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Abstract: Metabolomics is one of the most promising ‘omics’ sciences for the implementation in
medicine by developing new diagnostic tests and optimizing drug therapy. Since in metabolomics,
the end products of the biochemical processes in an organism are studied, which are under the
influence of both genetic and environmental factors, the metabolomics analysis can detect any
changes associated with both lifestyle and pathological processes. Almost every case-controlled
metabolomics study shows a high diagnostic accuracy. Taking into account that metabolomics
processes are already described for most nosologies, there are prerequisites that a high-speed and
comprehensive metabolite analysis will replace, in near future, the narrow range of chemical analyses
used today, by the medical community. However, despite the promising perspectives of personalized
metabolomics, there are currently no FDA-approved metabolomics tests. The well-known problem of
complexity of personalized metabolomics data analysis and their interpretation for the end-users, in
addition to a traditional need for analytical methods to address the quality control, standardization,
and data treatment are reported in the review. Possible ways to solve the problems and change the
situation with the introduction of metabolomics tests into clinical practice, are also discussed.
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1. Introduction

Personalized medicine is based on the importance of the individuals’ characteristics
for early disease diagnostics and the positive response to treatment. According to the
P4 concept that medicine should be preventive, predictive, personalized, and participa-
tory, this may be achieved by the application of the tools and strategies of the systems
biology in clinics. Using the global, integrative and dynamic approaches, and the big
data sets analyses, the personalized medicine could provide deep insights into disease
mechanisms that stratifies complex diseases into subtypes and discovers new approaches
to drug targeting, and makes possible both the disease diagnostics and health assessment
of an individual, by a universal noninvasive biological sample, such as blood [1,2]. Current
clinical practice deals with a limited number of physiological parameters and thus is based
on small amounts of information of the organism’s state. Modern post genomic tech-
nologies allow to perform a comprehensive analysis of the organism at various biological
organization levels, from the genes to metabolites, providing new ways for the treatment
and prevention of diseases, allowing for an early diagnosis and increasingly targeted phar-
macological treatments [3,4]. Metabolomics is the youngest omics, following proteomics,
and is often considered as the most promising for clinical practice. Metabolomics studies
metabolites—both endogenous and exogenous low molecular weight compounds (up to
1000–1500 Da), which can be as substrates, as final products of the biochemical processes
in the organism. Therefore, the metabolome, as the total of all metabolites, reflects as the
internal pathophysiological processes in the organism, as an effect of the environment [5,6].
The Metabolomics Society has declared that “the narrow range of chemical analyses in
current use by the medical community today will be replaced in the future by analyses that
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reveal a far more comprehensive metabolic signature. This signature is expected to describe
global biochemical aberrations that reflect patterns of variance in states of wellness, more
accurately describe specific diseases and their progression, and greatly aid in differential
diagnosis” [7].

According to PubMed, more than 3,000,000 metabolomic studies aimed at discov-
ering new disease diagnostics have been published to date. More than 2,500,000 were
published since 2000. By early 2007, the annual number of such papers has exceeded
100,000 (Figure 1). Each new study provides new data on the diseases’ mechanisms, drug
targets, and therapy, moving us one step closer to discovering the omics-tests proper for
clinical implementation [8–10]. The metabolomic data accumulated over the last decades
in the appropriated databases contain comprehensive information about more than 200,000
metabolite entries, more than 800 human metabolic pathways, metabolite sets, and ab-
normal concentrations of metabolites associated with different conditions and diseases,
and descriptions of metabolite locations in the organs, tissues, and even their subcellular
localization. Hundreds of disease metabolite signatures detected in the human blood, urine,
cerebral spinal fluid, and feces, are presented [11]. Thus, the use of metabolomic data,
along with the high-throughput measurements of the large sets of low-molecular-weight
substances in biosamples, make it possible to implement personalized metabolomics into
clinical practice (Figure 2) [12]. However, despite such huge data sets collected to date, and
such promising perspectives of personalized metabolomics, there are no Food and Drug
Administration (FDA)-approved metabolomics tests yet. In this review, we discuss the
well-known problem of the complexity of the personalized metabolomics data analyses
and their interpretation for the end-users, in addition to a traditional need for analytical
methods to address quality control, standardization, and data treatment, and possible ways
to solve the problems.
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2. The Bottle Necks of Personalized Metabolomics
2.1. Preanalitical and Analytical Methods

