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Abstract: Metabolic disease is a significant risk factor for severe COVID-19 infection, but the con-
tributing pathways are not yet fully elucidated. Using data from two randomized controlled trials
across 13 U.S. academic centers, our goal was to characterize metabolic features that predict se-
vere COVID-19 and define a novel baseline metabolomic signature. Individuals (n = 133) were
dichotomized as having mild or moderate/severe COVID-19 disease based on the WHO ordinal scale.
Blood samples were analyzed using the Biocrates platform, providing 630 targeted metabolites for
analysis. Resampling techniques and machine learning models were used to determine metabolomic
features associated with severe disease. Ingenuity Pathway Analysis (IPA) was used for functional
enrichment analysis. To aid in clinical decision making, we created baseline metabolomics signatures
of low-correlated molecules. Multivariable logistic regression models were fit to associate these signa-
tures with severe disease on training data. A three-metabolite signature, lysophosphatidylcholine a
C17:0, dihydroceramide (d18:0/24:1), and triacylglyceride (20:4_36:4), resulted in the best discrimina-
tion performance with an average test AUROC of 0.978 and F1 score of 0.942. Pathways related to
amino acids were significantly enriched from the IPA analyses, and the mitogen-activated protein
kinase kinase 5 (MAP2K5) was differentially activated between groups. In conclusion, metabolites
related to lipid metabolism efficiently discriminated between mild vs. moderate/severe disease.
SDMA and GABA demonstrated the potential to discriminate between these two groups as well. The
mitogen-activated protein kinase kinase 5 (MAP2K5) regulator is differentially activated between
groups, suggesting further investigation as a potential therapeutic pathway.

Keywords: metabolomics; machine learning; COVID-19; targeted metabolic profiling; biomarker
identification

1. Introduction

Despite the success of vaccines, the ability to identify individuals at risk of severe
COVID-19 disease is a persistent need. Certain individuals remain at high risk, and
healthcare professionals can make better decisions with accurate information about whether
or not their patients are at high risk of developing severe outcomes [1]. Metabolomic
syndrome has been linked to severe outcomes in COVID-19 [2–4], and the underlying
metabolic changes induced by this massive proinflammatory infection may have ongoing
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relevance to other acute viral and bacterial respiratory diseases. Previous metabolomics
analyses have attempted to identify at-risk individuals by comparing hospitalized patients
with COVID-19 to COVID-negative controls who may or may not be hospitalized for other
conditions [5–8]. The few studies that matched our own report relative concentrations [9,10],
or metabolite ratios [11].

To better understand the differences in metabolomic signatures of patients as a func-
tion of disease severity, our group conducted a secondary analysis of prospectively collected
plasma from patients enrolled in two multicenter randomized controlled trials that evalu-
ated the efficacy of losartan as a treatment in patients with COVID-19 [12,13]. The trials
enrolled patients hospitalized with COVID-19 as well as symptomatic outpatients that
did not require emergency department or inpatient care, respectively. The objective of
this study was to identify potential biomarkers associated with severe COVID-19 in a
population of patients with symptomatic disease.

2. Materials and Methods
2.1. Population

This study was approved by a central institutional review board (outpatient trial:
Advarra Pro00042760; inpatient trial: Advarra Pro00042757), and all participants pro-
vided written informed consent. Prior to analysis, all data were anonymized to ensure
confidentiality.

Patients who participated provided blood samples for one of two multicenter, placebo-
controlled randomized clinical trials to evaluate the efficacy of losartan in hospitalized and
nonhospitalized patients with COVID-19 [12,13].

Pharmacodynamics and clinical studies did not identify a significant difference
in renin–angiotensin–aldosterone system (RAAS) signaling between the losartan and
placebo groups, and neither trial demonstrated significant differences in their primary
outcomes [12,13]. We also examined PCA score plots in our data, and no patterns in
treatment were identified. Given these observations, for the purposes of the present
analysis, we merged data from both treatment groups.

The primary outcome was defined based on a standardized accepted scale of severity
at 15 days. Specifically, severity was recorded using a modification of the World Health
Organization (WHO) ordinal scale. This scale is as follows: (0) death, (1) hospitalized, on
invasive mechanical ventilation or ECMO, (2) hospitalized on noninvasive mechanical
ventilation or high flow devices, (3) hospitalized requiring oxygen, (4) hospitalized, not
on oxygen, and (5) not hospitalized. To handle missing day-15 outcomes, an a priori
decision was made to give all outpatients missing a day-15 outcome an outcome of 5 (not
hospitalized), and inpatients missing a day-15 outcome their last observed outcome carried
forward if they were in the study beyond day 6.

