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Abstract: Maintaining a diverse and well-balanced nasal and oral microbiota is vital for human health.
However, the impact of indoor microbiome and metabolites on nasal and oral microbiota remains
largely unknown. Fifty-six children in Shanghai were surveyed to complete a questionnaire about
their personal and environmental characteristics. The indoor microbiome and metabolites from vacu-
umed indoor dust were profiled via shotgun metagenomics and untargeted liquid chromatography-
mass spectrometry (LC–MS). The nasal and oral microbiota in children was characterized using
full-length 16S rRNA sequencing from PacBio. Associations between personal/environmental charac-
teristics and the nasal/oral microbiota were calculated using PERMANOVA and regression analyses.
We identified 6247, 431, and 342 microbial species in the indoor dust, nasal, and oral cavities, re-
spectively. The overall nasal and oral microbial composition showed significant associations with
environmental tobacco smoke (ETS) exposure during pregnancy and early childhood (p = 0.005 and
0.03, respectively), and the abundance of total indoor flavonoids and two mycotoxins (deoxynivalenol
and nivalenol) (p = 0.01, 0.02, and 0.03, respectively). Notably, the abundance of several flavonoids,
such as baicalein, eupatilin, isoliquiritigenin, tangeritin, and hesperidin, showed positive correla-
tions with alpha diversity and the abundance of protective microbial taxa in nasal and oral cavities
(p < 0.02), suggesting their potential beneficial roles in promoting nasal/oral health. Conversely,
high carbohydrate/fat food intake and ETS exposure diminished protective microorganisms while
augmenting risky microorganisms in the nasal/oral cavities. Further, potential microbial transfer was
observed from the indoor environment to the childhood oral cavity (Moraxella catarrhalis, Streptococcus
mitis, and Streptococcus salivarius), which could potentially increase virulence factors related to adher-
ence and immune modulation and vancomycin resistance genes in children. This is the first study
to reveal the association between the indoor microbiome/metabolites and nasal/oral microbiota
using multi-omic approaches. These findings reveal potential protective and risk factors related to
the indoor microbial environment.
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1. Introduction

The nasal cavity, a critical respiratory organ in humans and animals, facilitates es-
sential respiratory functions such as air exchange, filtering, humidifying, and warming.
It habitats a diverse microbial community encompassing numerous bacterial phyla, in-
cluding Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria [1,2].
The stability of this nasal microbiota plays a fundamental role in maintaining respiratory
health, and disturbances or dysbiosis of this microbial community have been implicated
in a variety of acute and chronic respiratory diseases, such as rhinosinusitis [3,4] and
asthma [5]. For instance, an increased abundance of the bacterial genus Moraxella has been
associated with exacerbations of asthma and chronic obstructive pulmonary disease [6].
Conversely, certain microbes like Corynebacterium and Dolosigranulum are thought to have
protective roles against such respiratory diseases [7,8]. Furthermore, high microbial alpha
diversity/richness within the nasal microbiome has been suggested to confer protective
effects against nasal diseases [9].

The oral cavity, acting as the secondary external opening for the respiratory tract
and the initial site of the digestive tract, is similarly colonized by a complex microbiota.
Unlike the nasal cavity, which acts as a filter and often captures environmental species that
do not establish long-term colonization, the oral cavity has a higher abundance of truly
residential microorganisms. There are roughly eight hundred microbial species that have
been characterized in the oral cavity [10]. This oral microbiota exhibits substantial spatial
compositional variation across different oral niches [11]. Dysbiosis within this community
has been correlated with numerous oral diseases, including gingivitis, periodontitis, and
dental caries [12–14], significantly impacting medical and economic burdens and lowering
the overall quality of life. Importantly, alterations in the oral microbiome have also been
linked to respiratory diseases, such as pneumonia and chronic obstructive pulmonary
disease (COPD), owing to the aspiration of oral pathogens into the lower respiratory
tract [15]. A decreased oral microbial alpha diversity has been associated with severe
respiratory conditions, such as lung cancer [16]. Thus, maintaining a healthy nasal and oral
microbiome is of paramount importance for human health.

Understanding the factors influencing the nasal and oral microbiota is vital to im-
proving human health. Several personal and environmental characteristics, including
host genetic background, age and gender, air pollution, volatile environmental chemi-
cals surrounding greenness, antibiotic usage, environmental tobacco smoke (ETS), and
geographic regions [17–25], have been reported to impact the nasal and oral microbial
composition. However, the effects of indoor microbiome/metabolites on the diversity
and abundance of health-related nasal/oral microbiota remain largely unexplored. The
indoor microbiome and microbial metabolites have been linked to several acute and chronic
respiratory diseases, including respiratory infections, asthma, rhinitis, and sick-building
syndrome [26–32], underscoring the necessity for in-depth research to elucidate potential
interactions and connections between the indoor microbiome/metabolites and nasal/oral
microbiota.

