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Supplementary Text S1: Derivation of weighted formulation

Starting from the core rox formulation in Eq.(1)

roxcore =
�(⇡)

|⇡| where �(⇡) =
X

hi,ji2⇡

1if sgn(xi�xj)=sgn(yi�yj) (1)

Let wij be the weight of pair hi, ji, and �(⇡, w) be the sum of the weights of concordant pairs in ⇡. We first introduce
a variation of the rox statistic that includes a contribution weight for each pair of observations as:

rox(w) =

P
hi,ji2⇡

wij1if sgn(xi�xj)=sgn(yi�yj)P
hi,ji2⇡

wij

=
�(⇡, w)P
hi,ji2⇡

wij

, (1.1)

Notably, if all weights are unitary, i.e., wij = 18i, j, this expression simplifies to the core formulation in Eq.(1).

We now want to derive a formulation that allows to control the overall contribution of missing values to the statistic.
Under an LOD assumption, we can divide all comparable pairs ⇡ in two sets of pairs: one set of pairs which include a
missing value, referred to as ⇡b, and one set of pairs consisting of only complete cases, referred to as ⇡1. This way,
⇡ = ⇡1 [ ⇡b, and w = w1 [ wb, from which follows:

rox(w) =
�(⇡, w)P
hi,ji2⇡

wij

=
�(⇡1, w1) + �(⇡b, wb)P

hi,ji2⇡1
wij +

P
hi,ji2⇡b

wij

(1.2)

We assign a weight equal 1 to all the pairs with complete observations, and set the same weight p with 0  p  1 to all
pairs that contain a missing value. That is, wij = 1 8i, 8j, and wij = p otherwise. This results in Eq.(2):

rox(p) =
�(⇡1) + p�(⇡b)

|⇡1|+ p|⇡b|
(2)
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Supplementary Text S2: Proof - LOD leads to db > d > d1

Under the LOD assumption, rox accepts missing values as left-censored values and offers an unbiased estimate of
concordance. The framework has a self-adjustment feature, which checks whether there is evidence that measurements
violate this LOD assumption. In that case, rox switches off the left-censored formulation, since non-LOD data would
only further bias the estimate, see Eq.(3), Eq.(4) in the main manuscript. Whether the data is under an LOD effect is
assessed by evaluating whether the inequality db > d > d1 holds (as defined in main manuscript). d1 is the concordance
relative to the pairs between measured data points (⇡1), db is the concordance within bridge pairs (⇡b). Note that
d2, the concordance relative to missing data points (⇡2), does not appear in the calculation as it is unobserved. See
Supplementary Figure 6 for a graphical representation of the pair sets. If the inequality db > d > d1 does not hold, rox
concludes a violation of the LOD assumption, and switches to a complete case analysis (CCA), ignoring all missing
values. In this supplement, under some mild assumptions, we will prove that if a strict-LOD exists, then db > d > d1
must hold. We will first introduce and quantities and notations that will be useful later on, and will then show the proof
for the inequality.

Variables and Nomenclature

Let X and Y be two random variables from a bivariate distribution (X,Y ), and let d = dY X be the overall concordance
between Y and X . Let S be the set of all observations, and let us partition S into two disjoint subsets s = {s1 (
S, s2 ( S | S = s1 [ s2, s1 \ s2 = ;}. Based on this definition, we can partition all pairwise rankings ⇡ into
three distinct sets of pairs ⇡1, ⇡2, and ⇡b, where ⇡1 includes all the pairs within s1, ⇡2 includes all the pairs within
s2, and ⇡b includes the pairs between the two sets, i.e., the "bridge pairs" (Supplementary Figure 7 below). Note
that ⇡ = ⇡1 [ ⇡b [ ⇡2. Furthermore, let (X(si), Y (si)) denote the observations of X and Y relative to a specific set
si 2 {s1, s2}. In this setting, d1 = d

Y (s1)X(s1) is the concordance between X and Y within s1, and hence over the
pairs ⇡1. Likewise d2 = d

Y (s2)X(s2) is the concordance between X and Y within s2, over the pairs in ⇡2. Finally, we
can define db as the concordance between X and Y over the set of bridge pairs ⇡b.

s1
s2

pairs
πb
π1
π2

Supplementary Figure 7: By separating the set of all observations S into two non overlapping subsets s1 and s2, we
define three distinct sets of pairs ⇡1, ⇡2 and ⇡b, where ⇡1 and ⇡2 include pairs within s1 and within s2, respectively,
and ⇡b includes pairs constituted by one observation from s1 and one observation from s2.

