



Metabolites 2023, 13, 1116 7 of 18

3.2. Identification of Differentially Expressed Prognostic NMRGs

RNA-seq data and clinical data of 49 normal samples and 373 HCC samples were
retrieved from the TCGA database. A heatmap was developed with the aim of demon-
strating the differentially expressed NMRGs between the normal and cancerous samples
(Supplementary Figure S2A). A total of 69 out of 97 NMRGs were discovered to have differ-
ential expressions in normal and cancerous samples (Supplementary Table S2). Meanwhile,
univariate Cox survival analysis was also done on NMRGs, of which 38 NMRGs were
statistically significant (Supplementary Table S3). Finally, the intersection of the two sets of
genes was taken to obtain 32 NMRGs for subsequent analysis (Supplementary Figure S2B).

3.3. NMF Clustering Identification of Molecular Typing Based on the NMRG

The NMF method selects the appropriate clustering number of two for the data, as per
cophenetic, dispersion, and silhouette coefficients (Supplementary Figure S3, Figure 3A).
The results of the following GSVA and KM analyses indicate that samples in C2 have
higher NMRG scores and worse OS, DFI, PFI, and DSS, indicating the risky significance
of NMRGs in HCC patients (Figure 3B–F). Supplementary Figure S4 shows the NMRGs
that are differentially expressed in the two subgroups. Studies report adenosine block
immune cell differentiation as well as maturation. It furthermore activates the expression
of checkpoint molecules. We, therefore, compared the expression of ICGs between the two
subtypes. Figure 3G shows all the statistically distinct ICGs, which are all expressed at
higher levels in C2. In order to select appropriate administrating chemotherapeutic drugs
for HCC patients, we performed chemotherapy sensitivity predictions between the two
clusters. The results showed that Sorafenib, Metformin, Docetaxel, Dasatinib, Erlotinib,
and Gefitinib are more suitable for C1 populations, while Gemcitabine, Doxorubicin,
Cisplatin, Camptothecin, Bortezomib, and Etoposide are more suitable for C2 populations
(Supplementary Figure S5).
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3.4. Functional Analysis for the NMRG Clusters

Then, in order to investigate probable mechanisms and biological functions at the gene
level for the C1 and C2 groups, GO and KEGG pathway analyses were employed. Out of 995
DEGs that were subjected to screening (Supplementary Table S4), 356 and 639 genes were
ascertained to be downregulated and upregulated in the C1 group, respectively (Figure 4A).
The GO analysis affirmed that the genes were remarkably involved in the biological process
of catabolic processing, inhibitor activity, and cell−substrate junction (Figure 4B). Meantime,
the KEGG analysis revealed that these genes were also significantly related to various
metabolic pathways, such as Tryptophan metabolism, Fatty acid degradation, Arginine
and proline metabolism. (Figure 4C).
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3.5. Determination and Verification of an NMRG-Based Prognostic Signature

To examine further the prognostic value of NMRGs, NMRG-based risk scores were
created to anticipate HCC patients’ survival. Upon conducting a LASSO regression and
multivariate Cox analyses on the training cohort (Supplementary Figure S6), 11 genes
(i.e., GMPS, UCK2, ENTPD2, PPAT, TXNRD1, RRM2, ATIC, ADSL, ADK, CDA, and DPYS)
with prognostic values were uncovered from 32 NMRGs that had been previously obtained.
Risk scores were subsequently determined for each HCC patient in the training cohort,
and the training cohort sample was categorized into high- and low-risk subgroups based
on the value of the median risk score (Figure 5A). Patients with greater risk scores had
an increased likelihood of mortality, based on the risk score distributions and survival
status. (Figure 5B). According to the PCA and t-SNE displayed in Figure 5C,D, patients
belonging to the two risk groups may be distinguished with ease. Individuals that were in
the high-risk subgroup had consistently reduced DSS, DFI, PFI, and OS values (p < 0.05),
as shown in Figure 5E–H. Furthermore, the survival probability of the ROC curves of risk
score-related AUC values were 0.798, 0.716, and 0.700 for 1, 3, and 5 years (Figure 5I),
demonstrating that the risk score exerts a remarkable function in the prediction of the
survival of HCC patients.
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3.6. Predictive Efficiency of the Risk Signature Validation in the GEO Cohort

