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Abstract: High-dimensional omics datasets frequently contain missing data points, which typically
occur due to concentrations below the limit of detection (LOD) of the profiling platform. The presence
of such missing values significantly limits downstream statistical analysis and result interpretation.
Two common techniques to deal with this issue include the removal of samples with missing values
and imputation approaches that substitute the missing measurements with reasonable estimates.
Both approaches, however, suffer from various shortcomings and pitfalls. In this paper, we present
“rox”, a novel statistical model for the analysis of omics data with missing values without the need
for imputation. The model directly incorporates missing values as “low” concentrations into the
calculation. We show the superiority of rox over common approaches on simulated data and on six
metabolomics datasets. Fully leveraging the information contained in LOD-based missing values, rox
provides a powerful tool for the statistical analysis of omics data.

Keywords: missing values; regression analysis; limit-of-detection

1. Introduction

High-dimensional molecular datasets, such as metabolomics, proteomics, glycomics,
and microbiomics, typically contain a substantial amount of “missing values”, that is,
measurement points for which the experimental platform did not return any quantified
value [1–3]. Any analysis workflow applied to data with missing values needs to deal
with this issue, since most common statistical approaches do not allow for the absence
of data points. Missing values in omics data usually occur due to abundances below the
instrument sensitivity, the so-called limit of detection (LOD) [3] (Figure 1A). In addition
to the obvious loss of information, the presence of missing values interferes with distri-
butional assumptions for statistical analysis. For example, metabolomics measurements
are generally log-normally distributed [4], and therefore LOD-based missing values will
obfuscate the lower tail of the distribution. In microbiome data, which are compositional in
nature [5], left truncation will lead to an artificial overrepresentation of the most abundant
species. Further complicating the issue, we have previously shown that LOD effects are not
always strict and can occur in blurry fashion, where lower concentration values increase the
chance of a value being reported as missing rather than depending on a strict threshold [3].

A statistical method for the analysis of molecular data should take into consideration
the abovementioned issues and properties of missing values. First, it should make use of
the fact that a missing value indicates a “low” abundance value, even if the precise numeric
value is unknown. This allows fully leveraging the information available in the dataset.
Ideally, the method should also work in the presence of a non-strict LOD mechanism.
Second, in order to be applicable to a wide variety of molecular data, the method should be
free of distributional assumptions and robust to outliers.

Existing statistical methods dealing with LOD-based missing values do not or only
partially fulfill these requirements. The most popular approaches fall into one of three
categories. (1) Missing values are simply deleted from the dataset, which is commonly
referred to as complete case analysis (CCA) [6]. Since all samples with any missing values
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are removed, CCA often leads to a severe reduction in the statistical power, especially when
multivariate statistical methods are used. Moreover, if there is an enrichment of missing
values in one of the analyzed groups, e.g., in sick individuals compared to healthy ones,
CCA will substantially distort the statistical analysis and produce erroneous results [3].
(2) Imputation approaches reconstruct a full data matrix by replacing missing values with
reasonable substitutes. “Minimum imputation” is a widely used approach that replaces
missing values with the lowest observed value in the data, half of that value, or with a
known LOD value [3]. Notably, this approach uses the information that missing values are
low but leads to a substantial distortion of the distribution of the analyte [7]. Other common
approaches, such as k-nearest-neighbor (knn) imputation, use the correlation structure of
the data to infer the original value [8]. These approaches do not use the LOD information
and require a strong correlation structure among variables to work properly. (3) The third
approach is to use statistical methods that directly incorporate the knowledge of the LOD
effect, where missing values are treated as a “low” category. The approach published by [9]
addresses the problem of LOD-based left censoring in measurement data using methods
from survival analysis, which we prove later in this paper is equivalent to using rank
statistics on minimum imputed data. Other approaches make specific assumptions about
the underlying data distribution (e.g., log-normal [10] or gamma [11]), and treat the missing
values as left-truncated data points from that respective distribution. While incorporating
the LOD information, these methods also require strong assumptions on the overall data
distribution, which might not be appropriate for certain data types.

rox
min-imp + RS

knn + RS
CCA + RS

RS = rank statistics

Simulation
Estimation of 
correct concordance 

Metabolomics Data I
Recovery of true
positive hits 

Metabolomics Data II
Estimation of correct 
concordance (based 
on two platforms)

for GT def.

missing measured

A
limit of detection (LOD)

I I I I I

ranksB
1 2 543

I I I

ranksC
{1,2} 543

D Study overview

{1,2}

6 datasets

Figure 1. Limit of detection (LOD)-based missingness, statistical concept, and study overview.
(A): Schematic of a strict LOD effect on the distribution of a measurement. Values below the LOD (red
line) will be reported as missing. (B): Relative order of data points based on their true value. The red
line indicates the theoretical LOD. (C): Observed ordering of data points after LOD censoring. While
observations below the LOD (red line) cannot be compared once they are censored, we still retain the
information that all points below the LOD are lower than all points above the LOD. (D): Overview
of rox benchmarking. We assess the performance of our approach using an extensive simulation
framework, followed by two test scenarios of ground-truth recovery on a series of metabolomics
datasets. “for GT def.” = used for definition of ground truth.