There are several recent reviews that discuss why the results of numerous successful
metabolomic studies have not yet seen their new diagnostics tests implemented into
clinical practice [9,10,12–19]. All of them have reported that the pipeline of the biomarker
development includes several key stages, consisting of discovery, validation, and the
clinical translation of the finds. At each of these stages, the progress has been achieved,
in terms of the technological advances for the production, analysis, and sharing of the
metabolomics data, but some limitations still exist. Figure 3 illustrates the challenges in
answering the question of why, despite all promising perspectives for the implementation
of metabolomics into clinical diagnostics, it has not been yet happened. The challenges are
all related to the differences between metabolomics, as an exploratory study, rather than
metabolomics, as a personalized diagnosis. The main difference is that the metabolomics
study is usually a case-control type (group vs. group) and a personal analysis compares a
sample with a control set. The personalized metabolomics analysis should be scalable, fast,
and understandable to wider range of people. While a metabolomics study is unique, it can
take from several months to several years, and with very complex results that are intended
for scientists with experience in the same field of science [12,20]. Figure 3 below shows the
traditional needs for the analytical methods to address both the metabolomics study and
personalized metabolomics, with a focus on the differences, including the standardization
and treatment of data.
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Figure 3. Challenges of personalized metabolomics. Standardization represents the workflow-
dependent challenge, when the sets of detected metabolites (including the metabolic signatures
of diseases) correspond to the protocols used for the metabolomic studies, which are diverse.
Case-control studies compare the group characteristics and a metabolite detected in a case-control
metabolomic study, as case-associated (p < 0.05), may not be considered out of the norm in a personal-
ized metabolomics study. The problem of no matched signatures, in a case of personal data searching
against a metabolic database, is due to the medley of fragmented signatures in the personalized
metabolomics data (for details please see [12]).

In 2007, the Metabolomics Society launched the Metabolomics Standards Initiative
(MSI) Committee for the development of quality control and standard operating procedures,
which should be carefully followed throughout the research process [7,21–24]. It is well
known that the main problem of all methods developed for diagnostic purposes is that
standardization is needed during all of the process stages, initiating from the criteria of
the studied cohorts selection, the method of the metabolomics analysis used, and ending
with the statistical analysis of the data. the standardization of all of these steps allows
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for the prevention of the risk of poor-quality control metabolomics protocols, incorrect
quantification of metabolites, and deceptive data interpretation [25–31].

For example, the various metabolomic studies of the same disease can give dramati-
cally different or only partly similar results, because of the differences in the study design,
including the principles of the studied group formation, as well as of the participants’
differences, such as age, sex, disease duration, age of disease onset, and presence of other
comorbidities or risk factors for the disease progression. The mentioned discrepancies
between the studies indicate a need of a high quality, well-thought-out experimental de-
sign, including the careful consideration of the studied cohorts and the selection of the
appropriate control individuals. Of course in a case of blood, the sample must be collected
in a fasting state, to minimize unwanted sources of variability on the metabolome. To
reduce the effect of inter- and intra-individual variations, the analyzed groups should be
similar in demographic (gender, ethnicity, age), lifestyle (diet), and physiological factors
(body mass index (BMI)), in addition to the parameters directly related to the aim of the
study. The appropriate data should be carefully collected and can be used, not only for
the experiment design, but for the data analysis [7]. In the case of an expected high inter-
individual variability, a larger sample cohort could even be required. The sample size
is one of the main factors affecting the experimental results and should be adequate to
provide the statistically robust investigation, taking into account the phenotypic variation
in the metabolome. The number of samples needed to fully identify and understand the
mechanisms of a disease, may depend on the complexity of a disorder [32]. Very often, the
limitation of the metabolomics study is small sized groups and the absence of a validation
cohort that can lead to a lack of statistical robustness and validity of the results [33].

The following problem is in the detected metabolite sets that are workflow-dependent
because they were obtained using different analytical platforms, and so the experimental
setups were different in the sample preparation routines and measuring equipments. That
is why, very often, the detected sets of metabolites are specific for the particular study.

According to the existing databases, the human metabolome contains thousands of
metabolites differing in their concentrations (from g/L to pg/L), chemical and physical
properties, and stability [24]. Therefore, different analytical platforms and different sample
preparation procedures are needed to analyze the metabolome comprehensively [34,35].
Currently, there are no standardized metabolite extraction protocols and it is usually se-
lected depending on the metabolites of interest [36]. The same situation is observed for the
instrumental techniques. The use of 1H nuclear magnetic resonance (NMR) spectroscopy
and mass spectrometry (MS) are the two main analytical techniques in metabolomics.
Both of them can be used for the identification and quantification of a large number of
metabolites in complex biosamples. In spite of NMR, it is characterized by a better repro-
ducibility, MS-based techniques have a higher sensitivity. Therefore MS-based technology
is widely used in the clinically-oriented metabolomic research. Regardless of whether
we use untargeted or targeted metabolomics methods, both approaches have the same
pitfalls, due to the diversity of the metabolome [37,38]. In both cases, only a particular
class of compounds as chemical or physical properties can be measured, due to the sample
preparation protocol, separation method (gas or liquid chromatographic separation, one
or two dimensional), and the mass spectrometry ionization method used in the study.
For example, the gas chromatography-mass spectrometry (GC-MS) method can analyze
only volatile metabolites or those that can be volatilized, such as most amino acids, sugar
alcohols, aromatic amines, and organic acids [39,40]. The liquid chromatography-mass
spectrometry (LC-MS) method is able to analyze both polar and non-polar compounds of
different classes, by using different chromatographic columns [41–43]. The direct injection
mass spectrometry (DIMS) method can analyze only abundant metabolites, limited by the
concentration range of the detector, but it is faster and has a better reproducibility than the
“hyphenated” techniques [44,45].