In this study, we conducted a comprehensive assessment of the association between
personal and environmental characteristics and children’s nasal and oral microbiomes.
Specifically, we explored the impact of indoor microbial exposure (microbiome and metabo-
lites), characteristics of the living environment, air pollution, and personal characteristics
(including personal, family, and food intake information) on the diversity of nasal/oral
microbiome and health-related microorganisms. Additionally, we investigated the poten-
tial transference of microbial taxa and functional genes (including virulence genes and
antimicrobial resistance genes) from the indoor environment to the nasal/oral cavities.
To our knowledge, this is the first study to report the association between indoor micro-
biome/metabolome exposure and nasal/oral microbiota, thereby offering novel insights
into human health.
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2. Materials and Methods
2.1. Data and Sample Collection

From December 2019 to April 2020, we recruited 56 healthy children, mainly aged be-
tween 4 and 6 years, who had resided in Shanghai, China, for at least one year. Participants
were identified and recruited through local schools and community centers. A screening
questionnaire was administered to parents to ensure that the children met the eligibility
criteria, including being in good health and having lived in Shanghai for the requisite
period. To determine the health status of the participants, children were required to have no
history of major illnesses, chronic conditions, or antibiotic usage in the past year. Although
our sample size is limited, the demographic characteristics of the participants closely match
those of the broader population of 4–6-year-old children living in Shanghai, thereby enhanc-
ing the generalizability of our findings. A self-reported questionnaire was used to gather
information on personal details, family and parental background, environmental factors,
and frequency of food intake. The questionnaire was adapted from the International Study
of Asthma and Allergies in Children [33]. Additionally, the annual outdoor air pollutants
were determined using the inverse distance weighted (IDW) method, which utilized data
from local air monitoring stations [34,35]. Prior to data collection, the purpose of the study
was explained to the children and their guardians, and informed consent was obtained from
all participants. The study design and protocol were approved by the ethical committee of
the School of Public Health at Fudan University (IRB#2019-09-0778).

To collect indoor dust samples, we employed a standardized vacuuming procedure
across all participating households. A sterile sampler with a 6 µm filter pore was equipped
with a vacuum cleaner with 20 kPa pressure. For each home, the sampler was run for
four minutes on the living room floor and the child’s bed to collect dust. In instances
where siblings shared a room, only the proband (child participating in the study) bed was
sampled. The vacuum cleaner was placed in direct contact with the surfaces, ensuring
that dust particles were effectively captured. The four-minute sampling length was deter-
mined based on previous research indicating that this duration is sufficient for obtaining
a representative sample of indoor dust [30,36]. The sampling length was strictly adhered
to for all households to maintain consistency in the sampling procedure. The fine dust
was obtained by sieving the vacuumed dust through a 0.3 mm mesh screen and stored at
−80 ◦C in a freezer. Nasal samples were collected from both nasal cavities using an Isohelix
nasal cotton swab (rotating 15 times), which was then stored in a microtube at −80 ◦C
until DNA extraction. Oral samples were collected using a saliva tube (SARSTEDT AG
& Co., KG Sarstedtstraße, Nümbrecht, Germany). The children rinsed their mouths with
water three to five times before chewing on a sponge for 60 s. The chewed sponge was then
centrifuged at 1000 r/min for 2 min at 4 ◦C, and the saliva samples were stored at −80 ◦C
until DNA extraction and sequencing. The collection of indoor vacuum dust, nasal swabs,
and oral samples was conducted within a single day.

2.2. DNA Extraction, High-Throughput Sequencing and Microbiome Analysis

We utilized the Dneasy PowerSoil Kit from QIAGEN, Hilden, Germany, to extract a
fifty-milligram sample of indoor dust for whole-genome shotgun metagenomic sequencing.
The sequencing was performed by Personal Biotechnology Co., Ltd., a sequencing service
provider based in Shanghai, China. The TruSeq DNA High-throughput Library Prepa-
ration Kit was used to construct a sequencing library with 2 × 150 bp paired-end reads
and an insert size of 400 bp. A dual-indexed code was added to the constructed read for
multiplexing. The prepared library was sequenced on the Illumina HiSeq X-ten platform
(Illumina, San Diego, CA, USA). We deposited the raw sequencing data in the Genome
Sequence Archive [37] under the accession number PRJCA008482. Cutadapt (v1.2.1), Knead-
Data (v.0.9.0), and BMTagger (v3.1.01) were used to remove low-quality, chimeric, and
human-derived reads. The clean reads were then assembled using MEGAHIT (v1.0.5) [38].
MetaGeneMark (v3.25) was used to predict coding sequences with a length > 300 bp [39].
To annotate the indoor microbial taxonomy, we compared the assembled sequences to the
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NCBI-NT database using BLASTN, setting an e-value threshold of less than 0.001. We then
processed the resulting BLAST hits using MEGAN (v6.0), employing the Lowest Common
Ancestor (LCA) assignment algorithm [40]. The virulence factors (VFs) and antimicrobial
resistance genes (ARGs) were annotated by searching the clean reads in functional gene
databases VFDB (Virulence Factor Database) [41] and CARD (Comprehensive Antibiotic
Resistance Database) [42]. We measured the abundance of VFs and ARGs as reads per
kilobase per million mapped reads (RPKM). To ensure the accuracy of our findings, we
established a minimum threshold for sequence identity (70% in nucleotide sequences) and
alignment length (50%). This helped us confirm significant matches and eliminate false
positives or matches resulting from random sequence similarity.

