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S1 Mathematical Symbols

Network

Stoichiometric matrix (all metabolites) Ntot

Stoichiometric matrix (external metabolites) Next

Stoichiometric matrix (internal metabolites) N = L Nind

Link matrix L
Stoichiometric matrix (independent internal metabolites) Nind

Cooperativity coefficient hl
Stoichiometric coefficient nil

Reactant molecularity m±li = hl |nil|
Activation coefficient mA

li

Inhibition coefficient mI
li

Metabolic Variables

Flux vl
Internal metabolite concentration ci
External metabolite concentration xj
Enzyme level el

Thermodynamic Variables

Mass-action ratio qma
l =

∏
i c
nil
i

Equilibrium constant keq
l =

∏
i (ceq

i )
nil

Standard chemical potential µ◦i
Chemical potential µi = µ◦i +RT ln ci

Thermodynamic force θl = −∆rµl/RT

One-way flux ratio ζl ζl = v+l/v−l = ehl θl

Rate Laws

Rate law νl(c, e,x) = el kl(c,x)

Michaelis–Menten constant kM
li

Activation constant kA
li

Inhibition constant kI
li

Catalytic constant kcat
±,l

Maximal velocity vmax
±l = el k

cat
±,l = maxc,x νl(c, e,x)

Velocity constant kV
l =

√
kcat

+l k
cat
−l

Elasticity Sampling

Saturation value βM
li , β

A
li , β

I
li

Unscaled elasticity Evlci = ∂νl
∂ci

Scaled elasticity Êvlci = ∂ ln |νl|
∂ ln ci

Metabolic Control Theory

Steady-state flux vl = vst
l (e,x)

Steady-state concentration ci = csti (e,x)
Jacobian matrix (independent metabolites) A = Nind Ec L

Unscaled response coefficient Rciel = ∂ci
∂el
, R

vj
el =

∂vj
∂el

Unscaled control coefficients Ccivl = Rciel/E
vl
el
, C

vj
vl = R

vj
el /E

vl
el

Scaled response/control coefficient R̂ciel = Ĉcivl = ∂ ln ci
∂ ln el

, R̂
vj
el = Ĉ

vj
vl =

∂ ln |vj |
∂ ln el

Table S1: Symbols used in STM. Network elements are denoted by i (metabolites) and l (reactions). Second-
order elasticities, response coefficients (called synergy coefficients), and control coefficients are defined simi-
larly to first-order coefficients.
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S2 Kinetic Models and Reaction Elasticities

S2.1 Kinetic Models

Metabolic networks and kinetic models A metabolic network is defined by a set of chemical reactions

and regulatory arrows pointing from metabolites to reactions (Figure S2.1 (a)). The molecularities1 mS
li

(for substrates) and mP
li (for products) are given by the stoichiometric coefficients nli between metabolite

i and enzyme l, multiplied by the reaction’s cooperativity coefficient hl (i.e., hl nli = mS
li −mP

li) [1]. The

stoichiometric coefficients and regulation coefficients mA
li and mI

li (activation: mA
li = 1; inhibition: mI

li = 1;

zero values otherwise) are collected in matrices that define the network. Kinetic models [2] describe reaction

rates by rate laws νl(c, e,x) = el kl(c,x) (Figure S2.1 (b)). Modular rate laws [1] (see below) contain

two types of kinetic constants: catalytic constants kcat
± (in s−1) describe the speed of the forward and

backward rates, while metabolite-enzyme binding is described by dissociation constants kM for reactants,

activation constants kA for activators, and inhibition constants kI for inhibitors (in mM). For each reaction,

a certain ratio of all these constants must be equal to the equilibrium constant (Haldane relationship). Given

stoichiometric matrix and rate laws, we obtain the dynamic rate equations dci/dt = 1
Vi

∑
l nil νl(c, e,x) for

internal metabolite concentrations ci, with external metabolite concentrations xj and enzyme levels el as

parameters. We assume that all metabolites i are homogeneously distributed within cell compartments of

constant size Vi. Metabolite concentrations are given in mM = mol/m3, reaction rates as amounts per time

(mol/s), enzyme levels as amounts (mol), and volumes in m3. In single-compartment models, we may choose

a compartment size of 1 (dimensionless) and measure reaction rates in mM/s and enzyme levels in mM. If

we analyse steady states, the choice of flux units does not play a role.