In all following derivations, we will assume the true concordance between X and Y to be positive, i.e., dY X > 0.5.
For negative concordance, results can be derived analogously by noting that dY X < 0.5 corresponds to dY (�X) > 0.5.
Therefore, simply substituting X with �X in all following concordance derivations is sufficient to obtain the results for
the negative concordance case.

Lemmas

Lemma 1: Greiner’s relation [35] states that for a bivariate normal distribution of random variables X and Y , Kendall’s
⌧ and Pearson correlation ⇢ are related by ⇢XY = sin(⇡2 ⌧XY ). Thus, solving this for ⌧ yields

⌧XY = G(⇢XY ) where G(x) =
2

⇡
arcsin(x) (7)
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Lemma 2: Given two bivariate normal random variables X and Y and a subset of observations s ( S such that
V ar[X(S)] > V ar[X(s)], the Kendall’s correlation between X and Y based on the subset of observations s is smaller
than the correlation based on the full set of observations S.

Given a bivariate normal distribution of random variables X and Y , suppose that Y = �X + ✏, where � is the linear
regression coefficient and ✏ is a Gaussian error term. The variance of Y can be written in terms of the variance of X as
V ar[Y ] = �2V ar[X] +V ar[✏]. In this setting, Pearson correlation ⇢ is related to the linear model’s explained variance
R2 by ⇢2 = R2, which can be written as

⇢2 = R2 =
�2V ar[X]

�2V ar[X] + V ar[✏]
(8)

The right-hand side of Eq.(8) goes to zero as V ar[X] ! 0. This means that the magnitude of Pearson correlation
|⇢| decreases as V ar[X] ! 0. Now let s be a subset from the population of observations S, s ( S, such that
XY (s) = (X(s), Y (s)) is a subset of (X,Y ). It follows that

if V ar[X] > V ar[X(s)] then ⇢XY > ⇢
XY (s) > 0, where s ( S (9)

Since G(.) in Eq.(7) is a monotonic function, plugging Eq.(7) into Eq.(9) gives

G(⇢XY ) > G(⇢
XY (s)) > 0 ) ⌧XY > ⌧

XY (s) > 0 given that V ar[X] > V ar[X(s)] where s ( S (10)

Lemma 3: The overall concordance can be written as the weighted mean of the concordances of non-overlapping sets
of pairs.

Let �(hi, ji|X,Y ) = �(i, j) be a pairwise concordance operator, which returns 1 if the observation pair hi, ji is
concordant on (X,Y ), and 0 otherwise:

�(i, j) =

⇢
1 if sgn(xi - xj) = sgn(yi - yj)
0 otherwise (11)

The overall concordance d = dY X between Y and X can be formulated in terms of the operator �:

d =
1

|⇡|
X

hi,ji2⇡

�(i, j) = E[ �(i, j) | hi, ji 2 ⇡ ] = E[ �⇡ ] (12)

where ⇡ is the set of all pairs. This means that concordance can be expressed as the expected value of the pairwise
ranking operator over the set of all pairs. Considering ⇡ = ⇡1 [ ⇡b [ ⇡2, we can write the overall concordance as:

d = E[�⇡] =
|⇡1|
|⇡| E[�⇡1 ] +

|⇡b|
|⇡| E[�⇡b ] +

|⇡2|
|⇡| E[�⇡2 ] (13)

Using Eq.(12), this can be written as:

d =
|⇡1|
|⇡| d1 +

|⇡b|
|⇡| db +

|⇡2|
|⇡| d2 (14)