Full-length bacterial 16S rRNA amplicon sequencing was conducted for nasal and
oral saliva samples. DNA was extracted with a QIAamp DNA Microbiome Kit (QIA-
GEN, Hilden, Germany). Poly adenine and indexed read adapters were added at both
ends, and the library was purified using Ampure PB beads. The SMRTbellTM Template
Prep Kit 1.0 (PacBio, Menlo Park, CA, USA) was used to construct the sequencing library
and sequenced on the PacBio Sequel II platform using the circular consensus sequencing
(CCS) technique [43]. The following analysis was mainly conducted by the QIIME2 plat-
form [44]. Raw sequencing reads were denoised by DADA2 [45]. The OTU taxonomy
assignment was conducted based on searching a downloaded human oral microbiome
database (HOMD database, version 15.23) [10]. Finally, we calculated the nasal and oral
microbial compositional variation (beta diversity) using Bray–Curtis distance metrics.

2.3. Indoor Dust LC/MS for Metabolomics Profiling

The fine dust was also subjected to metabolic profiling using LC–MS on a Vanquish
UHPLC system coupled with a QE-HF-X Orbitrap mass spectrometer from Thermo Fisher
Scientific (Waltham, MA, USA). This process involved adding 2-chloropheylalanine to the
fine dust and rotating the mixture for 30 s at −20 ◦C. We then filtered the supernatant
through a 0.22 µm pore-sized membrane. Chromatographic separation was conducted by a
column with a size of 150 × 2.1 mm × 1.8 µm (ACQUITY UPLC® HSS T3) at 40 ◦C, and
analytes were detected in water and acetonitrile at a flow rate of 0.25 mL/min. The mass
spectrometer was set to scan over the mass range of 81–1000 m/z at a resolution of 60,000.
Unnecessary information was removed from the MS/MS spectra by dynamic exclusion.
The measurements were recorded as relative abundances presented as intensity values.
Lastly, we aligned the analytes to several databases, including the Human Metabolome
Database, METLIN, MoNA, mzCloud, and MassBank.

2.4. Environmental Characteristics and Association Analysis

We analyzed over 40 environmental characteristics in the association analysis, which
can be broadly categorized into six major categories:

(1) Personal and family data, including, but not limited to, gender, age to start kinder-
garten, breastfeeding duration, age of child, premature delivery, type of delivery
(premature or cesarean section), presence of siblings, and parental income and educa-
tion level. These variables were self-reported and treated as categorical (e.g., gender)
or continuous (e.g., age, income).

(2) Living environment characteristics, including room cleaning frequency, the age of the
residential building, number of cohabitants, proximity to heavy traffic, rivers, parks,
or gardens, presence of indoor pets, presence of indoor plants, maternal and child
exposure to smoking, visible mold/dampness, and family history of Helicobacter pylori
infection. Data were self-reported and categorized based on pre-defined criteria.

(3) Food intake frequency, including intake of meat, milk, eggs, seafood, fruits, salad,
cooked vegetables, juice, soft drinks, fries, rice/pasta/bread. The data were self-
reported and treated as ordinal variables based on intake frequency.

(4) The concentration of annual average outdoor air pollutants, including SO2, NO2, CO,
O3, PM10, and PM2.5. The daily average values of atmospheric pollutants were col-
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lected from the environmental monitoring station closest to the children’s residences
over a period of one year preceding the collection of biological samples.

(5) Indoor microbial exposure, including indoor microbial abundance and diversity,
including the alpha diversity of the indoor microbiome (Shannon index, Chao1,
observed a number of species), microbial virulence factors, antimicrobial resistance
genes, and NIAID-defined pathogen species https://www.niaid.nih.gov/research/
emerging-infectious-diseases-pathogens (accessed on 26 September 2023). These data
were calculated from indoor shotgun metagenomics sequencing.

(6) Indoor metabolites come from four classes, including keto acids, indoles, flavonoids,
and mycotoxins. These data were calculated from indoor metabolomic profiling.
To address the compositional nature of the microbiome and metabolome data, we
employed a centered log-ratio (CLR) transformation prior to conducting regression
analyses.

In the statistical analyses, each of the independent variables was tested individually
against the dependent variables. Specifically, we employed linear regression analyses
using SPSS (Statistics 21) and StataIC15, adjusting for the children’s age and gender. The
command line used for these analyses was “regress dependent–variable on independent–
variable, age, and gender”. Independent variables were drawn from six categories of
personal and environmental characteristics, and dependent variables included the diversity
and relative abundance of risk-associated and protective microbial taxa within the nasal
and oral cavities. In addition to the linear regression analyses, a permutational MANOVA
(PERMANOVA) was conducted using the Adonis function in the R package with 10,000
permutations.

2.5. Potential Microbial Transfer between Indoor Environment to Nasal/Oral Cavities

We defined the potential transfer species from the indoor environment to the nasal/oral
cavities as follows: (1) microbial indoor abundance > 0.2%; (2) microbial indoor abundance
> microbial abundance in the nasal/oral cavities. Species with an indoor abundance lower
than that in the nasal/oral cavities may indicate a reverse transfer from these cavities to the
indoor environment; (3) a positive Spearman’s rank correlation (rho) with a p-value < 0.10.
The VFs and ARGs of the three potential transfer species (M. catarrhalis, S. mitis, and S.
salivarius) were characterized by searching against the CARD and VFDB databases.