Modular rate laws Modular rate laws [1] are generic reversible rate laws that capture various reaction

stoichiometries, enzyme mechanisms, and types of regulation by effector molecules. Formulae for different

rate laws and their elasticities can be found in the Supplementary Materials of [1]. As an example, let us

consider a reaction A + B � 2C without effectors. The common modular (CM) rate law is a reversible

Michaelis–Menten kinetics, generalised for arbitrary stoichiometries. With two substrates A and B and one

product C, it reads

ν(a, b, c, e) = e
kcat

+ (a/kM
A ), (b/kM

B )− kcat
− (c/kM

C )2

(1 + a/kM
A )(1 + b/kM

B ) + (1 + c/kM
C )2 − 1

(S1)

with reactant constants kM
A , kM

B , and kM
C (in mM) and catalytic constants kcat

+ and kcat
− (in s−1) for forward

and backward direction. Modular rate laws can be adapted to different types of reactions and enzymes: if an

enzyme is regulated by an effector molecule, this can be described, for example, by prefactors βA
X =

x/kAX
1+x/kAX

for activators X or αI
Y = 1

1+y/kIY
for inhibitors Y. Moreover, with a Hill-like exponent h the rate laws can

capture sigmoidal kinetics. Other types of rate laws use the same parameters, but another denominator, for

example, the saturable modular (SM) rate law

ν(a, b, c, e) = e
kcat

+ (a/kM
A ) (b/kM

B )− kcat
− (c/kM

C )2

(1 + a/kM
A )(1 + b/kM

B )(1 + c/kM
C )2

. (S2)

In the denominator, the substrate and product terms are simply multiplied. Modular rate laws assume an

enzyme mechanism in which substrates and products bind rapidly, independently, and in random order. The

1The molecularities resemble stoichiometric coefficients, but with a slight difference: while stoichiometric cofficients (in a
reaction sum formula) can be rescaled, the molecularities are actual molecule numbers in the enzyme mechanism, and therefore
uniquely determined. They can be written as the (absolute) stoichiometric cofficients multiplied by a cooperativity exponent

hl for each reaction (typically hl = 1).) [1]. In the formula for thermodynamic forces, θ = Ntot>µ/RT , we tacitly assume that
stoichiometric coefficients are given by molecularities. Otherwise, this formula must contain hl as a prefactor.
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(
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)
Figure S1: Structure and kinetic description of
metabolic networks. (a) Metabolic network and struc-
ture matrices. Our metabolic pathway consists of two
reactions A � B and B � 2C. Reaction R1 is inhib-
ited by the end product C, while reaction R2 is acti-
vated by its own substrate B; (b) pathway shown as a
bipartite network. Each arrow carries a number: dot-
ted arrows show stoichiometric coefficients for substrates
and products, regulation arrows (solid) carry coefficients
of 1. Right: the arrows and coefficients can be rep-
resented by network matrices MS, MP, MA, and MI

whose rows and columns correspond to reactions and
metabolites, respectively. MS and MP follow directly
from the stoichiometric matrix; (c) kinetic constants
in modular rate laws. The standard chemical poten-
tials µ◦i of metabolites determine the equilibrium con-
stants. All stoichiometry or regulation arrows are asso-
ciated with dissociation constants kM

li , kA
li , or kI

li. The

velocity constants kV
l =

√
kcat

+l k
cat
−l are assigned to reac-

tions. Together, the constants determine the catalytic
constants kcat

±,l. (d) A metabolic state is characterised
by fluxes vl, metabolite concentrations ci, chemical po-
tentials µi = µ◦i +RT ln ci, and enzyme levels el.

reactant constants kM
li are dissociation constants of the elementary binding steps. Like the kM values in

Michaelis–Menten kinetics, they denote reactant concentrations that would yield a half-maximal saturation

(or 1/|nil|-maximal saturation if |nil| > 1). The catalytic constants kcat
± stem from the slow conversion step

between substrate and product molecules. In all modular rate laws, the kinetic constants are required to

satisfy Haldane relationships. One way to ensure this is to predefine the equilibrium constants, to treat the

velocity constants kV as free parameters, and to compute the catalytic constants by using Equation (S9).