Here we present rox, “rank order with missing values(X)”, a flexible, nonparametric
approach for regression analysis of a dependent variable with missing values and continu-
ous, ordinal, or binary explanatory variables. The core idea is to utilize the knowledge of
missing values representing low concentrations due an LOD effect, without requiring any
actual imputation steps. The approach is based on rank statistics related to Somer’s D and
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Kendall’s tau [12–14], and can be computed even with partially quantitative measurements
(Figure 1B,C). Leveraging the properties of rank statistics, this framework is applicable to
data from any distribution and is robust to outliers. Moreover, while the method relies
on the assumption of an LOD effect in its core, it flexibly generalizes to data with other
missingness mechanisms.

In this paper, we showcase the features of rox on simulated data and benchmark its
performance on six real molecular datasets. We use metabolomics data, which is known
to be heavily affected by LOD-based missingness and therefore constitutes an optimal
test case for this approach. Notably, both for the simulated data and the real data, we
define a ground truth for unbiased evaluation. Our analysis demonstrates the superiority
of our approach over three of the most commonly used approaches in the field, namely
complete case analysis (CCA), minimum imputation and knn-based imputation, coupled
with rank-based statistical testing (Figure 1D). Our rox implementation is available as open
source R package at https://github.com/krumsieklab/rox.

2. Methods
2.1. rox Core Model

rox is inspired by the ranking-based, nonparametric correlation measure concordance
index or c-index [15], which is equivalent to an ROC-AUC with a binary outcome [16].
Let S = {(x1, y1), . . . , (xn, yn)} be a set of n observations of two random variables X and
Y. A pair of observations 〈i, j〉 = {(xi, yi),

(
xj, yj

)
} is said to be concordant if the pairwise

ranking of
(

xi, xj
)

and
(
yi, yj

)
is the same, i.e., if sgn

(
xi − xj

)
= sgn

(
yi − yj

)
; otherwise, it

is said to be discordant. The c-index is then defined as the number of concordant pairs over
the number of all pairs cYX = concordant

concordant+discordant = concordant
all pairs [15]. Note that in cYX, the

ties in Y are dropped from the calculation, whereas in X, they are counted as 0.5, i.e., neither
concordant nor discordant.

The rox statistic is an extension of this c-index concept to left-censored data. This
type of data occurs, for example, when all values below a certain threshold (the Limit Of
Detection, or LOD) are returned as missing. Based on this LOD assumption, we know that
any missing value is lower than any measured value in the data. Importantly, a missing
and a measured value can thus still be ranked and are hence comparable, while two missing
values have no known order and are noncomparable. The rox method assesses the fraction
of concordant pairs only in relation to the comparable pairs, concordant

comparable pairs , a concept that is
also used in survival analysis [15]. In the following, we formulate a concordance-based test
on comparable pairs.

Let Y now be a left-censored random variable with LOD-based missing values, and
let X be an outcome of interest to be associated with Y. As outlined above, any pair of
observations 〈i, j〉 where at least one of yi or yj is non-missing constitutes a comparable
pair, since we know that the LOD requires, by design, any non-missing value to be larger
than all missing values (see also, Figure 1B,C). Let π = {〈i, j〉 | yi 6= NA or yj 6= NA} be
the set of these comparable pairs, where NA represents a missing value, and let Γ(π) be
the number of concordant pairs in π given X and Y. The nonparametric rox coefficient of
concordance between variables X and Y, with Y subject to LOD-based missingness, can be
formulated as follows:

roxcore =
Γ(π)

|π| with Γ(π) = ∑
〈i,j〉∈π

1if sgn(xi−xj)=sgn(yi−yj)
(1)

where |π| is the set size of π, i.e., the total number of comparable pairs.
In general, the sgn operator is not defined for missing values. However, under strict-

LOD assumptions, any missing value in Y will be lower than all non-missing values. This
means that sgn

(
yi − yj

)
is always defined in this framework, even when either yi or yj is

missing. Note that, similar to the c-index, the rox statistic represents the probability of

https://github.com/krumsieklab/rox
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concordance between X and Y, and it can take values in the interval [0,1], where 0.5 indicates
random ordering, 1 represents perfect concordance, and 0 represents perfect discordance.

2.2. Debiased Weighted Rox Model

In Equation (1), pairs where both yi and yj are missing constitute noncomparable pairs,
which are excluded from the concordance estimation. However, ignoring these pairs leads
to an overall overestimation of positive concordance (>0.5) and an underestimation of
negative concordance (<0.5); see remark at the bottom of Supplementary Text S2. Note that
the 0.5 cut point is due to the scale of concordance between 0 and 1, where values above 0.5
indicate positive correlation and values below 0.5 represent negative correlation.

To address this problem, we propose a strategy to debias the rox coefficient by down-
weighting the contribution of missing observations to the overall concordance. To this
end, we split all comparable pairs from Equation (1) into two distinct sets: πb (bridge
pairs), which includes pairs of observations where either yi or yj is missing, and π1, which
includes pairs where both yi and yj are non-missing (see Supplementary Figure S6). This
way, all comparable pairs are partitioned as π = πb ∪ π1.

With this formulation, we can now introduce a weight parameter p to control the
contribution of the pairs with missing values, πb, to the overall rox statistics as:

rox =
Γ(π1) + pΓ(πb)

|π1|+ p|πb|
, (2)

where 0 ≤ p ≤ 1 (see Supplementary Text S1 for a detailed derivation). Setting p = 1 leads
to the original formulation from Equation (1), which is based on a strict LOD assumption,
whereas p = 0 reduces the test statistics to a nonparametric complete case analysis, ignoring
the contribution of all pairs including any missing values.