3. Results
3.1. Personal Information, Environmental Characteristics and Dietary Frequency

In this study, a total of 56 children were randomly selected from twelve distinct
districts in Shanghai, China. An assortment of personal, environmental (including indoor
characteristics and air pollutants), and dietary characteristics were collected from the
participating children, as detailed in Table 1. Among the cohort, approximately 59% were
girls. Birth histories revealed that 12% of these children were born prematurely, while 45%
were delivered via cesarean section. For environmental tobacco smoke (ETS) exposure,
we found that 18% of the children were exposed during pregnancy, 14% during early
childhood, and 18% in the preceding ten months.

https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens
https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens
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Table 1. Associations between personal and environmental characteristics and the overall nasal
and oral microbiota community of children (β-diversity). Metabolite abundances in the table are
represented as intensity values derived from our untargeted metabolomics approach. The microbiota
β-diversity was calculated using the Bray–Curtis distance indices. The associations were calculated
using a 10,000 permutation bivariate Adonis/PERMANOVA analysis in R. Only associations with a
p-value < 0.05 are shown in bold font.

Nasal Oral

R2 p-Value R2 p-Value

Personal characteristics Q1–Q3 percentile

Age (year) 4–6 4.20 0.008 0.82 0.57

Breastfeeding duration (year) 0.5–1 0.82 0.49 1.02 0.38

Number of cohabitants 3–5 0.92 0.42 1.44 0.16

Age start kindergarten 3–4 1.45 0.21 1.23 0.25

Girl 59% 1.86 0.13 1.36 0.17

Preterm delivery 12% 0.38 0.82 0.58 0.75

Cesarean section 45% 0.33 0.84 0.95 0.46

Presence of siblings 51% 1.23 0.28 0.53 0.92

High parents income 14% 0.26 0.90 1.44 0.18

High education level for mother (graduate and postgraduate) 50% 1.00 0.38 0.51 0.83

High education level for father (graduate and postgraduate) 54% 2.82 0.04 0.51 0.89

Food intake frequency Weekly/daily

Juice and soda drink 86%/14% 2.10 0.09 0.98 0.41

Fries 90%/10% 0.90 0.43 0.49 0.81

Rice/pasta/bread 37%/63% 1.92 0.12 0.94 0.47

Fruits, vegetables 4%/96% 1.42 0.23 0.56 0.83

Eggs, milk, fish, meat, and sea foods 22%/78% 0.17 0.97 0.82 0.57

Outdoor air pollution

SO2 (µg/m3) 4.75–10.78 1.40 0.23 0.57 0.78

NO2 (µg/m3) 29.35–43.10 1.66 0.17 1.20 0.25

CO (mg/m3) 0.59–0.76 1.15 0.32 0.67 0.74

O3 (µg/m3) 63.15–81.92 1.34 0.25 0.63 0.72

PM10 (µg/m3) 38.53–48.10 2.47 0.06 0.81 0.59

PM2.5 (µg/m3) 22.03–32.87 0.58 0.64 1.05 0.34

Living environment characteristics

Adjacent to heavy traffic 41% 0.68 0.56 1.92 0.04

Adjacent to river/park/garden 22% 0.74 0.52 0.47 0.91

ETS mother—pregnancy 18% 4.63 0.005 1.74 0.09

ETS children—early childhood (<1 year) 14% 0.96 0.40 2.43 0.03

ETS children—previous 10 months 18% 1.87 0.13 1.17 0.30

Presence of pets/plants indoors—early childhood (<1 year old) 27% 1.55 0.19 1.29 0.22

Presence of pets/plants indoors—previous 10 months 59% 1.06 0.36 1.48 0.13
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Table 1. Cont.