2.2. Primary Outcome

A binary outcome, “mild” vs. “moderate/severe”, was constructed to reflect the worst
severity experienced by each individual in the studies. This accounts for any outpatients
who may have been hospitalized by the end of the study. Individuals that were never
hospitalized over the 15-day period were categorized as having “mild” disease, also defined
as a WHO score of no lower than 5. “Moderate/severe disease” was defined as being
hospitalized within 15 days, or a score of 4 or lower at any point. Our primary outcome
coincided with the trial in which each person participated: those categorized as having mild
disease were from the outpatient trial, while those categorized as having moderate/severe
disease were from the inpatient trial.

2.3. Metabolomics Data and Preprocessing

Biospecimens were collected from 133 consenting patients at baseline (day 1 samples,
collected at study randomization) and day 15. Of these, 107 individuals had either a known
or imputed day-15 COVID outcome. The final dataset with these 107 individuals’ baseline
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targeted metabolomic measurement and day-15 COVID outcome was used for subsequent
analysis. Samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes and
plasma was extracted as per trial protocol within 6 h of collection. Plasma was frozen at
−80 Celsius and batch analyzed at the end of the trial.

Plasma was analyzed with the MxP® Quant 500 kit by Biocrates (Life Sciences AG,
Innsbruck, Austria). A 96-well-based sample preparation device was used to quantitatively
analyze the metabolite profile in the samples. This device consists of inserts that have
been impregnated with internal standards, and a predefined sample amount was added to
the inserts. Next, a phenyl isothiocyanate (PITC) solution was added to derivatize some
of the analytes (e.g., amino acids), and after the derivatization was completed, the target
analytes were extracted with an organic solvent followed by a dilution step. The obtained
extracts were then analyzed by direct injection MS/MS and LC-MS/MS methods using
multiple reaction monitoring (MRM) to detect the analytes. Concentrations were calculated
using appropriate mass spectrometry software, and data were imported into Biocrates
MetIDQ™ software (Oxygen-DB110-3023) for further analysis. The system allows for the
measurement of 630 metabolites from 26 compound classes, and the metabolomics data
were log2-transformed and scaled to have a mean of zero and a variance of one for each
metabolite prior to further analysis.

2.4. Statistical Analysis

To compare baseline demographic characteristics in Table 1, chi-square tests [14] for
categorical variables and ANOVA [15] for continuous variables were used. We searched
for candidate metabolites that differentiate our primary outcome using resampling, Mann–
Whitney U-tests [16], partial least squares-discriminant analysis (PLS-DA) [17,18], logistic
regression, and Ingenuity Pathway Analysis (IPA) [19]. We compared individuals with
mild vs. moderate/severe COVID-19 disease using metabolite expression at baseline. The
data processing and analysis steps are summarized in a flowchart shown in Supplementary
Figure S1. All the statistical analyses were performed using the R software version 4.1.0
except for the IPA, which was performed with the QIAGEN IPA software (content version
94302991 released on 27 May 2023) [19].

Table 1. Demographics of patient samples used in the analysis of the association between baseline
metabolome and COVID-19 disease severity. For the continuous variables, the median and the IQR
are shown, and for the categorical variables, the count and the proportion are shown.

Moderate/Severe (n = 39) Mild (n = 68) Total (n = 107) p-Value

Sex 0.19
Male 27 (69.23%) 37 (54.41%) 64 (59.81%)

Age
Median [IQR] 58.00 [48.00, 66.00] 38.00 [26.00, 51.00] 47.00 [31.50, 57.00] <0.001

Race <0.001
Asian 1 (2.56%) 3 (4.41%) 4 (3.74%)

Black or African American 17 (43.59%) 3 (4.41%) 20 (18.69%)
White 11 (28.21%) 52 (76.47%) 63 (58.88%)

Hispanic 7 (17.95%) 7 (10.29%) 14 (13.08%)
Other/unknown 3 (7.69%) 3 (4.41%) 6 (5.61%)

Body mass index (BMI) 0.004
Median [IQR] 31.96 [26.47, 35.10] 26.69 [24.24, 31.76] 28.40 [24.64, 33.04]

Treatment 0.74
Losartan 21 (53.85%) 33 (48.53%) 54 (50.47%)
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Table 1. Cont.