In general, if n0 is the number of missing values, n1 is the number of non-missing
values, and n = n0 + n1 is the total number of observations, a higher fraction of missing
values n0/n will introduce more bias into the concordance estimation and hence require
a lower value of the weight p to debias the estimate. In Supplementary Text S3, we
demonstrate that the concordance can be effectively debiased by using the weight factor
p = n1/n. With this new expression for p, Equation (2) becomes:

rox =
Γ(π1) +

n1
n Γ(πb)

|π1|+ n1
n |πb|

(3)

2.3. Self-Adjusting Rox for Partial LOD and Non-LOD

The weighted formulation in Equation (3) assumes that the missingness in Y occurs
due to a strict LOD threshold, i.e., that all values below the LOD threshold will be missing
and all values above the threshold will be present. However, in many real data scenarios,
missingness patterns occur on a continuum [3], from a strict LOD mechanism, to a more
probabilistic setting, where lower values have a higher likelihood of being missing, all
the way to missing-at-random (MAR). For the rox statistic, non LOD-based missingness
constitutes a source of bias that will affect the estimation of the true concordance. For cases
where the missingness pattern is only marginally due to LOD or even LOD-independent,
ignoring the missing values and switching to a complete case analysis is more appropriate.

We thus formulated a self-adjusting version of rox. First, we estimated whether the
missingness pattern in the data was consistent with an LOD assumption. Let
d1 = Γ(π1)/|π1| and db = Γ(πb)/|πb| be the concordances of pairs with no missing values
and pairs with one missing value, respectively. Under strict LOD, which corresponds to
a left truncation of the data distribution, if the true concordance is larger than 0.5, then it
holds that d1 < db, while for concordance values less than 0.5 it holds that db < d1 (see
Supplementary Text S2 for proof). For simplicity, we only describe the positive concordance
case here; the negative concordance case can be derived analogously.
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For any random variable Y, we can assess whether the LOD assumption is violated
by checking whether d1 < db. If the inequality holds, rox concordance is estimated using
Equation (3); if it does not, p in Equation (2) is set to zero, removing all missing observations
from the analysis and effectively computing the concordance based only on the observations
with no missing values, reducing the approach to a complete-case-analysis (CCA).

Thus, the final formulation of rox for positive concordance is:

rox =
Γ(π1) + Γ(πb)pd1<db

|π1|+ |πb|pd1<db

(4)

where pd1<db
= p = n1/n, as in Equation (3), if d1 < db; otherwise, it is 0.

2.4. Rox-Based Semiparametric Multivariable Model

The rox model handles one-to-one relations between two variables. In this section, we
extend the approach to a semiparametric multivariable modeling framework, which allows
modeling the relations between one variable with missing values and multiple variables.

The proposed extension is obtained via the multivariable modeling of the concor-
dance probabilities with an exponential link function [17]. Let Y be a metabolite measure-
ment with missing values and X = {X1, X2, . . . , Xk} be k different variables of interest.
First, we define the likelihood of concordance for a single pair of observations 〈i, j〉 as
L〈i,j〉 = P(yi < yj | 〈i, j〉) = eηi /(eηi + eηj), where ηi = β1xi1 + β2xi2 + . . . + βkxik is the
standard linear predictor function for sample i, and β = {β1, β2, . . . , βk} is the vector of
the corresponding regression coefficients. The log-likelihood `(π) of the associated joint
probability of all realized pairwise rankings in π can then be formulated as the product of
all individual likelihoods:

`(π) = log(L(π)) = log

 ∏
∀〈i,j〉∈π

L〈i,j〉

 = ∑
∀〈i,j〉∈π

(ηi − log(eηi + eηj)). (5)

Similar to the univariate case, Equation (5) ignores pairs of observations where both
Y values are missing. However, ignoring these observations leads to a biased estimate of
the concordance probability. In this case, we can also debias the model by downweighting
the contribution of the missing values and accounting for non-LOD scenarios. We again
partition the observation pairs in π into those between two observations with no missing
value π1 and those where one of the two observations is missing πb (i.e. π = π1 ∪ πb), we
introduce a weight p to control the contribution of pairs with missing values, and we check
for the violation of the LOD assumption based on the d1 < db inequality:

`rox(π = π1 ∪ πb) = `(π1) + pd1<db
`(πb), (6)

where p = n1/n, as derived in Supplementary Text S3. All β coefficients are fitted using a
maximum likelihood estimation (MLE) approach, based on a FORTRAN implementation
for concordance regression adapted from [17]. The overall concordance of the model is
then calculated by computing the rox statistic from Equation (4) between Y and the fitted
score η̂ = Xβ̂.

2.5. Hypothesis Testing

In the following, we derive a hypothesis test for the univariate version of rox, as-
sessing whether H0 : rox(Y, X) = 0.5 can be rejected. Under the null hypothesis of the
independence of Y and X, the distribution of the quantity 2× rox− 1 has an expected value
of zero. A significance test for rox can be obtained via: z = (rox−0.5)/

√
Var(rox), and the

corresponding p-value can be calculated via a z-test. The variance of the concordance can
be estimated in two different ways: (1) using an equivalent time-dependent Cox model
(cvar) [16] or (2) through an unbiased infinitesimal jackknife variance estimator (ivar) [18].
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As pointed out by Therneau et al. [18], cvar is an unbiased estimator for d = 0.5, while it
overestimates the variance if d 6= 0.5. On the other hand, ivar is unbiased for d 6= 0.5, but it
underestimates the variance if d is close to 0.5. Taking these findings into consideration,
we calculate the p-value of the estimated rox statistics based on the average of these two
variance estimates, namely, z = (rox−0.5)/

√
(cvar + ivar)/2. This approach was inspired

by [19], where overestimated and underestimated variances were averaged to obtain a
better estimate.