Thus, each metabolomics study does not research the metabolome itself, but the
possibilities of the analytical approach used. Therefore, in our view, to date, there is no
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technique allowing for the analysis of the whole metabolome to capture the personalized
metabolomic profile. At the same time, a possible alternative option using a combination
of different techniques, would lead to increased time and cost of the analysis, as well
as the complicated data interpretation for the end-users. Furthermore, the personalized
metabolomic test cannot be delivered as an aggregation of the variety of experiments
performed in different conditions.

2.2. Data Processing and Interpretation

The data obtained in the metabolomic studies are complex, in terms of the number of
parameters measured, and a robust statistical analysis of the results is needed. Classical
(t-tests, ANOVA, and a nonparametric Mann–Whitney–Wilcoxon test) and a multi-variate
(principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial
least square-discriminant analysis (PLSDA)) statistical methods are usually used for a
reliable analysis in metabolomic studies [46]. Because of the multiple-testing issue, the
Bonferroni correction and the false discovery rate (FDR) approaches are needed to limit the
false positive data, especially in untargeted metabolomics [47]. There are free web-based
platforms for mass spectrometry-based metabolomics data processing and the following
analysis, such as MetaboAnalyst [48], XCMS Online [49], or PAIRUP-MS [50], which
enable analyses of the raw data for the biomarker search and pathway enrichment analysis.
Unfortunately, there are no web-based platforms for a personalized metabolomics analysis,
and most of the widely used statistical workflows are only possible for the case-control
studies, and they do not work at the individual level due to the intra- and inter-individual
biological variabilities. In addition, in the case of a personalized analysis, the samples
usually cannot be analyzed in a single batch and the technical variations should be taken
into account during the data processing.

The metabolite identification is one of the key steps of any metabolomics study
and is also critical for pathway analysis and mapping [51]. The metabolome databases—
Human Metabolome Database (HMDB) (http://www.hmdb.ca, accessed on 30 November
2022) [11], FooDB (http://foodb.ca, accessed on 30 November 2022), DrugBank (https:
//go.drugbank.com, accessed on 30 November 2022), and Toxin and Toxin Target Database
(T3DB) (http://www.t3db.ca, accessed on 30 November 2022) [52], with spectral libraries—
Metlin (https://metlin.scripps.edu, accessed on 30 November 2022) [53] or mzCloud
(https://www.mzcloud.org, accessed on 30 November 2022), contain data on thousands
of metabolites, including experimental and modeling data. However, not all metabolites
are annotated already. In contrast to proteomics, the metabolomics data are repositored
in numerous databases and usually in an ununified data format. Most of metabolomics
data are accumulated in the published papers and cannot be used for data analysis di-
rectly [14,54,55]. The metabolome cannot be predicted, as the proteome. In a case of
proteins, the identification analysis of the mass spectrometry data is performed, based on
the previously determined data about the protein encoding genes in the existing databases.
The protein sequence can be predicted using the genome data, and so their identification
is based on the previous more stable omics level. The metabolome cannot be predicted
at all as it reflects the effect of both the internal and external factors on an organism. A
metabolomics analysis enables the detection of any variation associated with both dif-
ferences in lifestyle (diet, physical activity, and use of drugs or supplements) of various
individuals (inter-individual variations) and changes occurring in the lifestyle of an individ-
ual (intra-individual variations). That is why the metabolome, as the set of final products
of biochemical processes in an organism, is more flexible and better reflects the actual state
of the individual, than the genome and proteome, but it cannot be identified so simply.

The accurate identification of the metabolites in complex biosamples requires MS
platforms with a high mass resolution (>50,000, M/∆M, full width at half maximum) and a
high mass measurement accuracy (<3 ppm) for the isotope pattern detection, especially in
the case of metabolites with similar structures and overlapping MS peaks. The accurate
retention time and the MS/MS spectra increase the identification confidence by matching

http://www.hmdb.ca
http://foodb.ca
https://go.drugbank.com
https://go.drugbank.com
http://www.t3db.ca
https://metlin.scripps.edu
https://www.mzcloud.org
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with the reference data in the spectral libraries. However, instruments, fragmentation con-
ditions, and types of molecules, can be different in various databases. Therefore, the most
confident mass spectra for the definitive identification of a metabolite are those obtained
from a pure chemical standard at the same MS platform. Unfortunately it is limited by the
availability of such standards, especially commercial [56–59]. In proteomics, it is not diffi-
cult to synthesize the standard, if the peptide sequence is known, while in metabolomics,
it is challenging, due to large structure diversity. For example, the differences in the hy-
drocarbon chains of fatty acids that are present in phospholipids, can differ in the exact
individual fatty acyl groups present, the positional distribution of the fatty acyl groups,
the double bond location, geometry, etc. In contrast to the proteins, where fragmentation
patterns may be predicted, based on the amino acids sequence, metabolites are fragmented
in a relatively unpredictable manner and very often under low-energy conditions, or even
in an ionization source. Although in the case of the personalized metabolomics analysis,
there is no need to find new metabolites (biomarkers), the definitive identification of the
already known compounds must be confirmed or the isotopically labeled standards should
be used as the gold standard for the definitive metabolite identification [31].