Lemma 4: Given a bivariate distribution of random variables X and Y , with Y being a continuous random variable
with no ties, Kendall’s rank correlation coefficients ⌧ , ⌧a, and concordance d are monotonically related due to the
following equality [13]:

⌧Y X =
⌧a
Y X

⌧a
Y Y

= 2dY X � 1 (15)

Note that ⌧a is a variant of Kendall’s ⌧ which counts ties as discordant [36].
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Main Theorem

Theorem: For d > 0.5, if an LOD effect exists ) db > d > d1

Proof: Assume that there exist monotonic transformation functions tx and ty , such that tx(X) = X̃, ty(Y ) = Ỹ , with
X̃Ỹ = (X̃, Ỹ ) being a bivariate normal distribution. Given the monotonicity of the transformation, (X,Y ) and (X̃, Ỹ )
are rank-invariant, and therefore any rank-based statistic on the transformed data will produce results equivalent to
the ones on the original data. For example, if we calculated Kendall’s ⌧ , this would mean ⌧Y X = ⌧tx(Y )ty(X) = ⌧

Ỹ X̃
.

Now let yth be the LOD threshold on Y , and s2 be the set of all observations with Y value below the LOD: s2 = {i 2
S | yi < yth}, such that min(Y )  {y 2 Y (s2)} < yth < {y 2 Y (s1)}  max(Y ). In the transformed space, this
becomes

min(Ỹ )  ỹ < ỹth 8ỹ 2 Ỹ (s2)

max(Ỹ ) � ỹ > ỹth 8ỹ 2 Ỹ (s1)
(16)

In an ordered vector of continuous values, the variance of the overall vector is always larger than that of any subsets of
of adjacent elements. For example, given an ordered vector v = {v1, v2, ...vn} with elements {vi 2 R | vi�1 < vi, i =
1, 2, ...n}, and an ordered subvector k ( v, say k = {v1, v2, v3}, then Var[v] > Var[k]. Applying this observation
to our subsets, we deduce that Var[Ỹ ] > {Var[Ỹ (s1)],Var[Ỹ (s2)]}. Substituting this inequality into Eq.(10) leads to
⌧
Ỹ X̃

> ⌧
Ỹ X̃(s2) , ⌧Ỹ X̃(s1) , namely that Kendall’s correlation between X̃ and Ỹ on the whole set of observations S must

be larger than the Kendall’s correlation computed on either subset s1, s2. Since Ỹ is a continuous random variable, we
can write the concordance between Ỹ and X̃ as d = (⌧ + 1)/2 (Lemma 4). This, taken together with the previous ⌧
inequality, leads to d > {d1, d2}. From Lemma 3 we know that the overall concordance d is a weighted average of
d1, d2, and db. Since d > {d1, d2}, it must follow that db > d, and therefore

db > d > d1, d2 (17)

This means that, if a limit of detection (LOD) exists, the concordance pertaining to the bridge pairs db must be greater
than the concordance pertaining to data above the LOD, i.e., the observed data points, d1. Thus,

if LOD ) db > d > d1 (18)

⇤
Remark: The true concordance is a weighted mean of d1, db, d2 as shown in Eq.(14). Considering d > d2 from Eq.(17),
once d2 is dropped from the weighted average as in the rox core model Eq.(1), the concordance will increase. Thus,
without further adjustment, the estimated concordance will be higher than the true value and thus be overestimated.
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Supplementary Text S3: Choice of weight parameter p for debiasing

Here, we will derive the debiasing formulation of rox as presented in Eq.(3). First, we will derive an approximation for
the probability of a single pair being concordant. Then using this approximation, we will derive the debiasing weight
for the overall concordance of rox as presented in the Eq.(3).

An approximation for the probability of a pair of observations being concordant

Let Y and X be two positively correlated random variables with dY X > 0.5. In this setting, we will first obtain
an approximation for the probability of a pair being concordant on (X,Y ) given the ranks of each data point in Y :
P (�(i, j) = 1|ri, rj) = P (�ij = 1), where �(i, j) is the pairwise ranking operator defined in Lemma 3, Eq.(11), and
ri = rank(yi)/max(rank(Y )) is the scaled ranking of data point yi. Note that, given the ranks on Y , we derive an
approximation for the probability of a pair being concordant, not for overall concordance. Then using this probability,
we will derive the debiasing weight of rox as presented in the Eq.(3).