Moderate/Severe (n = 39) Mild (n = 68) Total (n = 107) p-Value

Diabetes 0.025
No 29 (74.36%) 63 (92.65%) 92 (85.98%)
Yes 9 (23.08%) 5 (7.35%) 14 (13.08%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)
Coronary artery disease 0.17

No 37 (94.87%) 68 (100%) 105 (98.13%)
Yes 1 (2.56%) 0 (0%) 1 (0.93%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

Hypertension <0.001
No 16 (41.03%) 62 (91.18%) 78 (72.90%)
Yes 22 (56.41%) 6 (8.82%) 28 (26.17%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

Atrial fibrillation 0.046
No 34 (87.18%) 67 (98.53%) 101 (94.39%)
Yes 4 (10.25%) 1 (1.47%) 5 (4.67%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

Pulmonary hypertension NA
No 37 (94.87%) 68 (100%) 105 (98.13%)

Missing 2 (5.13%) 0 (0%) 2 (1.87%)

Asthma 0.74
No 36 (92.31%) 60 (88.23%) 96 (89.71%)
Yes 3 (7.69%) 8 (11.77%) 11 (10.29%)

Chronic bronchitis NA
No 38 (97.44%) 68 (100%) 106 (99.07%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

Chronic obstructive
pulmonary disease (COPD) 0.010

No 34 (87.18%) 68 (100%) 102 (95.32%)
Yes 4 (10.25%) 0 (0%) 4 (3.74%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

HIV NA
No 38 (97.44%) 68 (100%) 106 (99.07%)

Missing 1 (2.56%) 0 (0%) 1 (0.93%)

Uses cigarettes 0.75
No 37 (94.87%) 62 (91.18%) 99 (92.52%)
Yes 2 (5.13%) 6 (8.82%) 8 (7.48%)

Uses vape products NA
No 39 (100%) 68 (100%) 107 (100%)

2.4.1. Individual Metabolites Identification

For univariate analysis, Mann–Whitney U-tests were used on each metabolite to
compare the levels in patients with mild vs. moderate/severe COVID-19 to identify indi-
vidual metabolites that differed between the two groups. We used a Benjamini–Hochberg
adjustment to control for false discovery rate (FDR) due to multiple hypothesis testing.
Metabolites with an FDR-adjusted p-value smaller than or equal to 0.05 were considered
statistically significant. The univariate analysis was performed as an exploratory analysis
to aid data understanding. All variables were kept for subsequent analyses.

Multivariate analyses were conducted in order to identify potential metabolites that
discriminated between the two groups. Resampling techniques were used for statistical
rigor and robustness. The data were split into 100 training and testing sets with a 70:30 ratio.
Stratification by the primary outcome of disease severity was implemented so that the
proportions of patients by severity were similar in the training and testing sets. Given the
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large number of metabolites in the dataset, we implemented supervised filtering for each
training split by selecting metabolites whose p-values from Mann–Whitney U-tests were
smaller than 0.05 after FDR correction for further analysis. Then, a PLS-DA model with
two components was fitted on each of the training data. The variable importance projection
(VIP) was used to assess the importance of each metabolite in discriminating between
the two groups and to perform variable selection (i.e., identify important biomarkers in
discriminating the group of mild and moderate/severe COVID-19). For the PLS-DA model,
we averaged the VIP scores from each fit and selected all metabolites with VIP > 1 and
appearing in at least 80 out of the 100 splits for further analyses. The PLS-DA model was
implemented using the mixOmics [20] package in R.

2.4.2. Generation of a Metabolite Signature

To construct our metabolomic signature, we focused on finding a small set of low-
correlated signatures at baseline with the potential to predict the primary outcome using
results from the PLS-DA model discussed above. Since the PLS-DA model could select
metabolites with relatively high correlation, we followed the approach of Brzyski et al. [21]
to select low-correlated metabolites. Metabolites that were moderately to highly correlated
(absolute value of the correlation at least 0.3) with this metabolite formed a cluster; the
identified metabolite was selected as the representative of this cluster. We next identified
the metabolite with the largest VIP score that was not included in the first cluster to form
the next cluster of metabolites that were highly correlated with the identified metabo-
lite. We repeated the process of finding metabolites with large VIP score and forming
metabolite clusters until all metabolites were in at least one of the clusters. Since our
sample size was 107, for sufficient statistical power to detect differences in patients with
mild vs. moderate/severe COVID-19, we aimed to develop a parsimonious model that
could distinguish these patients with only a few metabolites. Given the potential effect of
Lorsatan on metabolites, we fitted a model using the same sets of variables and treatment
as a sensitivity analysis to show the robustness of our results.