The GEO cohort (GSE14520) availed NMRG expression data on 225 HCC patients
with complete survival data to confirm the replicability of the risk score in a different
patient cohort. The GEO dataset was classified into high- and low-risk groups as per the
median risk score of the training cohort (Supplementary Figure S7A). As displayed in
Supplementary Figure S7B, the high-risk group was detected to have more death events,
while the low-risk group demonstrated a remarkable probability of survival. PCA as well as
t-SNE demonstrated that patients in the two risk groups were also distributed as per the two
different groups (Supplementary Figure S7C,D). As demonstrated by the Kaplan–Meier
curves for OS in Supplementary Figure S7E, patients in the high-risk group were discovered
to exhibit a worse prognosis in contrast with the other risk group. Additionally, the high-
risk group patients demonstrated a shorter survival time. A time-dependent ROC curve
was examined to further determine the accuracy of the predictive risk signatures. Here, it
was discovered that the AUC values of the signature in 1, 3, and 5 years were 0.611, 0.610,
and 0.619, respectively (Supplementary Figure S7F).

3.7. Nomogram Development and Verification

To ascertain the link between immune function and the risk score, a heatmap was
created. Statistically significant variations existed between the high as well as low-risk
groups in the immune function of activated dendritic cells (aDCs), cytolytic activity, T cell
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regulation (Treg), Type I IFN Response, and Type II IFN Response in both the train and
test cohorts (Supplementary Figure S8A,B). The univariate and multivariate Cox analyses
evaluated the training cohort’s clinical characteristics such as age, gender, grade, stage, and
risk score. The findings of the univariate Cox and multivariate Cox regression analyses
revealed that the training cohort’s risk score and stage were independent prognostic pre-
dictors (Figure 6A,B). Afterward, the aforementioned factors were incorporated to generate
a nomogram (Figure 6C). Furthermore, calibration curves were constructed to verify the
anticipation power for the nomogram. The findings indicated an overall agreement be-
tween the nomogram’s predicted survival rates and the actual survival rates (Figure 6D).
The AUC values of the nomogram in 1, 3, and 5 years for HCC were 0.749, 0.732, and 0.719,
respectively (Figure 6E).
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multivariate Cox regression analyses in the train cohort. (The green nodes in (A) indicate one-factor
COX regression analysis, and the red nodes in (B) indicate multifactor COX regression analysis). (C) A
nomogram of risk scores and clinical features. (The numbers in the overlapping part of (C) indicate
the survival time (years)). (D) Calibration curves were utilized to validate the nomogram’s 1-year,
3-year, and 5-year predictive ability. (E) The AUC values of the ROC curves for improved evaluation
of the nomogram’s prognostic ability. ** p < 0.01, *** p < 0.001.
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3.8. The Expression of Hub Gene in Different HCC Cell Lines

To validate the bioinformatics predictions, we extracted the total RNA from different
human HCC cell lines (HuH7, HepG2, and Hep3B2.1–7) and human normal hepatocyte
line L-02. The mRNA level of the key genes, namely ADK, ADSL, ATIC, CDA, DPYS,
ENTPD2, GMPS, PPAT, RRM2, TXNRD1, and UCK2, were determined. The results showed
that the expression levels of ADK, ADSL, ATIC, DPYS, ENTPD2, TXNRD1, and UCK2 in at
least one tumor cell line were consistent with the predictions (Figure 7A). We found that
the expression levels of CDA, GMPS, and RRM2 in HCC patients were opposite to the
predicted results (Figure 7B), which is an interesting phenomenon.
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3.9. Metabolic Profiles of Hepatocellular Carcinoma and Differential Analysis of
Nucleotide Metabolites