The interpretation of the detected metabolite changes is challenging as well. Most of
the biomarker studies aimed at the development of new diagnostic tests for clinics, deal
with blood as minimally invasive and therefore use a more convenient biosample, especially
for monitoring in large population groups. Blood interacts with all tissues and organs in the
organism as well as with various cells, such as lymphocytes, macrophages, and leukocytes
that contain proteins, metabolites, cell-free DNA and RNA arising by secretion, apoptosis,
or enzymatic cleavage from cell membranes of intersecting organs. Thus, blood reflects
the actual state of the organism and can serve as a “window” into health and disease [60].
However, despite the huge number of metabolomic studies that have been successful in
discovering a disease associated the blood metabolome changes, the origin of the detected
metabolite changes and thus, the mechanisms of a disease onset, stay unclear. Due to
the non-organ specificity and the ability to reflect the biochemical processes of the whole
organism, the interpretation of the changes detected in the blood is complicated [61,62]. In
addition, all pathological processes in the organism are not the result of a single change
in the metabolic pathway, but rather a coordinated change in more than one pathway.
These changes may arise from a single change to a node involved in multiple pathways, or
from multiple changes to the nodes in multiple pathways, as suggested by the complex
mechanism of most diseases [63]. Therefore the findings about the role of the distinguished
metabolites and the possible mechanisms of the disease onset or the progression can require
additional research and the involvement of appropriate specialists.

It shouldn’t forgotten, that most of the metabolomic studies are case-control studies
and their results cannot be directly translated to personalized metabolomics. In such
studies, the individual features are not taken into account and are even filtered out from
the data sets selected for the comparative analysis of the controls and cases. The potential
biomarkers detected in this case are metabolites with a significantly different level in the
samples of the studied groups. The experience shows that a single biomarker cannot
always allow for the distinction between the case from the control and the combination of
biomarkers (metabolite signature), summarizing their diagnostic potential that provides a
better performance [64–66]. However, the detection of the signature in the personal data is
challenging. Even more, the metabolite with statistically significant differences between
groups can have a concentration outside of the norm in only a small part of the samples
in the case group. In such a case, the metabolic signature consisting of such metabolites
should almost always give false-negative results for personal measurements [12,67].

Summarizing all of the mentioned above, it turns out that besides the challenges
common for all metabolomic studies, the personalized metabolomics requires a completely
new routine workflow, which has to be defined by taking into account the frequency of
the analysis and the delivery time of the results to the end-users. The generally accepted
methods of data processing and the knowledge collected in the metabolomic databases
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cannot be directly applied to the personalized metabolomics analysis. The known potential
biomarkers and their signatures often deal with small concentration variations between
the groups and so most likely correspond to the norm in the personalized analysis. This is
the main reason why the accumulated data on thousands of metabolomic studies did not
result in a revolution in the routine clinical care, in spite of the continuous improvement of
the used analytical platforms.

2.3. Data Interpretation for the End-Users

Today, there is still no workflow to perform the personalized metabolomics analysis
that can be implemented in clinical practice. Current clinical practice deals with a limited
number of physiological parameters based on a small amount of information of the organ-
ism state. The metabolomics provides the complex profile of the biosamples consisting of
thousands of features, which reflects the actual state of the organism. Delivering the huge
amount of measuring data in an understandable form, is challenging. Thus, the translation
of the complex metabolomics data into a self-explanatory analysis report that is clear for
the end-user, is a main problem for the personal metabolomics implementation (Figure 4).
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Figure 4. The main problems of personalized metabolomics workflow. Blood plasma or dried blood
spot samples are collected at clinics or at home and transported to the laboratory. At the laboratory,
after the sample preparation, the mass spectrometry analysis and the preliminary data processing
of the final data analysis is challenging, due to the complex output, the difficult matching of the
personal signature with the databases, the population diversity, and the absence of the algorithm to
translate the complex metabolomics data into a user-friendly analysis report.

As the metabolome is influenced by both internal and external factors and reflects both
the biochemical processes in an organism, including the pathological ones, and the effect of
diet, drugs, and environment, it may be concerned as a mirror in which each individual
can see their health state. Using modern techniques for analysis, such as for the sample
collection, for example, the dried blood spot, provides the individual an opportunity to take
care of their health by themselves. In this case, any slightest disturbance in the individual
metabolome can be tracked in the real rhythm of life. It can be important for the assessment
of the effect of life style, diet, physical activity, and drug supplementation on the organism.
Ideally, in the future, the personalized metabolomics can replace instrumental methods
of early disease diagnostics and save money and time that may be spent on the disease
treatment. It well known that prevention is better than the cure.