2.4.3. Pathway Analysis

We used the Ingenuity Pathway Analysis (IPA) software (QIAGEN) for functional
enrichment analysis to determine key signaling pathways and upregulators enriched in
our list of candidate metabolites. In IPA, we included the fold differences and p-values for
each molecule from the differential analyses in order to identify biological functions in our
candidate list that are expected to be increased or decreased based on molecular networks
curated in the Ingenuity Knowledge Base. For each biological function that is expected to
increase or decrease given the observed metabolite expression changes in our dataset, IPA
calculates an activation score to infer the likely activation states (“increased” or “decreased”)
of biological functions [19]. In particular, given the observed differential regulation of a
metabolite (“up” for fold difference > 0, or “down” for fold difference < 0), the activation
state of a biologic function is inferred from the edges (relationships) of molecules in the
molecular network in the Ingenuity Knowledge Base. An activation score (or activation
z-score) greater than 2 (“increased” prediction) or smaller than 2 (“decreased” prediction) is
considered significant. Metabolites were matched with the Human Metabolome Database
(HMDB) identifiers prior to inputting into IPA. For metabolites without a clear HMDB
match, we used LIPID MAPS® IDs provided by Biocrates and matched them with HMDB
IDs using the CTS Batch Conversion website from UC Davis (https://cts.fiehnlab.ucdavis.
edu/batch, accessed on 19 October 2023). Metabolites that were unavailable from HMDB
were excluded from the analysis. The 115 metabolites that were consistently selected by
the PLS-DA (at least 80 out of the 100 splits) and VIP > 1 were selected as candidates for
the pathway analysis. Nineteen of them were removed because they were unavailable on
HMDB when matching.

https://cts.fiehnlab.ucdavis.edu/batch
https://cts.fiehnlab.ucdavis.edu/batch
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3. Results
3.1. Study Population

Table 1 provides an overview of the demographic characteristics of patients included
in this study. The group of patients with moderate/severe COVID-19 were more likely
to be male (69.23% (n = 27) vs. 54.41% (n = 37)) and were generally older (median: 58.00
(IQR: 48.00–66.00) vs. median: 38.00 (IQR: 26.25–51.00)). When comparing the race of
patients with mild with moderate/severe outcomes, we observed that the proportions of
individuals identified as Black or African American (43.59% (n = 17) vs. 4.41% (n = 3)) or
Hispanic (17.95% (n = 7) vs. 10.29% (n = 7)) were higher in the moderate/severe group,
while the percentage identified as white (28.21% (n = 11) vs. 76.47% (n = 52)) was lower. The
median BMI was higher in the moderate/severe group (median: 31.96 (IQR: 26.47–35.10))
compared to the mild COVID-19 group (median: 26.69 (IQR: 24.24–31.76)). The proportion
of patients randomized to losartan versus placebo was not significantly different.

3.2. Identification of Metabolites with Largest Conditional Effect on Moderate/Severe
COVID-19 Infection
3.2.1. Univariate Analysis

The Mann–Whitney U-tests identified 266 baseline metabolites that differed signifi-
cantly at an FDR level of 0.05, comparing patients with mild vs. moderate/severe COVID-
19. Figure 1 shows a volcano plot for the negative log10 p-value against fold difference for
the baseline metabolites. The fold change difference, defined as the difference between
the mean log2-transformed and scaled metabolite expression in the mild group and that
in the moderate/severe group [22], ranges from −1.16 to 1.63, where the metabolite with
the highest positive and negative fold change difference are lysophosphatidylcholine a
C17:0 and beta-aminobutyric acid, respectively. Lysophosphatidylcholine a C16:1 is the
metabolite with the lowest p-value of 5.04 × 10−15. Limiting to metabolites that differed
significantly after FDR adjustment, 49 demonstrated a fold change difference magnitude
greater than 1, and most (77.6%) of these proteins (38 out of 49) demonstrated higher mean
expression in moderate/severe cases. The mean and standard deviation of the baseline
metabolites are summarized by severity in Supplementary Table S1.
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difference in the mean log2-transformed and scaled metabolite expression levels between the two
groups. The dots in light blue are significant after the Benjamini–Hochberg adjustment, and the ones in
the gold are significant before the p-value adjustment but not significant after the Benjamini–Hochberg
adjustment. The dots in gray are not significant prior to the Benjamini–Hochberg adjustment. The
five metabolites that were selected from the multivariate model are labeled in this figure.