Nasal Oral

R2 p-Value R2 p-Value

Visible mold/dampness—pregnancy 20% 1.41 0.22 1.39 0.18

Visible mold/dampness—early childhood (<1 year) 27% 1.01 0.37 0.77 0.65

Visible mold/dampness—previous 10 months 25% 1.06 0.35 0.80 0.61

Frequent room cleaning 38% 1.57 0.19 0.73 0.67

Building age (years) 10–40 0.40 0.79 0.42 0.96

Abundance of potential pathogens indoor 0.05–0.32 1.28 0.27 0.67 0.73

Clostridium perfringens 0.01% 0.92 0.42 0.35 0.86

Salmonella enterica 0.50% 0.47 0.73 0.88 0.48

Listeria monocytogenes 0.01% 1.14 0.31 1.15 0.28

Toxoplasma gondii 0.01% 0.52 0.69 0.74 0.56

Mycobacterium tuberculosis 1.47% 1.57 0.18 0.38 0.95

Total abundance of VFs indoors (RPKM) 2.3 × 103–5.2 × 103 0.92 0.42 0.61 0.81

Total abundance of ARGs indoors (RPKM) 2.4 × 103–5.5 × 103 0.91 0.42 0.67 0.75

Abundance of flavonoids indoors 3.91 0.01 1.08 0.35

Baicalein 0–2.86 × 1010 0.84 0.46 1.10 0.34

Daidzein 2.46 × 105–1.18 × 108 1.96 0.11 3.88 0.03

Tangeritin 1.92 × 106–5.01 × 108 1.58 0.18 0.69 0.60

Isoliquiritigenin 5.03 × 106–2.85 × 108 0.79 0.49 1.07 0.37

Apigenin 2.65 × 106–5.31 × 108 2.38 0.06 0.55 0.62

(2S)-Liquiritigenin 1.59 × 107–2.22 × 109 0.37 0.82 1.19 0.25

Hesperidin 2.31 × 106–1.12 × 109 2.45 0.07 1.78 0.09

Eupatilin 3.41 × 105–1.32 × 108 0.58 0.64 1.49 0.16

Abundance of indoles indoors 0.78 0.50 0.95 0.46

3-Methylindole 7.33 × 107–1.64 × 109 3.57 0.01 0.39 0.86

Serotonin 8.37 × 105–6.52 × 108 0.58 0.65 0.41 0.84

Indole 1.04 × 109–5.03 × 109 1.05 0.35 0.39 0.93

L-Tryptophan 1.67 × 109–3.95 × 1010 0.73 0.54 2.14 0.04

Indole-3-carboxylic acid 7.50 × 105–1.51 × 107 1.04 0.36 0.28 0.99

Abundance of keto acids indoors 0.74 0.53 0.49 0.89

Pyruvic acid 3.51 × 107–1.41 × 109 0.75 0.52 0.99 0.37

Ketoleucine 1.43 × 107–4.40 × 108 2.74 0.04 1.17 0.26

2-Ketohexanoic acid 3.20 × 106–2.95 × 108 1.69 0.16 3.49 0.04

Acetoacetic acid 8.16 × 107–1.28 × 1010 0.15 0.97 0.59 0.58

alpha-Ketoisovaleric acid 2.87 × 107–9.61 × 108 1.20 0.30 0.97 0.40

Abundance of mycotoxins indoors 1.83 0.14 1.41 0.17

Vomitoxin (deoxynivalenol) 7.30 × 104–5.49 × 107 3.26 0.02 1.34 0.19

Nivalenol 2.38 × 105–1.81 × 107 0.42 0.78 2.77 0.03

Tentoxin 8.60 × 107–1.56 × 109 2.14 0.09 1.78 0.10

Diacetoxyscirpenol 4.83 × 104–1.75 × 107 1.24 0.28 1.54 0.15
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3.2. Indoor Microbiome, VFs, ARGs, and Metabolites

We characterized 6247, 431, and 342 microbial species from the indoor dust, nasal,
and oral cavities, respectively. Actinobacteria, Bacilli, and Gammaproteobacteria were
identified as the most prevalent indoor microbial classes, followed by Alphaproteobac-
teria, Clostridia, Betaproteobacteria, Bacteroidia, and Tissierella (Figure 1A). In terms of
species, Cutibacterium acnes (5.26%), Staphylococcus aureus (4.72%), Micrococcus luteus (2.91%),
and Staphylococcus epidermidis (2.16%) were found to be the most abundant (Figure 1B).
Compared to bacteria, fungi were less abundant in the indoor environment. The most
prevalent fungal species included Malassezia restricta (0.46%), Malassezia globosa (0.22%),
and Alternaria alternata (0.21%). We also detected potential pathogens in the indoor dust,
including Clostridium perfringens (0.01%), Salmonella enterica (0.50%), Listeria monocytogenes
(0.01%), Toxoplasma gondii (0.01%), and Mycobacterium tuberculosis (1.47%) (Table 1).
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Figure 1. (A) The top 8 microbial classes and (B) the top 15 microbial species of the indoor environ-
ment. The x-axis lists individual sample identifiers, while the y-axis denotes the relative abundance
of microbial taxa in the respective samples.

The top VF categories identified were nutritional and metabolic factors (average RPKM
998.3, mainly including pyoverdine, FbpABC, and Acinetobactin), immune modulation
(RPKM 641.7, including LOS, LPS, and Capsule I), and adherence (RPKM 433.4, including
Type IV pili, Type 3 fimbriae, and Type 1 fimbriae). The most dominant ARG category was
antibiotic efflux (RPKM 2661.9, including macB, tetA, evgS, ranA, bcrA, and novA), followed
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by antibiotic inactivation (RPKM 345.9, including nmcR) and antibiotic target alteration
(RPKM 851.0, including basS).

A variety of indoor metabolites were detected, such as indole and keto acid deriva-
tives, flavonoids, and mycotoxins. Table 1 shows the relative abundance (represented as
the intensity value) of highly abundant representative indole and keto acid derivatives,
flavonoids, and mycotoxins in the indoor dust.

3.3. Nasal and Oral Microbial Composition

In the nasal microbiome, Bacilli, Gammaproteobacteria, Actinobacteria, and Betapro-
teobacteria were highly abundant microbial classes (Figure 2A). The top nasal microbial
species included Dolosigranulum pigrum, Moraxella nonliquefaciens, Moraxella lincolnii, Staphy-
lococcus aureus, Moraxella catarrhalis, an unclassified Staphylococcus, and an unclassified
Streptococcus (Figure 2B). In oral saliva, the top microbial classes were Bacilli, Actinobac-
teria, Betaproteobacteria, and Gammaproteobacteria. The top oral species included an
unclassified Streptococcus, Streptococcus salivarius, an unclassified Neisseria, Rothia mucilagi-
nosa, Granulicatella adiacens, Haemophilus parainfluenzae, Streptococcus oralis, Streptococcus
sanguinis, and Lautropia mirabilis (Figure 3B).
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3.4. Impact of Environmental Variables on Overall Nasal and Oral Microbial Composition

We used PERMANOVA to calculate the impact of environmental characteristics on
the beta diversity (composition) of the nasal and oral microbiota (Table 1). To control for
false positive results, only associations with a p-value < 0.02 were considered significant
and presented in bold fonts. Age (p = 0.008, R2 = 4.2) and education level of the father
(p = 0.04, R2 = 2.8) were significantly associated with the nasal microbial composition.
Exposure to ETS during the mother’s pregnancy and early childhood was associated
with nasal and oral microbial composition (p = 0.005 and 0.03, R2 = 4.63 and 1.74). Food
intake, outdoor air pollution, the abundance of indoor pathogens, and the indoor total
abundance of VFs and ARGs were not associated with the beta diversity of the nasal and
oral microbiota. The abundance of total flavonoids was associated with the nasal microbial
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composition (p = 0.01, R2 = 3.90). Indole derivatives 3-methylindole (p = 0.01, R2 = 3.57),
mycotoxin deoxynivalenol (p = 0.017, R2 = 3.26), and nivalenol (p = 0.028, R2 = 2.77) were
also associated with nasal and oral microbial composition.