At the same time, the simple format of the metabolomics analysis data is crucial for
clinicians, because they should make decisions and set diagnoses, based on confident
analysis data. Today, the clinical diagnostics is based on several dozens of metabolites
approved by the FDA and characterized by the concentration data in normal and diseased
states. In other words, the existing clinical tests deliver the results in the report format
allowing to diagnose a disturbance in the organism or propose additional tests at a glance.
The main advantage of metabolomics is the ability to measure numerous metabolites in a
biosample, simultaneously. However, the greater the number of parameters delivered in
the analysis report, the greater the knowledge about the biology of the processes occurring
in the organism, and the greater the amount of time for considering what will be required
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from the clinician to make a decision. [68]. Therefore the algorithm of the metabolomics
data processing and interpretation to simplify the analysis report is a main bottleneck for
the personalized metabolomics implementation in clinical practice. The development of
such an algorithm would revolutionize laboratory diagnostics, and hundreds of discovered
metabolic signatures would find a use in clinics. To this end, the metabolomics-based health
data collection in families and large cohorts studies (e.g., well characterized biosamples
from big biobanks) with electronic medical records for the integration of the biological
information with the clinical data, can provide a basis for the personalized analysis.

In conclusion to the section, it should be noted that it is difficult to determine the
applicability of the common metabolomics tools for personalized metabolomics. Based on
our experience in this field, the standard metabolomics tools cannot be directly applied for
personal metabolomics. There is a feeling that additional data processing and in-house
software are required for personal metabolomics.

3. Possible Ways of a Personalized Metabolomics Implementation
3.1. Multi-Omics Tests

The attempts to create and implement an omics-test for personalized medicine have
existed for a long time, and various approaches have been used. One of the most popular
is the multi-omics approach, including the genomics, transcriptomics, proteomics, and
metabolomics analysis at the single-subject (N-of-1) studies, where they are used to analyze
the biomaterial of a single person. Several recent studies have illustrated the utility of the
multi-omics longitudinal data to look for signs of reversible early disease or disease risk
factors in single individuals [69–72].

In 2012, Michael Snyder and colleagues presented the iPOP (integrated personal omics
profiling) study [73]. It is a longitudinal study that combines genomic, transcriptomic, pro-
teomic, metabolomic, and autoantibody profiles from a single individual of 109 participants
over a 14 month period. A significant number of the iPOP participants are pre-diabetic,
and a better understanding of the way that omics are influenced by a disease state and
the progression to either a healthy or a diabetic state is another important focus of this
study. Compiling invaluable omics-data with data on the participants’ diets, stress levels,
activity levels, and personal and family medical history, allowed to better characterize a
normal state of health on the molecular level, as well as to identify early signs of disease
that may someday lead to the ability to better predict and treat diseases in the early stages,
and perhaps even prevent disease altogether [74–76].

In 2014, Leroy Hood and Nathan D. Price proposed the 100,000 (100K) person wellness
project, which was supported by the Arivale program in 2015 [77]. In the frame of this
wellness program, the information for each participant over time, including the genomic,
blood analytes, gut microbiome, and digital self-measurements, was collected and used by
Arivale health coaches for providing participants a personalized list of recommendations
for improving their wellness and avoiding disease. In 2017, the authors of the project
presented the results of the Pioneer 100 Wellness Project (P100), based on the data of the
whole genome sequences, clinical tests, metabolomes, proteomes, and microbiomes at
3-month intervals, and frequent activity measurements for 108 individuals over the course
of 9 months [78]. In 2019, the Arivale wellness program was closed, but the collected data
are still used for scientific purposes [79–82].

Due to integration of several omics technologies, the multi-omics approach is able to
obtain additional knowledge about the individual but at the same time leads to theincrease
of the cost and is time consuming, due to the complexity of the analysis. Furthermore,
the main bottleneck of any multi-omics study is the analysis of the obtained data sets. A
multi-omics approach requires an integration of multiple data types obtained at various
molecular levels from the genome to metabolome, and their relation with the clinical
data [64,83,84]. The population diversity and the lack of stated regulated procedures and
standards for such omics-tests may be another reason for the slow translation of their
findings to the medicine. The multi-omics initiatives point out that standard operating
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procedures (SOPs) for the standardization among methods and technical controls, in order
to increase the results reproducibility and improve the reliability of the techniques, are
needed [85]. That is why the results of the mentioned above N-of-1 studies have not yet
received the widespread implementation as omics-tests.

3.2. Laboratory Developed Tests

Another possible way to solve problems and implement the personalized metabolomics
into clinical practice may be the laboratory-developed test (LDT) format. The LTD, as a
subset of in vitro diagnostic devices (IVDs), has been widespread in clinical practice for
decades [86–89]. IVDs are “those reagents, instruments, and systems intended for use in the
diagnosis of a disease or other conditions, including a determination of the state of health,
in order to cure, mitigate, treat, or prevent disease or its complication. Such products are
intended for use in the collection, preparation, and examination of specimens taken from
the human body” [90]. The LDT is defined by the US Food and Drug Administration
(FDA) as “in vitro diagnostic tests that are manufactured by and used within a single
laboratory”, i.e., a laboratory with a single clinical laboratory improvement amendments
(CLIA) certificate. LDTs are also referred to as in-house developed tests or “homebrew”
tests [91]. The concept of the LDT appeared in 1976, when the FDA had the authority to
regulate IVDs as medical devices [92]. However, despite of the stringent FDA standards
with robust regulatory processes of premarket validation for commercial IVDs, the they
do not exist for LDTs, due to the limited availability and the primary use in the context of
rare diseases.