3.2.2. Multivariable Analysis

Over the 100 training and testing splits, 479 targeted metabolites at baseline were
selected by the PLS-DA model in at least one split. A total of 115 of them were selected at
least 80 times with an average VIP greater than 1 from all the splits and were kept for further
analyses. Table 2 summarizes the 10 metabolites with the highest average VIP scores from
the PLS-DA model. All of them were selected in all of the splits. All the variables chosen
for the PLS-DA were significant in the univariate analysis. The average test error rate was
8.1% and the average test AUC was 0.948. Figure 2 provides a representative example of a
biplot that overlays the scores and loadings from one split of the PLS-DA results.

Table 2. Top 10 baseline metabolites with the highest VIP scores from PLS-DA. Metabolites are
ranked according to their average VIP score across the 100 splits. All the metabolites were selected
consistently in all the training folds. The fold change difference and the adjusted p-value from the
univariate analysis are also included in this table for reference.

Targeted Metabolites Average VIP Fold Change Difference Adjusted p-Value

Lysophosphatidylcholine a C17.0 1.82 1.63 2.86 × 10−12

Lysophosphatidylcholine a C16.1 1.82 1.63 2.86 × 10−12

Lysophosphatidylcholine a C18.0 1.79 1.60 2.98 × 10−12

Lysophosphatidylcholine a C16.0 1.78 1.60 2.98 × 10−12

Lysophosphatidylcholine a C14.0 1.74 1.56 4.03 × 10−11

Ceramide (d18.1/24.1) 1.73 −1.14 1.32× 10−6

Lysophosphatidylcholine a C18.1 1.68 1.51 1.77 × 10−11

Lysophosphatidylcholine a C18.2 1.65 1.48 2.40 × 10−11

Lysophosphatidylcholine a C20.3 1.55 1.39 1.12 × 10−10

Cholesteryl ester (14:0) 1.50 1.35 9.39 × 10−10
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set. The x-axis and the y-axis at the top right are for the loadings of the variables. The arrows
represent the loadings of the variables, where the five metabolomic signatures were colored in light
bule. The order of these five signatures counterclockwise from the x-axis is lysophosphatidylcholine
a C17:0, gamma-aminobutyric acid, symmetric dimethylarginine, triacylglyceride(20:4_36:4), and
dihydroceramide(d18:0/24:1).

3.2.3. Development of a Baseline Metabolomic Signature

Five molecules with low correlation (<0.3) were selected by using the procedure
described above. These molecules were (1) lysophosphatidylcholine a C17:0, (2) dihydroce-
ramide(d18:0/24:1), (3) triacylglyceride(20:4_36:4), (4) symmetric dimethylarginine, and
(5) gamma-aminobutyric acid. The order was based on the magnitude of their VIP scores
from high to low, and we will refer to this order in the following description of the models.
The correlations between pairs of molecules were low (absolute value less than 0.3), as
illustrated in Supplementary Figure S2. We developed a parsimonious model with these
five molecules by adding metabolites with the highest VIP in the list sequentially. The error
rates, AUC, sensitivity, specificity, and F1 scores of these models are summarized in Table 3.
For reference, we also included the clinical-covariates-only model as a comparison. Due to
the limited sample size, the model often diverged for almost all the training splits if more
than three molecules were included, so the final model was limited to three metabolites.
The final model we selected included lysophosphatidylcholine a C17:0, dihydroceramide
(d18:0/24:1), and triacylglyceride (20:4_36:4), which demonstrated excellent performance
with an average test error rate of 7.36% and an AUC of 0.978. The comparison among the
four models shown in Table 3 can be visualized using ROC curves in Figure 3. Sensitivity
analysis that adjusted for treatment status showed that the three metabolites again dis-
criminated between mild vs. moderate/severe disease, with an average error rate of 8.45%
and AUC of 0.974. The results of the sensitivity analysis in other models are displayed in
Supplementary Table S2.

Table 3. The performance of the logistic regression model with biomarkers only averaged across 100
training and testing splits. The metabolite models do not include clinical covariates. The model with
clinical covariate is shown as a comparison.