To observe the overall metabolic profiles in patients with hepatocellular carcinoma,
we performed a non-targeted metabolomics analysis. A total of 26 serum samples from
HCC patients obtained from the biological sample bank of the First Affiliated Hospital of
Dalian Medical University were included in this study. In addition, we matched 26 serum
samples from healthy control subjects according to the sex and age of the HCC patients.
Baseline information for both groups is presented in Supplementary Table S5. The results
of the OPLS-DA analysis showed a significant segregation in polar metabolites and lipids
for both groups (Figure 8A). Next, volcanic maps were used to perform the differences
between the two groups and the mean rate of change in intensity. The results are presented
in Figure 8B.
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To further explore the nucleotide metabolic profile in HCC patients, we compared
the levels of nucleotide-related metabolites in those two groups of the samples and the
results are presented as heat maps (Figure 8C). Specifically, a total of 26 products related to
nucleotide metabolism were identified, of which 16 were significantly different, as follows:
adenosine, dihydrothymine, cytidine, hypoxantine, inosine, uric acid, xanthine, uridine,
Uracil, Allantoin, 5-Methyluridine (Ribothymidine), 7-Methylguanine, 5-Methylcytidine,
5-MethylThioadenosine, Allantoic Acid, and 2-O-Methyluridine. We show some obviously
different metabolites in Figure 8D. For the difference analysis of other metabolites, see
Supplementary Figure S9.

4. Discussion

HCC is extremely aggressive, so it is clinically important to explore its effective prog-
nostic indicators [16]. Recently, the traditional prognostic assessment system using clinico-
pathological parameters and staging has failed to meet the needs of precision medicine [17].
As sequencing technology has advanced, researchers have focused increasingly on disease
molecular type and the quest for novel biomarkers to help with clinical diagnosis as well
as treatment [18]. This approach not only enhances the standard prognostic assessment
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but also identifies a novel kind of pathogenesis. During the development of tumors, abnor-
mal cancer metabolism takes place [19]. Recent research has demonstrated that aberrant
nucleotide metabolism speeds up the progression of tumors while suppressing the tumor
microenvironment’s normal immune response [7,20]. The research on the link between
nucleotide metabolism and the emergence of cancer is fast progressing, despite the paucity
of pertinent experiments and studies. For malignancies treatment and prevention of recur-
rence as well as metastasis, the intervention, change, or modulation of molecular pathways
connected to aberrant nucleotide metabolism in cancerous cells has emerged as a novel
strategy and idea [8]. Thus, NMRG-based risk stratification of HCC is a promising strategy
for prognosis assessment and individual management.

We sum up the differences in NMRGs across numerous cancers before studying the
effect of aberrant nucleotide metabolism in HCC. The differences in NMRGs more or
less happened and partial NMRGs had prognostic values in various malignancies. Addi-
tionally, it was evidently shown in several tumors that NMRGs had undergone genetic
mutations and alterations. NMRGs were positively correlated with MYC targets, oxidative
phosphorylation, mTORC1 signaling, E2F targets, and DNA repair in a majority of types
of tumors. Nevertheless, they were negatively linked to UV response DN, myogenesis,
and epithelial–mesenchymal transition. MYC orchestrates proliferation, apoptosis, dif-
ferentiation, and metabolism and is frequently linked to poor prognosis and survival of
patients. It plays a crucial function in practically every step of the neoplastic process [21].
Ectopic MYC expression in malignancies might simultaneously promote aerobic glycolysis
and/or oxidative phosphorylation to supply adequate energy and anabolic substrates
that are essential for the growth of cells and cell proliferation within the tumor microen-
vironment [22]. In cases of proliferative deregulation and in numerous different cancer
types, mTOR signaling is triggered. Numerous mTOR pathway components have been
documented to be dysregulated in malignancies including breast, colon, ovarian, kidney,
and head and neck cancers [23]. Recent studies in HCC and pancreatic cancer suggest
that E2F expression and/or increased E2F target expression in tumors have been linked
to poor prognosis [24–26]. Genes involved in DNA repair responses exhibit a variety of
mutations and abnormal expressions in cancer cells. These changes cause genomic instabil-
ity and accelerate the processes of carcinogenesis and cancer progression [27]. Aberrant
nucleotide metabolism may contribute to the development of cancer by regulating the
above pathways.