3.5. Impact of Environmental Variables on Alpha Diversity and the Abundance of Risky/Protective
Nasal and Oral Microorganisms

Regression analyses were performed to evaluate the relationship between environ-
mental variables and nasal alpha diversity, as characterized by the Shannon index and
the observed species (Table 2). The presence of siblings (p = 0.008, β = 0.69) and exposure
to an indoor flavonoid baicalein (p = 0.004, β = 0.72) were positively associated with the
Shannon index. The presence of siblings (p = 0.01, β = 29.9) and eupatilin (p = 0.0037,
β = 0.68; a flavonoid) were positively associated with the observed number of species.
A prior study [7] identified a set of nasal microorganisms that offer protection against
chronic rhinosinusitis, which were hence defined as protective nasal microorganisms in
this study. The abundance of protective nasal microorganisms was positively associated
with isoliquiritigenin (p = 0.0018, β = 0.002; a flavonoid) and serotonin (p = 0.0005, β = 0.62;
an indole) but negatively associated with daily intake of rice/pasta/bread (p = 0.0091,
β = −0.062).

Table 2. Associations between personal information, environmental characteristics, α-diversity
index, protective/risk nose, and oral microbial. The associations were calculated by linear regression
adjusted for children’s age and gender. Only microorganisms with an abundance > 0.1% and
metabolites with an abundance > 1 × 106 (intensity) were included in the analysis. Associations with
a p-value < 0.02 are presented in this table. Protective nasal microorganisms were defined based on a
previous study in chronic rhinosinusitis [7] and included Corynebacterium, Finegoldia, Anaerococcus,
Peptoniphilus, and Staphylococcus. Protective and risky oral microorganisms were defined based on a
previous publication in periodontitis [14]. Risky oral microorganisms included Treponema maltophilum,
Treponema socranskii, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Parvimonas
micra, and Selenomonas sputigena, while protective oral microorganisms included Rothia dentocariosab
and Streptococcus sanguinis.

Coefficient p-Value 95%CI

Nasal

Shannon index
Presence of siblings 0.69 0.008 0.19 1.19
Baicalein (flavonoid) 0.72 0.004 0.24 1.20

Observed number of species
Presence of siblings 29.9 0.01 7.49 52.3
Eupatilin (flavonoid) 0.68 0.004 0.23 1.12

Protective microorganisms
Rice/pasta/bread −0.06 0.009 −0.11 −0.02
Isoliquiritigenin (flavonoid) 0.002 0.002 0.001 0.003
Serotonin (indole) 0.62 0.0005 0.03 0.95

Oral

Shannon index
Age start kindergarten 0.48 0.002 0.18 0.77
Observed_OTU_env −0.0009 0.011 −0.002 −0.0002

Observed number of species
Tangeritin (flavonoid) 2.29 0.014 0.49 4.09
Hesperidin (flavonoid) 1.40 0.007 0.39 2.40

Risk microorganisms
ETS children—early childhood (<1 year) 0.005 0.013 0.001 0.009
Fries 0.005 0.019 0.001 0.01
Pyruvic acid (keto acid) −0.056 0.017 −0.10 −0.01

Protective microorganisms

Total keto acid 2.30 0.015 0.47 4.10
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As for oral microbiota, age starting kindergarten (p = 0.002, β = 0.48) was positively
correlated with the Shannon index. The observed species showed significant associations
with two flavonoids, tangeritin (p = 0.014, β = 2.29) and hesperidin (p = 0.005, β = 1.40). In
line with a prior study [14] that identified protective and risky oral microorganisms for pe-
riodontitis, we defined these microorganisms as such in our study. The abundance of these
risky oral microorganisms showed a positive association with early childhood exposure
to smoking (p = 0.013, β = 0.005) and frequent consumption of fries (p = 0.019, β = 0.005).
However, pyruvic acid abundance (p = 0.0173, β = −0.056) was negatively associated with
risky oral microorganisms, while the total abundance of keto acids (p = 0.0147, β = 2.300)
was positively correlated with oral protective microorganisms.