Variables Included Error Rate AUC Sensitivity Specificity F1

Clinical only (age, sex, BMI) 0.265 0.844 0.800 0.628 0.789
First metabolite 0.0668 0.942 0.946 0.911 0.947

First two metabolites 0.09 0.967 0.933 0.87 0.929
First three metabolites 0.0736 0.978 0.938 0.906 0.942

3.3. Pathway Analysis

The 115 metabolites consistently selected by PLS-DA with high VIP scores (>1) were
selected as candidate variables and input into IPA for functional analyses to better under-
stand relevant signaling and metabolic pathways that differ by severity. Nineteen of these
metabolites were removed because they could not be matched to any ID in HMDB. We
included the fold differences for each molecule from the differential analyses in the IPA.
Figure 4 shows the overlapping pathways of the top five canonical pathways with at least
two common molecules. The top significantly enriched pathway was the tRNA charging
pathway. With the exception of L-phenylalanine, five (L-alanine, L-threonine, L-tryptophan,
L-histidine, and glycine) of the six metabolites in our list for this pathway were highly ex-
pressed in individuals with moderate/severe disease (Table 4(a)). The distribution of these
metabolites for the mild and moderate/severe groups can be visualized on Supplementary
Figure S3. Regarding upstream regulators, the kinase MAP2K5, transcription regulator
MYC, ORMDL2, and transmembrane receptor CD36 were predicted to be activated. In
particular, the kinase MAP2K5 was predicted to be activated, with a z-score of 2.646 and
with an overlap p-value of 3.92 × 10−11. All seven metabolites known to be upregulated by
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MAP2K5 were observed to be upregulated in our dataset. Furthermore, the transcription
regulator MYC was predicted to be activated, with a z-score of 2.333 and an overlap p-value
of 6.43 × 10−8. Eight out of nine molecules known to be upregulated by MYC were also
upregulated in our dataset, while the molecule palmitic acid (known to be upregulated by
MYC) was downregulated in our dataset (Table 4(b)).
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Table 4. (a) Top five overlapping pathways with at least two shared metabolites. (b) Upregulators
enriched in IPA. The fold difference is defined as the difference in the mean log2-transformed and
scaled metabolite expression levels between the mild and moderate/severe groups. The sign of the
fold difference indicates the regulatory direction, where a positive change indicates an upregulation
and a negative change indicates a downregulation.

(a)

Pathway (p-Value) Molecule Fold Difference Adjusted p-Value

tRNA charging (2.03 × 10−5)

Glycine 0.917 2.57 × 10−5

L-alanine 0.961 5.32 × 10−5

L-histidine 1.244 1.52 × 10−7

L-phenylalanine −0.999 1.80 × 10−5

L-threonine 0.894 1.47 × 10−4

L-tryptophan 1.114 1.99 × 10−6

Glycine biosynthesis III (1.16 × 10−3)
L-alanine 0.961 5.32 × 10−5

Glycine 0.917 2.57 × 10−5

Threonine degradation II
(3.94 × 10−3)

L-threonine 0.894 1.47 × 10−4

Glycine 0.917 2.57 × 10−5

Tryptophan degradation to
2-amino-3-carboxymuconate semialdehyde
(8.23 × 10−3)

L-alanine 0.961 5.32 × 10−5

L-tryptophan 1.114 1.99 × 10−6

Phenylalanine degradation IV (mammalian,
via side chain)

L-phenylalanine −0.999 1.80 × 10−5

Glycine 0.917 2.57 × 10−5

(b)

Predicted upregulators (z-score,
p-value of overlap) HMDBID Molecule Name

Prediction (based
on measurement
direction)

Fold Difference Previous
Findings

MAP2K5
(2.646, 3.92 × 10−11)

HMDB0060057 Cholesteryl
pentadecanoate Activated 1.168 Upregulates

HMDB0060059 Cholesteryl
margarate Activated 0.915 Upregulates

HMDB0006725 Cholesteryl myristate Activated 1.349 Upregulates

HMDB0010370 Cholesteryl
octadecatrienoate Activated 1.155 Upregulates

HMDB0000658 Cholesteryl
9-heaxadecenoate Activated 1.025 Upregulates

HMDB0000610 Cholesteryl linoleate Activated 0.987 Upregulates
HMDB0000918 Cholesteryl oleate Activated 0.854 Upregulates

MYC
(2.333, 6.43 × 10−8)

HMDB0006725 Cholesteryl myristate Activated 1.349 Upregulates

HMDB0000658 Cholesteryl
9-heaxadecenoate Activated 1.025

HMDB0006736 Cholesteryl
eicosatrienoate Activated 1.034 Upregulates

HMDB0000610 Cholesteryl linoleate Activated 0.987 Upregulates
HMDB0010368 Cholesteryl stearate Activated 0.898 Upregulates
HMDB0000929 L-tryptophan Activated 1.114 Upregulates
HMDB0000918 Cholesteryl oleate Activated 0.854 Upregulates
HMDB0000123 glycine Activated 0.917 Upregulates
HMDB0000220 Palmitic acid Inhibited −0.952 Upregulates