In a multivariable setting, hypothesis testing for the overall model is performed as de-
scribed in the previous paragraph, with H0 : rox(Y, Xβ) = 0.5, where β = {β1, β2, . . . , βk}
are the regression coefficients, and Xβ is the linear predictor of the model. Furthermore,
to test the significance of individual variables in the model, we can use the coefficients
in the proposed semiparametric model. In this case, the null hypothesis is defined based
on the coefficients: H0 : βi = 0 for variable i. To assess the significance, we used the
implementation of [17] to estimate the coefficients and standard errors to calculate a Wald’s
test [20].

2.6. Simulation Framework

Two continuous variables Y and X with predefined concordance values were simu-
lated. However, concordance cannot be directly parameterized and needs to be determined
empirically. Here, we generated the desired concordance by tuning an association param-
eter as follows: The variable X and a noise term ε were first sampled from a standard
normal distribution. Y was then defined as Y = X + λ · ε, where λ determines the asso-
ciation between Y and X. Larger values of λ lead to lower concordance between the two
variables. We ranged λ from 0 to 0.7 in steps of 0.01 until the desired concordance d(Y, X)
was reached.

For the large sample size simulation, we generated a total of n = 10, 000 samples.
For the small sample size simulation, we first generated a large dataset of n = 1, 000, 000
samples, from which 100 random samples were drawn 1000 times.

In the multivariable case, we simulated a variable Y, an outcome of interest X, and a
covariate Z. Correlations between X, Y, and Z were simulated as follows: X was sampled
from a normal distribution. A correlated covariate Z was simulated as Z = X + εz, with εz
being a normal distribution. Y was sampled as Y = X + Z + 3εy, with εy again being a
normally distributed error term.

2.7. Metabolomics Datasets

To illustrate the performance of rox on real data, we analyzed a total of seven previ-
ously published metabolomics datasets (Table 1). For the QMDiab plasma validation cohort
(HD4), only samples and metabolites overlapping with the HD2 platform were considered.
Except for the HAPO dataset, for which only preprocessed data were available, all datasets
were preprocessed using the R package maplet [21] as follows: Prior to the statistical analy-
sis, the raw peak intensities were normalized using the probabilistic quotient approach [22],
using only metabolites with less than 20% missing values to generate the reference sam-
ple. Normalized metabolite values were subsequently log2 transformed. The following
imputation step was applied for all datasets. For each cohort, two additional data matrices
were generated: one where missing values were imputed using the minimum value per
metabolite and one where missing values were imputed using knn-based imputation with
10 neighbors and variable preselection based on pairwise correlation (threshold of 0.2),
according to [3].
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Table 1. Overview of the metabolomics datasets.

Cohort Number of Samples
(Controls/Cases)

Number of
Metabolites

Phenotype Specimen Reference

QMDiab-Plasma
(HD2)

358
(177/181)

758 Type 2 Diabetes Blood [23]

QMDiab-Urine 360
(174/186)

891 Type 2 Diabetes Urine [23]

QMDiab-Saliva 330
(171/159)

602 Type 2 Diabetes Saliva [23]

BRCA 132
(65/67)

536 Breast Cancer Breast Tissue [24]

RCC 276
(138/138)

877 Kidney Cancer Kidney Tissue [25]

HAPO 115
(67/48)

49 Hyperglycemia Plasma [26]

QMDiab-Plasma
Validation (HD4)

292
(137/155)

359 Type 2 Diabetes Plasma [27,28]

3. Results
3.1. Simulation Results: Strict LOD

The rox method uses rank-based statistics to model measurements with limit of detec-
tion (LOD)-based missing value patterns, utilizing the information that absent data points
represent low concentrations. It models the relationship between a measurement with
missing values as the dependent variable and one or more continuous, ordinal, or binary
explaining variables with no missing values. The approach furthermore implements a
self-adjusting feature, which detects cases of non-LOD missingness, in which it switches to
complete case analysis (CCA). A detailed mathematical derivation of the approach and its
properties was provided in the Section 2.

To show how rox performed at correctly recovering the true concordance, we devel-
oped an extensive simulation framework with a known ground truth. The performance
of rox was compared to that of complete case analysis (CCA) and regular concordance
calculation after minimum imputation (min-imp). Note that the k-nearest-neighbor (knn)
imputation was omitted for this part, since it is only feasible in a multivariate setup, where
simulation is dependent on various design choices and could easily be tweaked for a
method to outperform the others. knn imputation is evaluated based on real datasets later.
In the first simulation, a single variable Y and a continuous outcome X were simulated
with the concordance d ranging between 0.55 and 0.85. These predefined concordance
values represented the ground truth used to evaluate the performance. The missing values
were introduced into Y using a strict LOD mechanism, i.e., by setting all values below a
given threshold as missing (Figure 2A). We simulated a variety of scenarios by ranging
the proportion of missing values in Y from 0% to 90%. For each combination of the true
concordance and missing value proportion, we computed the concordance between Y and
X by: (i) computing the rox statistic, (ii) imputing missing values in Y with minimum
value imputation and performing regular concordance analysis, and (iii) only consider-
ing complete cases without missing values and performing regular concordance analysis.
A large sample size of n = 10,000 was chosen to ensure stable results. All simulations were
repeated for smaller sample sizes, which yielded equivalent results (see Supplementary
Figure S1).
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Figure 2. Simulation with the strict LOD mechanism. (A): Example distribution of a simulated
variable with 50% missingness due to a strict LOD effect. (B): rox outperformed the CCA and
minimum imputation in recovering the true concordance across various ground truth values d and
missingness fractions. The minimum imputation led to an overestimation of the concordance between
the variable and outcome, while the CCA resulted in an underestimation.