The LDT can measure both the individual and large number of analytes of various
natures. Several omics-based LDTs have been published for the diagnosis of various
diseases, including genetic disorders, cancer, and infections [93–99]. Only two papers
have been found in PubMed through a search of “metabolomics AND LDT”. Both are
from our laboratory and report about the metabolomics tests designed to diagnose early-
stage Parkinson’s disease [100,101]. Currently there are no metabolomics-based LDTs in
use. A number of LDTs were developed by Metabolon in 2018, but now there is no any
information on the company website regarding whether these tests are still in use. Using
the advanced metabolomics technologies, Metabolon has designed the Meta UDx™ test
for the detection of abnormalities in major human metabolic pathways or biomarkers that
cannot be measured by other means, and Meta IMD™ and Meta IMD™+ (Plus) tests for the
diagnosis of rare genetic disorders, known as hereditary metabolic disorders or congenital
metabolic disorders. These LDTs determined up to 1,000 metabolites in blood plasma
and generated a heat map of the metabolite Z-scores, which were used to identify altered
metabolic pathways, and were used in the CLIA certified laboratories. In addition, the
company has offered a clinically confirmed quantose impaired glucose tolerance test, which
used a proprietary algorithm to produce an “IGT score”, based on a combination of glucose
and seven metabolites [102]. As LDTs, all of these tests have not been approved by the FDA
and were used in the CLIA certified laboratories. Their results could be used in clinics as
auxiliary tests and in combination with other standard clinical diagnostic tests [89].

Thus, using the LDT strategy, the advantages of metabolomics diagnostics have the
potential to become a reality. In the LDT’s format, the implementation of the metabolomics-
based tests is regulated by the protocols and standardization acts of particular laboratories
and local rules for diagnostic devices only. Since the MS-based metabolomics analysis can
be performed using dried blood spot samples, which can be collected by the individuals
themselves and delivered to the laboratory by mail or courier service without special
requirements for the transportation conditions, such as temperature, the LDT becomes
convenient for customers and available almost everywhere [103]. In addition, this format is
very useful for self-care, due to the ability to regularly monitor the state of the organism,
which has a pronounced applied value in the modern world. Potentially, a large number of
tests can be performed within one laboratory, and so the cost of the metabolomics LDT is
expected to be quite low and acceptable for most people.
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It should be noted that alternative tools for monitoring metabolites in biological fluids,
such as enzyme assays or immunoassays, have not been considered as a possible way of
personal metabolomics implementation, due to their inconsistencies with the metabolome
analysis concept itself. Such assays are useful for the analysis of a single metabolite, or
possibly a set of particular metabolites, but suffer from low multiplexing capabilities. Thus,
the tests, based on these methods cannot be used for a complex metabolomics analysis.

In conclusion to the section, it should be reported that in spite of all challenges, there
are several examples that are beginning to use metabolomics as an individual health
assessment. For example, Nightingale Health offers to estimate the “age you are likely
to live to before falling ill from any of the top 10 diseases that significantly reduce the
quality of life” from a single finger-prick blood sample taken at home [104]. Using the
proprietary NMR-based blood analysis technology and software, the service gives an
estimate of healthy years, based on the publications and the previous analysis results of
hundreds of thousands of blood samples. Another one is AminoIndex® Cancer Screening
(AICS®) from the Ajinomoto Group Leveraging utilizing the LC/MS-based measurement
of amino acids in plasma, to deliver a minimally invasive, early cancer detection [105].
The AminoIndex® Cancer Screening (AICS®) system was introduced for stomach, lung,
colorectal, pancreas, prostate, breast, uterine, and ovarian cancers at medical institutions in
Japan. Although the AminoIndex® service cannot be assigned as a real metabolomics test,
due to the analysis of a limited number of metabolites, together with Nightingale Health,
they can be considered as the successful example of the implementation of metabolomics
to clinical practice and wellness. Furthermore, the Nightingale Health service confirms,
one more time, that algorithms for data interpretation to self-explanatory analysis reports
for the end-users is one of the key factors.

4. Conclusions

In spite of the challenges common for all metabolomic-based studies, the personalized
metabolomics has a high chance to be implemented in clinical practice when the main
problem will be resolved—the algorithm for the data interpretation to the self-explanatory
analysis report for the end-users. Among the above mentioned strategies proposed by the
professional community for developing an omics-test suitable for clinics, the LDT can be an
actual possible way of personalized metabolomics implementation. Based on the current
state of metabolomics and omics-based tests, the personalized metabolomics LDT has a
great chance to be developed for the comprehensive diagnostics of human health. At first,
the personalized metabolomics LDT meets the four key criteria for a viable market model:
affordable price, availability of the test results to the end-user, a fast testing speed, and
scalability. In addition, personalized metabolomics is potentially more convenient for the
end-users, multi-functional, and more informative than existing clinical blood diagnostics.
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From concept to data to knowledge. Metabolomics 2005, 1, 39–51. [CrossRef]

28. Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and considerations for
the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic
studies. Metabolomics 2018, 14, 72. [CrossRef]

29. Long, N.P.; Nghi, T.D.; Kang, Y.P.; Anh, N.H.; Kim, H.M.; Park, S.K.; Kwon, S.W. Toward a Standardized Strategy of Clinical
Metabolomics for the Advancement of Precision Medicine. Metabolites 2020, 10, 51. [CrossRef]

30. Lippi, G.; Betsou, F.; Cadamuro, J.; Cornes, M.; Fleischhacker, M.; Fruekilde, P.; Neumaier, M.; Nybo, M.; Padoan, A.; Plebani, M.;
et al. Preanalytical challenges-time for solutions. Clin. Chem. Lab. Med. 2019, 57, 974–981. [CrossRef]

31. Marciano, D.P.; Snyder, M.P. Personalized metabolomics. Methods Mol. Biol. 2019, 1978, 447–456. [CrossRef] [PubMed]
32. Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems biology and multi-omics

integration: Viewpoints from the metabolomics research community. Metabolites 2019, 9, 76. [CrossRef] [PubMed]
33. Desaire, H. How (Not) to Generate a Highly Predictive Biomarker Panel Using Machine Learning. J. Proteome Res. 2022, 21,

2071–2074. [CrossRef] [PubMed]
34. Bruno, C.; Patin, F.; Bocca, C.; Nadal-Desbarats, L.; Bonnier, F.; Reynier, P.; Emond, P.; Vourc’h, P.; Joseph-Delafont, K.; Corcia,

P.; et al. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic
pathways or a marketing argument? J. Pharm. Biomed. Anal. 2018, 148, 273–279. [CrossRef]

35. Kim, Y.M.; Heyman, H.M. Mass Spectrometry-Based Metabolomics. In Methods in Molecular Biology; Springer: Berlin/Heidelberg,
Germany, 2018.

36. González-Riano, C.; Dudzik, D.; Garcia, A.; Gil-De-La-Fuente, A.; Gradillas, A.; Godzien, J.; López-Gonzálvez, Á; Rey-Stolle, F.;
Rojo, D.; Ruperez, F.J.; et al. Recent developments along the analytical process for metabolomics workflows. Anal. Chem. 2020, 92,
203–226. [CrossRef]

37. Gika, H.G.; Wilson, I.D.; Theodoridis, G.A. Omics | Metabolomics: An analytical perspective. In Encyclopedia of Analytical Science;
Elsevier: Amsterdam, The Netherlands, 2019; pp. 82–89. [CrossRef]

38. Lodge, S.; Nitschke, P.; Loo, R.L.; Kimhofer, T.; Bong, S.-H.; Richards, T.; Begum, S.; Spraul, M.; Schaefer, H.; Lindon, J.C.; et al.
Low Volume in Vitro Diagnostic Proton NMR Spectroscopy of Human Blood Plasma for Lipoprotein and Metabolite Analysis:
Application to SARS-CoV-2 Biomarkers. J. Proteome Res. 2021, 20, 1415–1423. [CrossRef]

39. Khodadadi, M.; Pourfarzam, M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-
mass spectrometry. Metabolomics 2020, 16, 66. [CrossRef]

40. Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.;
Dias, D.A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 2018, 14, 152.
[CrossRef]

41. Wang, S.; Blair, I.A.; Mesaros, C. Analytical Methods for Mass Spectrometry-Based Metabolomics Studies. Adv. Exp. Med. Biol.
2019, 1140, 635–647. [CrossRef]

42. Bhatia, A.; Sarma, S.J.; Lei, Z.; Sumner, L.W. UHPLC-QTOF-MS/MS-SPE-NMR: A Solution to the Metabolomics Grand Challenge
of Higher-Throughput, Confident Metabolite Identifications. Methods Mol. Biol. 2019, 2037, 113–133. [CrossRef]

43. Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass
spectrometry variants for metabolomics research. Nat. Methods 2021, 18, 733–746. [CrossRef] [PubMed]

44. Sarvin, B.; Lagziel, S.; Sarvin, N.; Mukha, D.; Kumar, P.; Aizenshtein, E.; Shlomi, T. Fast and sensitive flow-injection mass
spectrometry metabolomics by analyzing sample-specific ion distributions. Nat. Commun. 2020, 11, 3186. [CrossRef]

45. Lokhov, P.G.; Balashova, E.E.; Trifonova, O.P.; Maslov, D.L.; Ponomarenko, E.A.; Archakov, A.I. Mass spectrometry-based
metabolomics analysis of obese patients’ blood plasma. Int. J. Mol. Sci. 2020, 21, 568. [CrossRef] [PubMed]

46. Bartel, J.; Krumsiek, J.; Theis, F.J. Statistical methods for the analysis of high-throughput metabolomics data. Comput. Struct.
Biotechnol. J. 2013, 4, e201301009. [CrossRef] [PubMed]

47. Bartroff, J.; Song, J. Sequential Tests of Multiple Hypotheses Controlling False Discovery and Nondiscovery Rates. Seq. Anal.
2020, 39, 65–91. [CrossRef]

48. Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst
5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]

49. Domingo-Almenara, X.; Siuzdak, G. Metabolomics Data Processing Using XCMS. Methods Mol. Biol. 2020, 2104, 11–24. [CrossRef]
50. Hsu, Y.H.H.; Churchhouse, C.; Pers, T.H.; Mercader, J.M.; Metspalu, A.; Fischer, K.; Fortney, K.; Morgen, E.K.; Gonzalez, C.;

Gonzalez, M.E.; et al. PAIRUP-MS: Pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based
metabolite data. PLoS Comput. Biol. 2019, 15, e1006734. [CrossRef]

http://doi.org/10.4155/bio.12.204
http://www.ncbi.nlm.nih.gov/pubmed/23046267
http://doi.org/10.1007/s11306-018-1460-7
http://doi.org/10.1007/s11306-005-1106-4
http://doi.org/10.1007/s11306-018-1367-3
http://doi.org/10.3390/metabo10020051
http://doi.org/10.1515/cclm-2018-1334
http://doi.org/10.1007/978-1-4939-9236-2_27/FIGURES/3
http://www.ncbi.nlm.nih.gov/pubmed/31119679
http://doi.org/10.3390/metabo9040076
http://www.ncbi.nlm.nih.gov/pubmed/31003499
http://doi.org/10.1021/acs.jproteome.2c00117
http://www.ncbi.nlm.nih.gov/pubmed/36004690
http://doi.org/10.1016/j.jpba.2017.10.013
http://doi.org/10.1021/acs.analchem.9b04553
http://doi.org/10.1016/B978-0-12-409547-2.14003-X
http://doi.org/10.1021/acs.jproteome.0c00815
http://doi.org/10.1007/s11306-020-01687-x
http://doi.org/10.1007/s11306-018-1449-2
http://doi.org/10.1007/978-3-030-15950-4_38
http://doi.org/10.1007/978-1-4939-9690-2_7
http://doi.org/10.1038/s41592-021-01116-4
http://www.ncbi.nlm.nih.gov/pubmed/33972782
http://doi.org/10.1038/s41467-020-17026-6
http://doi.org/10.3390/ijms21020568
http://www.ncbi.nlm.nih.gov/pubmed/31952343
http://doi.org/10.5936/csbj.201301009
http://www.ncbi.nlm.nih.gov/pubmed/24688690
http://doi.org/10.1080/07474946.2020.1726686
http://doi.org/10.1093/nar/gkab382
http://doi.org/10.1007/978-1-0716-0239-3_2
http://doi.org/10.1371/journal.pcbi.1006734


Metabolites 2023, 13, 67 13 of 15

51. Collins, S.L.; Koo, I.; Peters, J.M.; Smith, P.B.; Patterson, A.D. Current Challenges and Recent Developments in Mass Spectrometry-
Based Metabolomics. Annu. Rev. Anal. Chem. 2021, 14, 467–487. [CrossRef]

52. Wishart, D.; Arndt, D.; Pon, A.; Sajed, T.; Guo, A.C.; Djoumbou, Y.; Knox, C.; Wilson, M.; Liang, Y.; Grant, J.; et al. T3DB: The toxic
exposome database. Nucleic Acids Res. 2015, 43, D928–D934. [CrossRef]

53. Montenegro-Burke, J.R.; Guijas, C.; Siuzdak, G. METLIN: A Tandem Mass Spectral Library of Standards. Methods Mol. Biol. 2020,
2104, 149–163. [CrossRef] [PubMed]

54. Frainay, C.; Schymanski, E.L.; Neumann, S.; Merlet, B.; Salek, R.M.; Jourdan, F.; Yanes, O. Mind the Gap: Mapping Mass Spectral
Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas. Metabolites 2018, 8, 51. [CrossRef] [PubMed]

55. Damont, A.; Olivier, M.F.; Warnet, A.; Lyan, B.; Pujos-Guillot, E.; Jamin, E.L.; Debrauwer, L.; Bernillon, S.; Junot, C.; Tabet, J.C.;
et al. Proposal for a chemically consistent way to annotate ions arising from the analysis of reference compounds under ESI
conditions: A prerequisite to proper mass spectral database constitution in metabolomics. J. Mass Spectrom. 2019, 54, 567–582.
[CrossRef] [PubMed]

56. Böcker, S. Searching molecular structure databases using tandem MS data: Are we there yet? Curr. Opin. Chem. Biol. 2017, 36, 1–6.
[CrossRef] [PubMed]

57. Nash, W.J.; Dunn, W.B. From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites
applying liquid chromatography-mass spectrometry data. TrAC Trends Anal. Chem. 2019, 120, 115324. [CrossRef]

58. Yi, Z.; Zhu, Z.J. Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics.
Methods Mol. Biol. 2020, 2104, 139–148. [CrossRef] [PubMed]

59. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.; Arita, M.; et al.
Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37, 513–532. [CrossRef] [PubMed]

60. Yurkovich, J.T.; Hood, L. Blood Is a Window into Health and Disease. Clin. Chem. 2019, 65, 1204–1206. [CrossRef]
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