CD36
(2.219, 2.51 × 10−3)

HMDB0010370 Cholesteryl
octadecatrienoate Activated 1.155 Upregulates

HMDB0005435 triaclyglycerol Activated 0.930 Upregulates

HMDB0000658 Cholesteryl
9-heaxadecenoate Activated 1.025 Upregulates

HMDB0000610 Cholesteryl linoleate Activated 0.987 Upregulates
HMDB0000918 Cholesteryl oleate Activated 0.854 Upregulates

4. Discussion

Since the outbreak of the pandemic, there has been an interest in identifying biomark-
ers associated with the development of severe COVID-19. The primary goal of our study
was to develop a baseline metabolic signature associated with the severity of COVID-19
using data from two randomized controlled trials across 13 U.S. academic centers. The
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multivariate discriminant analysis method identified 115 metabolites that were consistently
selected with VIP > 1 to discriminate between mild and moderate/severe disease. A par-
simonious model consisting of the three metabolites, lysophosphatidylcholine a C17:0,
dihydroceramide (d18:0/24:1), and triacylglyceride (20:4_36:4), highly discriminated be-
tween mild vs. moderate/severe COVID-19 with an average test accuracy of 92.6% and
AUC of 0.978. Pathways related to amino acids were significantly enriched based on IPA
analysis, and the MAP25K regulator was identified as potentially activated, since all the
metabolites known to be upregulated by it were upregulated in our data.

PLS-DA modeling demonstrated that LysoPC metabolites strongly differentiate pa-
tients with mild COVID-19 from those with moderate/severe disease. Of the top 10 VIP
scores, 8 metabolites were LysoPCs. The mechanisms underlying LysoPC’s putative effects
on disease development are not yet well understood, and the role it plays in different
types of cells varies [23]. In the immune system, the effect of LysoPC molecules includes
inducing chemotaxis and thereby regulating immune cells [24]. However, the effect of
LysoPC molecules on inflammation remains controversial. Both proinflammatory [23,25]
and anti-inflammatory [26–32] effects of the LysoPC molecules have been reported previ-
ously. Our results are in agreement with other studies showing that LysoPC levels are lower
in patients with more severe COVID-19 [26,28,29]. A summary of all the LysoPC molecules
in our analysis can be found in Supplementary Table S4. In a broader context outside of
COVID-19, patients with sepsis have also been shown to have lower levels of LysoPCs than
people without sepsis [30]. LysoPCs have been correlated with outcomes in sepsis patients,
with higher levels of LysoPCs observed in those treated with appropriate antibiotics and
lower levels in those who did not survive [31]. In patients with community-acquired
pneumonia, changes in LysoPC levels were also associated with outcomes. LysoPCs were
lower on day 1 in nonsurvivors than in survivors and remained unchanged on day 7 in
these patients. In survivors, LysoPC levels were increased on day 7 relative to day 1 [32].

Our baseline metabolomic signature identified metabolites that have been associated
with COVID-19 severity by other groups and provided external validation and further
elucidation of these observations. Our study identified metabolites that include three
lipid species (lysophosphatidylcholine a C17:0, dihydroceramide (d18:0/24:1), and triacyl-
glyceride (20:4_36:4)), a modulator of nitric oxide synthesis (symmetric dimethylarginine
(SDMA)), and a neurotransmitter (gamma-aminobutyric acid (GABA)). Many metabolomics
studies of COVID patients have now reported significant alterations to lipids related to
disease severity [10,11,26,28,29,33–35], and disruptions to lipid metabolism may persist
for years in patients with long COVID [36]. Our data are consistent with these findings.
SDMA, meanwhile, is indicative of endothelial dysfunction, and our data are consistent
with previous reports that elevated SDMA at the time of hospital admission is associated
with poor outcomes [37]. On the other hand, another study only reported elevated asym-
metric dimethylarginine, but not elevated SDMA [38]. However, this study represented a
comparison of patients hospitalized with COVID vs. hospitalized COVID-negative patients.
Our work complements this report by comparing hospitalized patients with nonhospi-
talized patients, all of whom were COVID-positive, which may explain the difference in
findings. Consistent with observations regarding lipid metabolism, patients with long
COVID may also see persistent changes in SDMA levels [39]. Finally, decreased GABA
levels have previously been observed to be associated with severe disease, while GABA
levels were observed to increase over time in those that recovered. In another study, GABA
plasma levels allowed for stratification of COVID-19 patients by disease severity [40]. Our
data further support these observations.