Then, we filtered 97 NMRGs to obtain NMRGs that were differentially expressed in
both cancerous and normal tissues and had prognostic significance. Thirty-two NMRGs
were found for NMF clustering and a signature building. First, 32 NMRGs are applied
to divide HCC samples into two molecular clusters with significantly distinct prognoses.
C2 subtype is characterized by high NMRG scores and poor prognosis (PFI, DFI, DSS,
and OS), indicating the risky significance of NMRGs in HCC patients. This result is
consistent with the finding that the majority of NMRGs were HCC risk genes in the pan-
cancer analysis. Considering that adenosine is able to induce the expression of checkpoint
molecules, we compared the differences in ICG expression between the two subtypes. We
discovered that ICGs are expressed at a high level in the C2 subtype, and these differentially
expressed ICGs may be intrinsic to the differential prognosis of HCC and may be potential
targets for treatment. Even though there are various therapeutic choices available for HCC
patients, chemotherapy remains a primary treatment modality for those with advanced
HCC. Nevertheless, the efficacy of chemotherapy is yet unreliable. Therefore, it is important
to find a method to accurately anticipate HCC patients’ chemotherapy responses. We then
explored whether there were differences in the sensitivity of patients with two subtypes
based on NMRG to commonly used chemotherapeutic agents. We found that the C1
subtype might benefit from Sorafenib, Metformin, Docetaxel, Dasatinib, Erlotinib, and
Gefitinib; however, the C2 subtype might benefit from Gemcitabine, Doxorubicin, Cisplatin,
Camptothecin, Bortezomib, and Etoposide. It demonstrates how NMRG-based clustering
may be a huge help in accurately treating individuals with HCC.
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In addition, we used the KEGG pathway enrichment analysis method to investigate
the possible molecular biological mechanisms of C1 and C2 subtypes. The results showed
that differential genes between subtypes were enriched in a variety of metabolic pathways,
such as Tryptophan metabolism, Fatty acid degradation, Arginine and proline metabolism,
Glycine, serine, and threonine metabolism, Primary bile acid biosynthesis, Fatty acid
metabolism, Tyrosine metabolism, and Pyruvate metabolism among others. Dysregulation
of these metabolic processes plays an important role in the development of HCC. Trypto-
phan catabolism has been reported to be involved in immune tolerance response and to
promote response to other anticancer drugs [28]. Furthermore, altered lipid metabolism is
increasingly recognized as a marker of tumor occurrence [29], and our enrichment analysis
showed that fatty acid metabolic processes were indeed significantly altered. The above
results give us an insight that the metabolic processes of the organism are interrelated and
related to each other, while an abnormal nucleotide metabolism can lead to reprogramming
situations of multiple metabolic processes, and finally jointly induce the occurrence of
tumors. Therefore, focusing on the complex metabolic regulatory network may be a novel
direction for predicting or treating tumors.

Additionally, to obtain a reliable signature with clinical significance, we screened
32 NMRGs by univariate Cox and LASSO regression analyses and tested the optimized
candidate genes for signature development. After verification, a novel NMRG-related
prognostic signature was created incorporating 11 genes (i.e., GMPS, UCK2, ENTPD2,
PPAT, TXNRD1, RRM2, ATIC, ADSL, ADK, CDA, and DPYS).