The results of this first simulation demonstrated that rox was consistently better
at retrieving the true concordance than its two competitors (Figure 2B). The minimum
imputation generally led to an overestimation of the concordance, while CCA led to an
underestimation. With increasing proportions of the missing values, these deviations
increased substantially, while the rox estimates remained stable and accurate. The same
effect was observed across all values of the true concordance values d.

3.2. Simulation Results: Probabilistic LOD

In the second simulation scenario, we evaluated the performance of rox in the case of
a more realistic “probabilistic LOD” [3], where instead of a hard LOD threshold, the prob-
ability of a value being missing continuously increases with decreasing true abundance.
A probabilistic LOD was simulated using a sigmoid probability density function that mod-
eled the likelihood of a value being missing given its true value (Figure 3A). The shape of
the sigmoid function was parametrized with a variable pLOD, which controlled the type
of missingness pattern in the data. pLOD = 0 led to missing at random (MAR) [29], while
pLOD = 1 generated a strict LOD effect. Therefore, higher values of pLOD led to more
prominent censoring effects (Figure 3B). In this scenario, we again simulated two random
variables Y and X with true concordance values ranging from d = 0.55 to d = 0.85 and
pLOD values ranging from 0 to 1. For this setup, the proportion of missing values in Y was
fixed at 50%.

The rox method again outperformed the competitor methods in all scenarios (Figure 3C)
due to the adaptive nature of the model. For simulations with pLOD values below 0.7,
rox determined that no sufficiently strong LOD effect was present and thus switched
to complete case analysis (CCA). Minimum imputation, on the other hand, consistently
underestimated the concordance in the range of d between 0 and 0.7, due to its strict implicit
LOD assumption. For pLOD > 0.7, rox leveraged the left-censoring effect and consistently
produced more accurate results than its competitors. In this high pLOD range, minimum
imputation overestimated the concordance, and the performance of the complete case
analysis progressively deteriorated. This behavior was further exacerbated at increasing
values of the true concordance d.
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Figure 3. Simulation with the probabilistic LOD mechanism. (A): The probability function describ-
ing the likelihood of a value being missing as a function of its numerical value. A pLOD value of
1 results in a strict LOD effect, while pLod = 0 results in values missing at random (MAR), and all
values in between produce probabilistic LOD effects. (B): Illustration of the different missingness
patterns induced by varying pLOD values. (C): The data were simulated with different pLOD and
concordance values, while the missingness percentage was kept at 50% in all scenarios. The yellow
shaded area marks the region where our adaptive method automatically identified an active LOD
effect and switched from CCA to rox analysis. Overall, rox outperformed minimum imputation and
complete case analysis in all simulation settings.

3.3. Simulation Results: Multivariable Setting

In a third simulation, we investigated how the rox model performed in a multivariable
setting for both strict-LOD and probabilistic-LOD scenarios. The multivariate setting is of
particular interest when the inclusion of multiple variables in the same model is required,
for example for covariate correction purposes. In this scenario, we simulated a continuous
outcome, a covariate, and a variable of interest under various LOD and missingness
settings and again compared rox’s performance with that of minimum imputation and knn
imputation followed by regular concordance analysis (see Supplementary Figure S2). The
results and conclusions were equivalent to the results of univariate simulations suggesting
that the rox recovered the ground truth better than the competing approaches.

3.4. Evaluation on Metabolomics Data: Recovering High-Confidence Hits

After evaluating the performance of rox in a simulation setting, we tested the approach
in a real data scenario using published metabolomics datasets from a series of case-control
studies (Table 1). In this case, we sought to determine how many true associations between
metabolites and the respective study outcomes (e.g., disease status) rox could identify
compared to its competitor methods.

Defining a ground truth in real datasets, however, is inherently difficult, since a
list of true associations is usually not available. For our evaluation framework, we thus
constructed a set of metabolite-outcome associations with high confidence of being actual
true positives (HC-hits). This set was defined by combining the significant associations
obtained from two statistical approaches that are well-suited to detect associations in data
with antithetical missing values mechanisms. (1) CCA with the Wilcoxon rank-sum test,
which compares two sample groups by filtering out all samples with missing values. This
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test works well if values are missing at random and thus do not originate from an LOD
effect; however, it is generally underpowered since it entirely excludes missing values from
the analysis. (2) Fisher’s exact test, which assesses the proportion of missing values in one
sample group versus the other, ignoring the actual numeric measurement values. In an
LOD setting, this test works well for cases of extreme sample separation, for example, when
all samples in one of the comparison groups are low and fall below the LOD threshold.
Notably, both approaches suffer from a substantial number of false negatives, since neither
is ideally fit for the analysis of molecular data with missing values; however, both methods
have very low false positive rates, meaning that the hits they identify are very likely to
be correct.