Theorem: Given two random variables X , Y with dY X > 0.5, there exists a linear function f(x) = mx + k,m 2
R+ k 2 R such that

P (�ij = 1|ri, rj) ⇡ f(ri � rj)

Proof: Let Y r = rank(Y )/max(rank(Y )) be the scaled rank-transformed version of Y . Assume that a monotonic
transformation function tx exists such that Xt = tx(X), and Xt = �Y r + ✏, � > 0. Define a random variable
⇣ = ✏1 � ✏2, where ✏1 and ✏2 have the same distribution of ✏. Hence, ⇣ follows a symmetric distribution centered at 0
with V ar[⇣] = 2V ar[✏]. Let F⇣ be the cumulative distribution function (CDF) of ⇣.

Given a pair of observations hi, ji, a pair of ranks {ri > rj |ri, rj 2 Y r}, and a pair of values {xt

i
, xt

j
2 Xt}, then the

probability of hi, ji being concordant is:

P (�ij = 1) = P
⇥�
xt

i
� xt

j

�
> 0

⇤
= P ((�ri + ✏i � �rj � ✏j) > 0)

= P (�(ri � rj) > (✏i � ✏j)) = P (�(ri � rj) > ⇣ij)

= F⇣ [�(ri � rj)] ⇡ m (ri � rj) + k with m > 0

(19)

Explanation of the approximation in the last line of the equation: All CDFs (like F⇣) are monotonically increasing
functions bounded by [0, 1]. Any continuous monotonic function on a closed interval can be approximated with a simple
linear function. The goodness of such approximation depends on the shape of CDF to be approximated. ⇣ follows a
symmetric distribution with V ar[⇣] = 2V ar[✏]. For a symmetric distribution, a higher variance translates into a less
"steep" sigmoid of the corresponding CDF. Notably, the less steep the sigmoid curve, the better it can be approximated
by a linear function.

⇤
Remark: The assumption that a monotonic transformation function tx(X) = Xt exists such that Xt = �Y r + ✏, with
� > 0, is a mild assumption, because a simple rank transformation would always satisfy this condition. Let tx be the rank
transformation such that Xt = tx(X)/max(tx(X)) is the scaled rank transform of X , then rank(X) = � rank(Y ) + ✏,
which is related to Spearman correlation ⇢S

Y X
.

Since dY X > 0.5 by design, and ⌧Y X = 2dY X � 1 (Lemma 3), and ⌧Y X > ⇢S
Y X

[37], we can conclude that
⇢S
Y X

> ⌧Y X > 0, and hence � > 0.

Debiasing weight

In Eq.(19), we obtained an approximation for the probability of a pair being concordant as P (�i,j = 1) = f(ri � rj),
which we now use to formulate the overall concordance d. As shown in Lemma 3, Eq.(12), concordance can be
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expressed as the expected value of correct pairwise rankings: d = E[�⇡], where ⇡ is the set of all pairs and � is the
pairwise ranking operator defined therein.

d = E[�⇡] =
1

|⇡|
X

hi,ji2⇡

E�ij =
1

|⇡|
X

hi,ji2⇡

P (�ij = 1)

⇡ 1

|⇡|
X

hi,ji2⇡

f(ri � rj) = f

0

@ 1

|⇡|
X

hi,ji2⇡

(ri � rj)

1

A ( because of linearity)

d ⇡ f(�),

(20)

where � = 1
|⇡|

P
hi,ji2⇡

(ri � rj) is the mean of scaled ranking difference among pairs in ⇡.