Other research studies have examined these 11 genes in numerous cancer forms, some
of which have also been examined in HCC. A glutamine amide is used by GMPS to gener-
ate the guanine nucleotide as part of the de novo purine biosynthesis process. Previous
research has shown that GMPS was crucial to the development of ovarian cancer [30],
HCC [31], myeloid [32], prostate cancer [33], etc. UCK2, which can catalyze the phospho-
rylation of uridine and cytidine to uridine monophosphate and cytidine monophosphate.
UCK2 has been proven to enhance the migration and invasion of HCC cells [34], which
was also identified to be a latent diagnostic as well as a prognostic indicator for lung
cancer [35] and breast cancer [36]. ENTPD2 is regarded as a pivotal ectoenzyme engaged in
extracellular ATP hydrolysis [37]. The upregulation of ENTPD2 is present in papillary thy-
roid carcinoma-derived cells [38], esophageal cancer cells [39], glioma cells [40], and liver
cancer cells [41] in comparison to normal cells. While ENTPD2 overexpression was a poor
predictor of prognosis for HCC, ENTPD2 inhibition was able to slow the progression of the
tumor and improve the effectiveness and efficiency of immune checkpoint inhibitors [41].
PPAT catalyzes the initial committed step of de novo purine nucleotide biosynthesis [42,43],
implying that targeting PPAT can serve as a successful cancer strategy [44]. Additionally,
PPAT was discovered as a prognostic biomarker in HCC [45]. Modulation of TXNRD1
could influence the proliferation, invasion, and migration of carcinoma [46,47]. TXNRD1 is
upregulated in breast cancer, head and neck cancer, and lung cancer, and its overexpression
is linked to a bad prognosis [48,49]. By altering the redox balance in vitro, inactivation
of TXNRD1 prevented HCC cells from proliferating and led to their apoptosis [50]. Sev-
eral previous reports indicated that RRM2 functioned in the proliferation, invasion, and
metastasis of malignant cells, and as a result, participated in several types of malignant
tumors including HCC [51,52]. ATIC, a bifunctional protein enzyme, catalyzes the final two
steps of the de novo purine biosynthesis pathway. Studies show that the overexpression
of ATIC in HCC is associated with a shorter life expectancy and promotes the growth
of HCC cells via controlling the AMPK-mTOR-S6 K1 signature [53]. ADSL, an essential
enzyme for de novo purine biosynthesis, is thought to be a novel oncogene in prostate
cancer and colorectal carcinoma [54,55]. ADK is a member of the ribokinases family and
is an essential enzyme for the elimination of extracellular adenosine by phosphorylating
it into 5′-adenosine monophosphate [56]. ADK can influence immune systems and aid in
the development of cancer. In addition, lower ADK expression was linked to liver cancer
relapse [57]. Gemcitabine became inactive as a result of the deamination of dFdC to dFdU
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caused by CDA [58]. According to several in vitro studies, overexpressing CDA resulted in
gemcitabine resistance, whereas removing CDA restored gemcitabine sensitivity [59,60]. A
zinc metalloenzyme, DPYS, which breaks down dihydropyrimidine, is expressed at a high
level in tumors in contrast with the matching normal tissues [61]. According to studies,
the DPYS subtype DPYSL3 was a potential biomarker for stomach cancer’s malignant
nature [62].

Utilizing the signature, HCC patients may be successfully classified into the high-risk
subgroup with a worse prognosis as well as the low-risk subgroup in the train, test1, test2,
and test3 cohorts with a better prognosis. The areas under the ROC curves affirmed that
this signature has a good predictive value. Given the possible impact of the tumor immune
function on cancer therapy, we evaluated the difference in immune function between two
risk subgroups of HCC. The results showed Treg and aDCs were expressed at a high
level in the high-risk group, whereas the opposite was true for IFN response and cytolytic
activity. To explicitly exploit the signature’s prognostic capability, the survival rate of HCC
patients was quantitatively examined upon creating a nomogram based on risk score and
other clinical features. ROC and calibration curves evaluated the nomogram’s predictive
potential, showing high accuracy. Finally, we verified the expression of these 11 genes
through basic experiments.

However, some drawbacks are related to our research. All RNA sequence data and
clinical information were from public databases, such as the TCGA and GEO databases.
To develop the predictive significance of our prognostic signature, substantial prospective
clinical research is needed. Lastly, the feature was developed using bioinformatics research
and preliminary basic experimental analysis was performed, but further genetic functional
research is needed to verify our findings.

5. Conclusions

In this study, we successfully obtained a clinical model that can accurately predict the
prognosis of HCC patients by using bioinformatics-related analysis methods. The model
contains 11 NMRGs, and its expression was verified in subsequent molecular biology
experiments. Finally, the nucleotide-related metabolic profile under HCC was verified
in patients based on non-targeted metabolomics data. It is expected that the current
investigation might provide novel perspectives for clinical management and personalized
treatment of HCC patients.
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