In the following, we used the fraction of HC-hits that each method was able to retrieve
as an evaluation metric. The analysis was performed on six datasets: plasma, urine, saliva
metabolomics from the QMDiab study [23], where the outcome was type-2-diabetes (T2D),
a hyperglycemia study in pregnant women (HAPO) [26], with fasting plasma glucose (low
FPG vs. high FPG) as the outcome, and two tissue metabolomics datasets, one from breast
tissue (BRCA) [24] and one from kidney tissue (RCC) [25], where the outcome was the
origin of the sample (tumor or adjacent-normal tissue) of the sample. Across all datasets,
the rox outperformed or tied with the other methods in recovering the HC-hits at various
significance levels (Figure 4).
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Figure 4. Recovery of high-confidence (HC) hits in six metabolomics datasets. The x-axis shows
the number of HC-hits identified with the corresponding Bonferroni-adjusted p-value cutoff. WT:
Wilcoxon rank-sum test. The y-axis represents the percentage of HC-hits that were identified, which
is equivalent to a measure of sensitivity, at the respective cutoff. The rox outperformed or tied with
the two imputation approaches across all datasets and cutoffs.

3.5. Evaluation on Metabolomics Data: Multiplatform Validation

A second line of validation on real data was performed on a dataset from the QMdiab
study, where the same metabolites were measured in the same samples using two different
metabolomics platforms. Specifically, we analyzed metabolites that were fully quantified
(FQ) on one platform but were partially missing (PM) on the other platform. We used
the concordance between the study outcome and the FQ metabolites without missing
values as our ground truth and evaluated the performance of each method based on the
consistency between this ground truth and the concordance estimate between the PM
metabolite with missing values and the same outcome. In an ideal scenario, these two
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concordance values would be the same, indicating that the method recovered the correct
value even in the presence of missing values. To analyze a sufficient number of FQ–PM
metabolite pairs, we allowed up to 5% missing values in the FQ candidate and deleted
those missing values in the subsequent analysis. If both platforms showed less than 5%
missingness for a metabolite, we picked the one with the lower number of missing values
as the FQ metabolite and the respective other measurement as the PM metabolite.

Notably, the missing values in these platforms were mostly due to a prominent LOD
effect, which we confirmed by comparing the missing and quantified values within the same
metabolites across the two platforms (see Supplementary Figure S3). Thus, we expected
this dataset to provide a favorable setting for minimum imputation, which assumes a strict
LOD. knn imputation, on the other hand, cannot impute values outside of the observed
data distribution and is therefore unlikely to perform well in a strong LOD scenario [30].

Association analyses were performed between both the FQ and PM metabolites and
the respective QMdiab study outcomes (age, sex, BMI, and diabetes), using the rox test
as well as regular association analysis with the Wilcoxon rank-sum test after min-imp,
knn-imp, and CCA. The PM-based concordance values were then compared with the
ground truth concordance obtained from the corresponding FQ metabolite. An example
of the results for age and PM metabolites with 20% or more missingness is shown in
Figure 5A. This analysis was systematically repeated for varying fractions of missingness
in the PM metabolite (see Figure 5B and Supplementary Figure S4 for more detailed
results). For all outcomes, rox was substantially more consistent than minimum imputation,
regardless of missingness percentage of the PM metabolite. Notably, the performance of
minimum imputation worsened with increasing missingness, while rox’s performance
remained stable. The rox outperformed knn-imputation specifically in the association with
age, sex, and BMI, while the two methods were mostly comparable for diabetes. Taken
together, rox performed equivalent to or better than knn-imputation across all scenarios.
Similar comparisons were performed using multivariable rox, with analogous results (see
Supplementary Figure S5).
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Figure 5. Validation on the two-platform comparison of fully quantified (FQ) and partially miss-
ing (PM) metabolites. Plasma metabolites from the same samples were measured on two different
platforms. Consistency of the concordance estimates between the FQ-based ground truth and the
PM-based estimates was computed for all considered outcomes (age, BMI, diabetes (DIAB), and sex).
(A): Consistency across platforms for age associations calculated for PM metabolites with 20% or
more missingness. Points distributed along the diagonal indicate consistent estimations between
the two platforms. The gray line indicates the x = y axis, while the green line indicates a linear fit
over the points of comparison. (B): Systematic results for all four outcomes and varying levels of
missingness in the PM metabolites. The x-axis indicates the minimum fraction of missing values per
metabolite. The y-axis shows the Pearson correlation between the estimates across the two platforms.
Results shown in panel A correspond to the point marked with the black cross. Across all missingness
percentages, rox was more consistent compared to knn imputation and comparable to or better than
minimum imputation.
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4. Discussion

This paper introduced rox, a novel statistical framework for datasets with missing
values occurring due to a limit-of-detection (LOD) effect. In contrast to the more common
approach of imputing missing values, which comes with various data analysis-related
issues, rox directly utilized the information that missing values had “low” concentrations.
The nonparametric model was based on pairwise ranks and was thus robust to outliers.
The method allowed for multivariable modeling and can be used for any quantitative
or semiquantitative measurements. Importantly, while rox was inherently designed for
data with an LOD effect, it also worked with less strict blurry LOD-based data or even
when the values were missing at random, in which case it automatically switched to
complete case analysis. Using a simulation framework as well as metabolomics datasets
from various sample types with different outcomes, we systematically demonstrated the
superiority of our method over other approaches that are commonly used in the field.
Specifically, rox showed higher accuracy in reconstructing the underlying true concordance
values and displayed higher statistical power retrieving associations with study outcomes.
Notably, while most other studies on real data artificially introduce missing values to
evaluate the performance of their statistical approach (e.g., [8,31]), we relied on two data-
driven frameworks to define a ground truth for a more realistic evaluation.