Regarding indoor metabolites, flavonoids are predominantly plant-derived, whereas
keto acids and indoles can be produced by indoor microorganisms. Therefore, neural
network analysis [46] was employed to ascertain the co-occurrence probability of the top
indoor microorganisms with serotonin and keto acids. The analysis revealed that certain
indoor microorganisms, including Staphylococcus epidermidis, Mycolicibacerium iranicum, and
Corynebacterium (Figure 4), co-occurred with these metabolites, indicating that these indoor
microorganisms may potentially produce these metabolites.
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3.6. Potential Microbial Transfer from Indoor Environment to Nasal/Oral Cavity

To investigate the potential transfer of microbes from the indoor environment to the
nasal/oral cavity, we conducted a correlation analysis between major indoor and nasal/oral
species. Three oral species, including Moraxella catarrhalis (rho = 0.2768, p = 0.0516), Strepto-
coccus mitis (rho = 0.2564, p = 0.0689), and Streptococcus salivarius (rho = 0.2793, p = 0.0495),
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were positively correlated with the indoor species and could potentially be transmitted
from an indoor environment to the oral cavity (Figure 5). We further analyze the VFs and
ARGs in these species. In total, 8, 5, and 9 potential VFs were presented (RPKM > 0.5)
in M. catarrhalis (tufA, katA, clpE, hhuA, htpB, clpC, ccmF, carB), S. mitis (pavB, hasC, cbpA,
pspA), and S. salivarius (pavB, hasC, psaA, fbp54, lap, cps4B, clpE, clpC, tufA). These VFs were
mainly involved in adherence, immune modulation, nutritional/metabolic factors, and
stress survival. Similarly, 3, 3, and 2 potential ARGs were presented (RPKM > 0.5) in M.
catarrhalis (bro-1, icr-mc, vanY), S. mitis (patA, patB, vanY), and S. salivarius (vanY, vanT). Inter-
estingly, vancomycin resistance genes were widely distributed in these species, suggesting
a potential acquisition of these ARGs in the oral cavity from the indoor environment.
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4. Discussion

In the present study, we conducted a multi-omic analysis to explore the associations
between the indoor microbiome/metabolites and the nasal/oral microbiota in children. We
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identified specific indoor flavonoids and mycotoxins, such as deoxynivalenol and nivalenol,
that were significantly associated with microbial diversity and abundance in these cavities.
Additionally, our data suggest that certain microorganisms may be transferred from the
indoor environment to children’s oral cavities, potentially influencing virulence factors
and antibiotic resistance profiles. These observations provide valuable insights into the
complex interplay between the indoor environment and microbiota, opening new avenues
for future research aimed at promoting human health.

4.1. Strengths and Limitations of the Study

This study has several notable strengths. Firstly, it pioneers the investigation of the
relationship between indoor microbiome/metabolites and nasal/oral microbiota. Over
40 environmental and personal characteristics were collected, providing a comprehensive
understanding of the effect of environmental factors on oral and nasal microbiota. Second,
culture-independent multi-omics were utilized, including metagenomics, full-length 16S
rRNA sequencing, and untargeted LC/MS. Multi-omic profiling has been widely con-
ducted in intestinal gut studies [47] but is seldom reported in the indoor environment [32].
Therefore, our study can also provide resources for future analysis, such as comparing in-
door microbiome/metabolite profiling with other environments. Thirdly, we used shotgun
metagenomics to assess indoor functional genes, including VFs and ARGs.

Despite its contributions, this study has some limitations that warrant discussion.
First, our study has a relatively small sample size of 56 healthy children, which was deter-
mined based on logistical constraints such as funding and available resources for in-depth
multi-omics analyses. Although this sample size aligns with similar exploratory or pilot
studies in this emerging research area, it does restrict the study’s statistical power for asso-
ciation analyses. Furthermore, the small sample size precluded us from applying stringent
corrections for multiple testing, such as false discovery rate (FDR) control, as it would
significantly reduce our ability to detect true associations. Therefore, our results should be
interpreted as exploratory and will require validation in larger cohorts. Second, we used
untargeted metabolomics for assessing indoor metabolites. While this approach allows for
the characterization of a large number of metabolites, it yields only relative abundance, not
absolute concentration. This restricts our ability to draw conclusions about the impacts
of specific metabolite concentrations on the nasal and oral microbiota. In future studies,
targeted metabolomics may enable more precise assessments of the impacts of specific
indoor metabolites on the nasal/oral microbiota. Third, only one dust sample per child’s
home was collected, raising questions about reproducibility over time and sensitivity to
random variation. However, it should be noted that the vacuuming technique employed
in this study is designed to collect large biomass samples. Prior research has shown that
such samples are representative of long-term exposure and less susceptible to random
variation compared to swab sampling [27]. Fourth, we did not conduct dental examinations
to assess the oral health status of the participants. Thus, we cannot definitively conclude
the precise oral health condition of our cohort. However, to ascertain the health status of
the participants, the guardians of the children were interviewed and answered a compre-
hensive questionnaire. This method of data collection should lend some accuracy to our
understanding of the participants’ health. Fifth, the source organisms for VFs and ARGs
were identified using a bioinformatics approach, which may have inherent limitations
that could lead to false positives. Similarly, the detection of species DNA in both oral
and indoor environments does not necessarily indicate the viability or transferability of
these organisms. Further studies investigating the survival and viability of these species
in environmental conditions would be needed to confirm the actual transfer. Sixth, there
is a methodological discrepancy in our approach, wherein we employed shotgun metage-
nomics for indoor samples and 16S rRNA sequencing for children’s nasal and oral samples.
Shotgun metagenomics provides a comprehensive view of all the genetic material in the
samples, including bacteria, viruses, fungi, and archaea, allowing for the identification
of VFs, ARGs, and specific microbial genes. In contrast, 16S rRNA sequencing, while
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robust and cost-effective, specifically targets bacterial communities, potentially missing
out on broader microbial diversity and specific gene-level information. This difference in
methodologies could impact the comparability of the datasets and might have introduced
biases in our analysis.