As shown in Lemma 3, the overall concordance can be expressed as the weighted mean of the concordances of
non-overlapping sets of pairs. If the set of samples S was divided into two non-overlapping groups s1 and s2 such that
S = s1[ s2 (see Supplementary Figure 7), we can divide all pairs ⇡ into three sets of pairs: ⇡1, which includes the pairs
within first group, ⇡2, which includes the pairs within second group, and ⇡b, which includes the pairs between two groups,
i.e., the bridge pairs. We thus have ⇡ = ⇡1 [ ⇡b [ ⇡2, and hence d = |⇡1|

|⇡| d1 +
|⇡b|
|⇡| db +

|⇡2|
|⇡| d2 = |⇡1|d1+|⇡2|d2+|⇡b|db

|⇡1|+|⇡2|+|⇡b| ,
where d, d1, d2, db are the concordances pertaining to S, s1, s2, and the bridge pairs, respectively.

The goal is to find a weight w in the absence of d2 by weighting samples of s2 such that the concordance computed on
the observable pairs is equal to the true concordance, i.e., d̂(w) = d. Let n1 and n2 be the sample sizes of s1 and s2,
respectively, and n = n1 + n2 be the overall sample size,

d =
|⇡1|d1 + |⇡2|d2 + |⇡b|db

|⇡1|+ |⇡2|+ |⇡b|
, d̂(w) =

|⇡1|d1 + w|⇡b|db
|⇡1|+ w|⇡b|

(21)

By requiring that d̂(w) = d, we get

d = d̂(w) ) |⇡1|d1 + |⇡2|d2 + |⇡b|db
|⇡1|+ |⇡2|+ |⇡b|

=
|⇡1|d1 + w|⇡b|db
|⇡1|+ w|⇡b|

) (|⇡1|d1 + |⇡2|d2 + |⇡b|db)(|⇡1|+ w|⇡b|) = (|⇡1|d1 + w|⇡b|db)|⇡|

) w =
|⇡1| (|⇡1|d1 + |⇡2|d2 + |⇡b|db)� |⇡||⇡1|d1
|⇡||⇡b|db � |⇡b|(|⇡1|d1 + |⇡2|d2 + |⇡b|db)

(22)

In Eq.(20), we derived an approximation for the concordance d = f(�), where � is the mean pairwise ranking
difference on X . Let us first calculate � for ⇡1, ⇡2, and ⇡b:

�1 =
1

|⇡1|
X

hi,ji2⇡1

(ri � rj) =
1

n1(n1 � 1)/2

n1�1X

j=1

n1X

i=j+1

1

n
(i� j) =

n1 + 1

3n

�2 =
1

|⇡2|
X

hi,ji2⇡2

(ri � rj) =
1

n2(n2 � 1)/2

n2�1X

j=1

n2X

i=j+1

1

n
(i� j) =

n2 + 1

3n

�b =
1

|⇡b|
X

hi,ji2⇡b

(ri � rj) =
1

n1n2

n2X

j=1

n1X

i=j+1

1

n
(i� j) =

n1 + n2

2n
=

n

2n

(23)

Using Eq.(20), these individual concordances can be written based on a linear approximation. Considering the �1,�2,
and �b we obtained, we can write d1, d2, db as follows:

d1 ⇡ f(�1) ) d1 ⇡ f

✓
n1 + 1

3n

◆

d2 ⇡ f(�2) ) d2 ⇡ f

✓
n2 + 1

3n

◆

db ⇡ f(�b) ) db ⇡ f

✓
1

2

◆
(24)
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After this, all concordances formulated in Eq.(24) are only based on f and sample sizes. Plugging these approximations
into Eq.(22), and using the fact that |⇡| = n(n� 1)/2, |⇡1| = n1(n1 � 1)/2, |⇡2| = n2(n2 � 1)/2, and |⇡b| = n1n2,
we get

w ⇡
|⇡1||⇡1|f

�
n1+1

3

�
+ |⇡1||⇡2|f

�
n2+1

3

�
+ |⇡1||⇡b|f

�
n

2

�
� |⇡||⇡1|f

�
n1+1

3

�

|⇡||⇡b|f
�
n

2

�
� |⇡b||⇡1|f

�
n1+1

3

�
� |⇡b||⇡2|f

�
n2+1

3

�
� |⇡b||⇡b|f

�
n

2

�

=
|⇡1||⇡1|n1+1

3n + |⇡1||⇡2|n2+1
3n + |⇡1||⇡b| 12 � |⇡||⇡1|n1+1

3n

|⇡||⇡b| 12 � |⇡b||⇡1|n1+1
3n � |⇡b||⇡2|n2+1

3n � |⇡b||⇡b| 12
(m’s and k’s in f(x) = mx+ k are cancelled out)