In conclusion, we recommend using rox for any dataset where an LOD effect can
be suspected, even if the effect is not strict. The LOD assumption commonly applies
to metabolomics data, as shown in this paper, but it has also been described in data
with similar dropout mechanisms, such as proteomics data [32], glycomics data [33],
and microbiomics data [34].
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Figure S1: Simulation framework and small sample size; Figure S2: Simulation in multivariable
setting; Figure S3: Estimating degree of LOD effect in the QMDiab data; Figure S4: Multi-Platform
Validation - detailed results; Figure S5: Multi-Platform Validation-multivariable model; Figure S6:
Comparable pairs with left-censoring

Author Contributions: Conceptualization, M.B. and J.K.; methodology, M.B. and J.K; software, M.B.;
validation, M.B., E.B. and J.K.; formal analysis, M.B. and E.B.; data curation, M.B, E.B. and J.K..;
writing—original draft preparation, M.B. and J.K.; writing—review and editing, M.B, E.B. and J.K.;
visualization, M.B.; supervision, J.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study is freely available. The git repository
contains the corresponding links https://github.com/krumsieklab/rox.

Conflicts of Interest: J.K. holds equity in Chymia LLC and IP in PsyProtix and is cofounder and
equity holder of iollo, Inc.

References
1. Jin, L.; Bi, Y.; Hu, C.; Qu, J.; Shen, S.; Wang, X.; Tian, Y. A comparative study of evaluating missing value imputation methods in

label-free proteomics. Sci. Rep. 2021, 11, 1–11. [CrossRef] [PubMed]
2. Lin, H.; Peddada, S.D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. NPJ

Biofilms Microbiomes 2020, 6, 1–13. [CrossRef]
3. Do, K.T.; Wahl, S.; Raffler, J.; Molnos, S.; Laimighofer, M.; Adamski, J.; Suhre, K.; Strauch, K.; Peters, A.; Gieger, C.; et al.

Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.
Metabolomics 2018, 14, 128. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo13010127/s1
https://www.mdpi.com/article/10.3390/metabo13010127/s1
https://github.com/krumsieklab/rox
http://doi.org/10.1038/s41598-021-81279-4
http://www.ncbi.nlm.nih.gov/pubmed/33469060
http://dx.doi.org/10.1038/s41522-020-00160-w
http://dx.doi.org/10.1007/s11306-018-1420-2


Metabolites 2023, 13, 127 13 of 14

4. Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wägele, B.; Altmaier, E.; Deloukas, P.; Erdmann, J.; Grundberg, E.;
et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011, 477, 54–60. [CrossRef] [PubMed]

5. Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not
Optional. Front. Microbiol. 2017, 8, 2224. [CrossRef] [PubMed]

6. White, I.R.; Carlin, J.B. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate
values. Stat. Med. 2010, 29, 2920–2931. [CrossRef]

7. Helsel, D.R. Fabricating data: How substituting values for nondetects can ruin results, and what can be done about it. Chemosphere
2006, 65, 2434–2439. [CrossRef]

8. Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation
methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [CrossRef]

9. Helsel, D.R. Nondetects and Data Analysis. Statistics for Censored Environmental Data; Wiley-Interscience: Hoboken, NJ, USA, 2005.
10. Moulton, L.H.; Halsey, N.A. A Mixture Model with Detection Limits for Regression Analyses of Antibody Response to Vaccine.

Biometrics 1995, 51, 1570. [CrossRef]
11. Richardson, D.B. Effects of Exposure Measurement Error When an Exposure Variable Is Constrained by a Lower Limit. Am. J.

Epidemiol. 2003, 157, 355–363. [CrossRef]
12. Kendall, M.G. Rank and Product-Moment Correlation. Biometrika 1949, 36, 177–193. [CrossRef] [PubMed]
13. Newson, R. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences. Stata J. 2002,

2, 45–64. [CrossRef]
14. Somers, R.H. A new asymmetric measure of association for ordinal variables. Am. Sociol. Rev. 1962, 27, 799–811. [CrossRef]
15. Harrell, F.E.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546.

[CrossRef]
16. Therneau, T.; Atkinson, E. Concordance. en. Vignette of Survival Package. Available online: https://cran.r-project.org/web/

packages/survival/vignettes/concordance.pdf (accessed on 1 September 2020 ).
17. Dunkler, D.; Schemper, M.; Heinze, G. Gene selection in microarray survival studies under possibly non-proportional hazards.

Bioinformatics 2010, 26, 784–790. [CrossRef]
18. Therneau, T.M.; Watson, D.A. The Concordance Statistic and the Cox Model; Technical Report; Department of Health Science

Research, Mayo Clinic: Rochester, MN, USA, 2017; p. 18.
19. Wager, S.; Hastie, T.; Efron, B. Confidence intervals for random forests: The jackknife and the infinitesimal jackknife. J. Mach.

Learn. Res. 2014, 15, 1625–1651.
20. Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am.