4.2. Indoor Metabolites and Nasal/Oral Microbiota

In this study, we found that indoor flavonoids (baicalein, eupatilin, isoliquiritigenin,
tangeritin, and hesperidin) were associated with multiple nasal/oral microbial features,
including the overall nasal microbial community variation, increased nasal/oral microbial
alpha diversity, and an increased abundance of protective microorganisms in the oral cavity.
These observations suggest a possible role for indoor flavonoid exposure in influencing
nasal/oral health. Flavonoids are plant metabolites that possess several protective health
effects, such as anti-bacterial, anti-oxidant, anti-inflammatory, anti-cancer, and anti-aging
effects [48–50]. However, the mechanisms through which they increase nasal/oral diversity
and the abundance of protective microbiota remain unclear. A possible mechanism is that
flavonoids may suppress the biofilm formation and aggregation of pathogenic microor-
ganisms. For instance, baicalein can protect oral health by inhibiting microbial biofilm
formation, which prevents dental caries [51]. The suppression of pathogenic species may
facilitate the growth of potentially beneficial microorganisms in the oral cavity.

Regarding the source of these flavonoids in the indoor environment, multiple possi-
bilities exist. They could originate from outdoor plants, or they could be remnants from
the consumption of flavonoid-rich foods and beverages within the household. However, it
is important to clarify that the detected levels of dust might not directly indicate a health
impact. Their presence might be due to higher consumption of flavonoid-rich foods in these
environments, serving more as markers of certain dietary habits than direct influencers of
health. Comparative analysis of flavonoid types and concentrations in outdoor plants and
consumed foods would be essential for a more precise understanding of their origin and
relevance.

In addition to flavonoids, we found that pyruvic acid (a keto acid derivative) and
serotonin (an indole derivative) were associated with decreased risk microorganisms and
increased protective microorganisms in the nasal/oral cavity. Pyruvic acid is a cellular
metabolite produced at the end of glycolysis and has been widely used as a precursor for
food, cosmetics, pharmaceuticals, and agricultural applications [52]. It has been shown
to provide a wide range of beneficial health effects, including protection against oxida-
tive stress and zinc toxicity [53,54]. However, their protective effects on the nasal/oral
microbiota require further exploration. Serotonin is a monoamine neurotransmitter with
multifaceted functions in modulating mood, cognition, learning, and memory. Approxi-
mately 90% of serotonin is produced in the human gut with the help of microorganisms,
and therefore, it is one of the major signal transmitters in the gut–brain axis. A recent study
in Malaysia reported that serotonin was present in high abundance in the dust of schools with
low asthma prevalence [32], indicating that it may also play a role in respiratory health.

We found that nivalenol and deoxynivalenol in indoor dust were associated with the
overall microbial composition in the nasal and oral cavities. Nivalenol and deoxynivalenol
are mycotoxins that belong to the trichothecene group and are structurally similar. Fusarium
species mainly produce these mycotoxins, and they are among the most widespread
mycotoxins in food and feedstuffs [55]. Exposure to deoxynivalenol through food intake
causes gastrointestinal inflammation and can lead to changes in the diversity, integrity,
and composition of the gut microbiota, posing persistent threats to human and animal
health [56]. However, the impact of nivalenol and deoxynivalenol on the nasal and oral
microbiota has not been reported. In this study, we characterized these two mycotoxins
in all samples, indicating their widespread presence in indoor dust. The resuspension of
indoor dust and human inhalation may lead to nasal and oral exposure to these mycotoxins,
which may further affect the nasal/oral microbiota.
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4.3. Other Environmental and Personal Characteristics and Nasal/Oral Microbiota

In our study, we found a positive association between the presence of siblings and
increased nasal microbial diversity. This finding is consistent with the Dutch Microbiome
Project, which demonstrated that the number of cohabitants is the main factor in shaping
the human microbiota [57]. Our results also showed that frequent intake of rice, pasta,
bread, and French fries decreased the abundance of protective nasal microorganisms and
increased the abundance of risky oral microorganisms. Although no previous studies
have reported the association between food frequency and nasal/oral microbiota, our
results are consistent with previous studies on gut microbiota. A high-glycemic and
carbohydrate diet has been shown to decrease protective microorganisms and increase the
risk of microorganisms in the gut microbiota [58,59]. Additionally, a high-fat diet, such as
french fries, has been shown to promote the development of pro-inflammatory microbiota
and alter the microbial composition of beneficial and pathogenic bacteria [60,61].

In our study, we did not find an association between air pollution and microbiota
composition and diversity in the nasal and oral cavities, which is inconsistent with previous
observations [17,18]. One potential explanation for this discrepancy is that we only sampled
children in Shanghai for this study. The concentration of air pollutants in Shanghai was
homogeneous across the entire city.

5. Conclusions

This study sheds light on the potential influence of the indoor microbiome and metabo-
lites on the nasal and oral microbiota in children. The evidence points towards the crucial
role of environmental factors, such as exposure to tobacco smoke and indoor flavonoids,
in modulating the microbiota. Moreover, this study uncovers potential microbial transfer
routes from indoor environments to the human body, warranting further research in this
area. These findings underscore the critical need for a deeper understanding of our indoor
microbial environments to promote health and prevent disease.
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