=

⇣
n1(n1�1)

2

⌘2
n1+1

3 + n1(n1�1)
2

n2(n2�1)
2

n2+1
3 + n1(n1�1)

2 n1n2
n

2 � n(n�1)
2

n1(n1�1)
2

n1+1
3

n(n�1)
2 n1n2

n

2 � n1n2
n1(n1�1)

2
n1+1

3 � n1n2
n2(n2�1)

2
n2+1

3 � (n1n2)2
n

2

=
n1n2(n1 � 1)

�
n2
1 + 2n1n2 � n1 + n2

2 � n2

�

n1n2 (n3
1 + 3n2

1n2 � 3n2
1 + 3n1n2

2 � 6n1n2 + 2n1 + n3
2 � 3n2

2 + 2n2)

=
n1n2(n1 � 1) (n1 + n2) (n1 + n2 � 1)

n1n2 (n1 + n2 � 2) (n1 + n2) (n1 + n2 � 1)
=

n1 � 1

n1 + n2 � 2
=

n1 � 1

n� 2
(25)

) w =
n1 � 1

n� 2
⇡ n1

n
= 1� n2

n
(26)

⇤

Simulation

To verify that the proposed approximated weight from Eq.(26) performs well compared to the optimal weight from
Eq.(22), we performed an extensive simulation with various ground truths and missingness percentages.

Let X , Y be random variables, and d = dY X the concordance between them. We simulated both X and Y as normally
distributed Y = X + ↵✏ where Y ⇠ N (µy,�2

y
), ✏ ⇠ N (µ✏,�2

✏
), and ↵ 2 R+. We tweaked the noise factor ↵ in order

to obtain variables with overall concordance d = {0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85}. To simulate the ground
truth robustly, we generated n = 104 observations. In this simulated scenarios, we calculated the optimal weight based
on Eq.(22) such that d(wopt) = d. We then introduced varying proportions of missing values, for which we recorded
the optimal weight wopt, as well as the proposed approximate weight w = 1� n2/n. By comparing then w with wopt

we observed that the proposed weight was remarkably close to the optimal weight (see Supplementary Figure 8).
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proposed weight = 1−m
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Supplementary Figure 8: For each d, missingness was introduced at a rate of 10%, 15%, . . . , 90% of all samples
simulated. Solid lines represent the optimal weight wopt for each d, and dashed red line represent the proposed
approximate weight w, which is only dependent on the missingness percentage.
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Supplementary Figure S1: Simulation framework and small sample size results

For small sample sizes in the simulation framework, we again compared rox to complete case analysis (CCA) and
minimum imputation (min-imp) with regular concordance analysis. Y and X were simulated 1,000 times for n = 100
with concordance values d = 0.6, 0.7, 0.8. Missing values were then introduced in Y with varying percentages and
degree of LOD effect. For both strict LOD with differing missingness percentages (panel A) and probabilistic LOD
with varying LOD effects (panel B), rox demonstrated overall superior performance compared to min-imp and CCA.
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Supplementary Figure S2: Simulation in multivariable setting

Data was simulated as i.i.d. with sample size n = 10, 000; see METHODS for details on the simulation approach. Strict
LOD was simulated with varying missingness percentages and probabilistic LOD was simulated with 50% missingness
with varying LOD effect strengths. In this framework, the multivariable extension of rox was compared with ordinary
linear regression after minimum imputation (lm+min) and ordinary linear regression with complete case analysis
(lm+CCA). Performance was assessed by the ability of the models to recover the true regression coefficients. Note that
the true concordance and � coefficent were determined by running regression analysis on the simulated data without
missing values.