Functional enrichment analysis of the metabolites consistently selected by our ap-
proach revealed a strong enrichment of pathways related with amino acids, including
the phenylalanine degradation pathway, glycine biosynthesis III pathway, and threonine
degradation II pathway. Many amino acids have previously been demonstrated to be
altered in COVID-19 patients relative to healthy controls, particularly phenylalanine [5–8],
though tryptophan and threonine metabolism have also been studied in this context [41,42].
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In our work, phenylalanine was elevated in patients with more severe disease, while higher
levels of glycine, alanine, histidine, phenylalanine, threonine, and tryptophan were ob-
served in patients with mild disease. IPA analysis suggests that the mitogen-activated
protein kinase kinase 5 (MAP2K5), belonging to the MAPK family, is predicted to be
activated, with seven out of eight metabolites consistent with MAP2K5 activation. The
MAPK family has been implicated in many biological processes, including proliferation,
stress response, inflammation, and metabolism, while another recent study demonstrated
the levels of MAPK-related biomarkers to be elevated in patients with COVID-19 [43,44].
Our data here indicate that seven metabolites activated by MAP2K5, including cholesteryl
pentadecanoate, cholesteryl margarate, cholesteryl linoleate, and cholesteryl oleate, are
elevated in patients with moderate/severe disease. Whether this response is pathologic or
adaptive cannot be concluded based on our study design, but may represent a potential
therapeutic opportunity in COVID-19 or possibly other inflammatory infectious diseases
such as pneumonia or sepsis more broadly. Further investigations into these mechanisms,
therefore, would seem supported by this study.

Our study provides a simple model that can discriminate between those with mild
vs. moderate/severe disease with an accuracy that is at least comparable to previous
models [11]. With three metabolite measurements, our model shows an average test AUC
of 0.978. The conciseness and efficiency of this model could potentially aid in clinical
decisions of whether a patient with COVID-19 will develop a severe outcome. Other
strengths include a diverse cohort of patients from multiple sites in the U.S., aiding in
generalizability and robustness of our results.

This study acknowledges several limitations. First, the cohort used for the develop-
ment of the metabolomic signature was derived from two distinct randomized controlled
trials. Although the trials were overseen by the same research team with similar inclusion
and exclusion criteria, one trial exclusively enrolled symptomatic outpatients afflicted with
COVID-19 while the other did not. This divergence might introduce subtle disparities
in the underlying data distributions. Our sample did not include COVID-negative pa-
tients since the data were from these two trials, so it is unclear whether our results could
distinguish COVID-positive and -negative patients. In addition, the trials only admitted
patients from a single wave, but the biomarkers for COVID severity may depend on the
collection wave [45]. A further study on using patient data collected from other waves
can shed light upon to what extent our results can be generalized to different waves of
COVID-19. Secondly, our approach relied upon partitioning of our proprietary dataset
into training and testing subsets. This raises questions about the degree to which our
findings can be extrapolated to a broader population. Thirdly, our sample size was not
large enough to perform analysis on subpopulations. Given the heterogeneity of COVID-19,
it will be worthwhile to perform such an analysis with a larger sample size to study how
the metabolite levels will affect the severity of COVID-19 in different populations in the
future. Our sample size also prevented us from including clinical covariates in the final
model. Subsequent research may aim to develop a more comprehensive model with both
metabolic signatures and clinical covariates (such as age, sex, or BMI) with a larger size
data sample. Finally, while the intervention (losartan) did not impact clinical outcomes, it
remains possible that there was an effect on biological pathways, though our sensitivity
analysis suggests that this did not significantly affect model performance.

5. Conclusions

Metabolomic signatures differ significantly by disease severity in COVID-19. A model
with three lipid metabolisms most efficiently dichotomized our patient cohort. SDMA and
GABA also exhibited discriminatory potential between the two groups. Pathway analysis
suggests that the mitogen-activated protein kinase kinase 5 (MAP2K5) is particularly
differentially activated between groups and represents a potential therapeutic pathway
requiring additional study.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13111107/s1, Figure S1: The flowchart of our project;
Figure S2: The correlation plot of the five selected metabolites; Figure S3: The distribution of the
metabolites in the t-RNA charging pathway; Table S1: Mean and standard deviation of the significant
metabolites in the univariate approach by group; Table S2: Model results from the sensitivity analysis
that adjusted for treatment status in addition to the models in Table 3. Table S3: Metabolomics
information used in the analysis. Table S4: Mean, standard deviation, and regulating direction of the
lysoPC molecules in the analysis.
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