Math. Soc. 1943, 54, 426–482. [CrossRef]
21. Chetnik, K.; Benedetti, E.; Gomari, D.P.; Schweickart, A.; Batra, R.; Buyukozkan, M.; Wang, Z.; Arnold, M.; Zierer, J.; Suhre, K.;

et al. maplet: An extensible R toolbox for modular and reproducible metabolomics pipelines. Bioinformatics 2022, 38, 1168–1170.
[CrossRef]

22. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of
complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [CrossRef]

23. Do, K.T.; Pietzner, M.; Rasp, D.J.; Friedrich, N.; Nauck, M.; Kocher, T.; Suhre, K.; Mook-Kanamori, D.O.; Kastenmüller, G.;
Krumsiek, J. Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations. NPJ Syst.
Biol. Appl. 2017, 3, 1–12. [CrossRef]

24. Terunuma, A.; Putluri, N.; Mishra, P.; Mathé, E.A.; Dorsey, T.H.; Yi, M.; Wallace, T.A.; Issaq, H.J.; Zhou, M.; Killian, J.K.; et al.
MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Investig. 2014, 124, 398–412.
[CrossRef] [PubMed]

25. Hakimi, A.A.; Reznik, E.; Lee, C.H.; Creighton, C.J.; Brannon, A.R.; Luna, A.; Aksoy, B.A.; Liu, E.M.; Shen, R.; Lee, W.; et al. An
integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016, 29, 104–116. [CrossRef] [PubMed]

26. Scholtens, D.M.; Muehlbauer, M.J.; Daya, N.R.; Stevens, R.D.; Dyer, A.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; Bain, J.R.;
Lowe, W.L., Jr.; et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy.
Diabetes Care 2014, 37, 158–166. [CrossRef] [PubMed]

27. Do, K.T.; Rasp, D.J.P.; Kastenmüller, G.; Suhre, K.; Krumsiek, J. MoDentify: Phenotype-driven module identification in
metabolomics networks at different resolutions. Bioinformatics 2019, 35, 532–534. [CrossRef] [PubMed]

28. Mook-Kanamori, D.O.; Selim, M.M.E.D.; Takiddin, A.H.; Al-Homsi, H.; Al-Mahmoud, K.A.; Al-Obaidli, A.; Zirie, M.A.; Rowe, J.;
Yousri, N.A.; Karoly, E.D.; et al. 1, 5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J. Clin.
Endocrinol. Metab. 2014, 99, E479–E483. [CrossRef]

29. Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592. [CrossRef]
30. Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inform. Decis. Mak. 2016,

16, 197–208. [CrossRef]
31. Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012,

28, 112–118. [CrossRef]
32. Karpievitch, Y.; Stanley, J.; Taverner, T.; Huang, J.; Adkins, J.N.; Ansong, C.; Heffron, F.; Metz, T.O.; Qian, W.J.; Yoon, H.; et al. A

statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformatics 2009, 25, 2028–2034. [CrossRef]

http://dx.doi.org/10.1038/nature10354
http://www.ncbi.nlm.nih.gov/pubmed/21886157
http://dx.doi.org/10.3389/fmicb.2017.02224
http://www.ncbi.nlm.nih.gov/pubmed/29187837
http://dx.doi.org/10.1002/sim.3944
http://dx.doi.org/10.1016/j.chemosphere.2006.04.051
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.2307/2533289
http://dx.doi.org/10.1093/aje/kwf217
http://dx.doi.org/10.1093/biomet/36.1-2.177
http://www.ncbi.nlm.nih.gov/pubmed/18132091
http://dx.doi.org/10.1177/1536867X0200200103
http://dx.doi.org/10.2307/2090408
http://dx.doi.org/10.1001/jama.1982.03320430047030
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
http://dx.doi.org/10.1093/bioinformatics/btq035
http://dx.doi.org/10.1090/S0002-9947-1943-0012401-3
http://dx.doi.org/10.1093/bioinformatics/btab741
http://dx.doi.org/10.1021/ac051632c
http://dx.doi.org/10.1038/s41540-017-0029-9
http://dx.doi.org/10.1172/JCI71180
http://www.ncbi.nlm.nih.gov/pubmed/24316975
http://dx.doi.org/10.1016/j.ccell.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26766592
http://dx.doi.org/10.2337/dc13-0989
http://www.ncbi.nlm.nih.gov/pubmed/23990511
http://dx.doi.org/10.1093/bioinformatics/bty650
http://www.ncbi.nlm.nih.gov/pubmed/30032270
http://dx.doi.org/10.1210/jc.2013-3596
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1186/s12911-016-0318-z
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/bioinformatics/btp362


Metabolites 2023, 13, 127 14 of 14

33. Hart, G.W.; Copeland, R.J. Glycomics hits the big time. Cell 2010, 143, 672–676. [CrossRef]
34. Silverman, J.D.; Roche, K.; Mukherjee, S.; David, L.A. Naught all zeros in sequence count data are the same. Comput. Struct.

Biotechnol. J. 2020, 18, 2789–2798. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cell.2010.11.008
http://dx.doi.org/10.1016/j.csbj.2020.09.014
http://www.ncbi.nlm.nih.gov/pubmed/33101615

	Introduction
	Methods
	rox Core Model
	Debiased Weighted Rox Model
	Self-Adjusting Rox for Partial LOD and Non-LOD
	Rox-Based Semiparametric Multivariable Model
	Hypothesis Testing
	Simulation Framework
	Metabolomics Datasets

	Results
	Simulation Results: Strict LOD
	Simulation Results: Probabilistic LOD
	Simulation Results: Multivariable Setting
	Evaluation on Metabolomics Data: Recovering High-Confidence Hits
	Evaluation on Metabolomics Data: Multiplatform Validation

	Discussion
	References