Under strict LOD, the rox model performed better than lm+min-imp and lm+CCA in recovering the regression
coefficients and overall model fit. Under probabilistic-LOD, rox and lm+CCA performed similarly in terms of
recovering the true regression coefficients when the LOD effect was not prominent (i.e., for pLOD < 0.7). The
estimates of regression � coefficients after minimum imputation were biased for all simulation parameters. Under a
prominent LOD effect, rox generally performed better than both other approaches.
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Supplementary Figure S3: Estimating degree of LOD effect in the QMDiab data

A total of 292 samples in the QMdiab study were profiled using two different metabolomics platforms, which cover
many of the same metabolites. We here provide evidence for the assumption of an LOD effect in the data. Since each
platform measured the same metabolite on the same samples but with different missingness, insights into whether
missing values of a metabolite are due to LOD can be gained from the corresponding non-missing measurements of the
other platform. Intuitively, if a value is missing on one platform and measured on the other platform, those values are
expected to be on the low end of the distribution.

We estimated the LOD effect based on an ROC-AUC analysis, where classes corresponds to missing yes vs. no on one
platform, and scores correspond to the measurement values on the other platform. For each metabolite measured on both
platforms, we considered the measurement from the platform with the lower number of missing values as our reference,
and used the other platform values for comparison. Observations with missing values in the reference platform were
discarded. Formally, the AUC is formulated as AUCLOD = P (xref

i
< xref

j
|xpl

i
= NA, xpl

j
6= NA) where xref

represents the measured values from the reference platform and xpl represents the corresponding observations in the
other platform. In other words, a potential LOD effect was estimated as the probability of a value being missing in one
dataset given that its measured value in the other dataset is lower than all measured values.

An AUC = 1 for a given metabolite indicates that for all missing values in the reference sample, the correpoonding
values in the comparison sample were lower than all other measurements. This indicates a strict LOD-based missingness
pattern. In contrast, an AUC = 0.5 indicates no overall separation of missing and measured values between reference
and comparison sample, hence indicating a "missing-at-random" (MAR) pattern. The figure below illustrates the
distribution of AUCs for all metabolites measured on both platforms, showing that most metabolites display a relatively
strict LOD missingness pattern.
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Supplementary Figure S4: Multi-Platform Validation - detailed results

This analysis extends the fully quantified (FQ) vs. partially missing (PM) ground truth analysis outlined in the main
manuscript. (A) is the same panel as in the main manuscript, Figure 5B, showing systematic results for all four outcomes
and varying levels of missingness in the PM metabolites. The x-axis indicates the minimum fraction of missing values
per metabolite. The y-axis shows the Pearson correlation between the estimates across the two platforms. Panel (B):
Detailed results across all outcomes where the partially missing metabolite has at least 20% missingness. Points
distributed along the diagonal indicate consistent estimations between the two platforms. The gray line indicates the x=y
axis, while the colored line indicates a linear fit over the points of comparison. Across all missingness percentages, rox
was more consistent compared to knn imputation and similarly or more consistent compared to minimum imputation.
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Supplementary Figure S5: Multi-Platform Validation - multivariable model

Here we extended the fully quantified (FQ) vs. partially missing (PM) ground truth analysis outlined in the main
manuscript to the multivariable modeling case. To this end, we tested all four outcomes in a single model, i.e.,
metabolite ⇠ age + sex + bmi + diabetes. For each metabolite, regression coefficients were calculated for two
platforms independently. We compared rox to three other common approaches: (1) Linear regression after dropping
missing values (CCA+lm), (2) linear regression after knn imputation (knn+lm), and (3) linear regression after minimum
imputation (minp+lm). The consistency of results between the regression coefficients from the FQ and the PM analysis
were computed with Pearson correlation. Independent of missingness percentage, rox displayed similar or more
consistent coefficient estimation compared to its competitors for all variables (panel A). Detailed consistency calculation
results for BMI as an example are shown in panel B.
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Supplementary Figure S6: Comparable pairs with left-censoring

Illustration of observed (s1) and unobserved data (s2) points, as well as pairs between measured data points (⇡1),
unmeasured data points (⇡2) and the "bridge" pairs in between (⇡b).
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