Thermodynamic laws The kinetics and steady states of metabolic systems are constrained by thermody-

namic, which defines relationships between metabolite concentrations ci, reaction rates vl, equilibrium con-

stants keq
l , and chemical potentials µi. The chemical potentials µi are defined as the derivatives µi = ∂G/∂ni

of the system’s total Gibbs free energy by the metabolite mole numbers ni. For ideal mixtures (metabolites

at low concentrations in an aqueous solution, no mixture effects, activity coefficients of 1), the chemical

potential of metabolite i is given by the formula

µi = µ◦i +RT ln ci/cstd (S3)
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with Boltzmann gas constant R, absolute temperature T , and chemical potential µ◦i of metabolite i at

standard concentration2 cstd. Here I omit the division by cstd, assuming that all concentrations are given in

units of the standard concentration. The ratio qma
l =

∏
i(ci)

nil of product and substrate concentrations for

a reaction is called mass–action ratio. In chemical equilibrium states, this ratio always has the same value,

called equilibrium constant keq
l , which can be written as keq = e−∆µ◦/RT . The thermodynamic force θr, in

a (possibly non-steady) metabolic state is defined as

θl = − 1

RT
∆rµl = − 1

RT

∑
i

µi nil. (S4)

Note that, in this definition, the prefactors in the difference ∆ refer to actual molecularities, not to arbitrarily

scaled stoichiometric coefficients. A driving force θ describes the Gibbs free energy dissipation (in kJ/mol)

associated with a reaction event and can be computed from the equilibrium constant keq
l and the mass–action

ratio qma
l (for reaction l):

θl = − 1

RT

∑
i

nil µi = ln keq
l /q

ma
l . (S5)

In generalised Michaelis–Menten rate laws, the ratio of forward and backward rates v±l of reaction l is given

by

ζl = v+l/v−l = ehl θl = keq/
∏

cni
i . (S6)

The thermodynamic-kinetic formalism [3] defines the thermokinetic potential ξi = eµi/RT and splits it into

ξi = Ci ci, where Ci is called capacity. For ideal mixtures (satisfying Equation (S3)), the thermokinetic

potential is given by ξi = eµ
◦
i /RT ci with a capacity Ci = eµ

◦
i /RT , and related to ζl via

ζl = ehh θl = e−hh ∆rµl =
∏
i

(eµi/RT )−hl nil =
∏
i

ξ−hl nil
i . (S7)

In kinetic models, thermodynamic laws impose three sorts of constraints: a relation between flux directions

and thermodynamic forces; Wegscheider conditions for equilibrium constants; and Haldane relationships

between equilibrium constants and kinetic parameters. These constraints arise as follows: (i) To carry a non-

zero flux, chemical reactions must show a positive production of entropy per volume and time, σl = vlAl/T =

Rvl θl (with the reaction affinity A = −∆rG). As a consequence, a (non-zero) reaction rate vl and the

corresponding thermodynamic force θl must point in the same direction. (ii) The vector ln keq of logarithmic

equilibrium constants can be written as ln keq = Ntot> ln ceq, with a vector ceq of metabolite concentrations

in an equilibrium state. For any such vector ln keq, the Wegscheider conditions K> ln keq = 0 have to be

satisfied [4, 5], where K is a null space matrix satisfying N K = 0. Similar Wegscheider conditions hold for

all vectors of the form x = Ntot y, including logarithmic mass–action ratios ln qma
l and thermodynamic forces

θl. (iii) The fact that reaction rates vl(c
eq, e) vanish at chemical equilibrium implies a Haldane relationship

between equilibrium constant and kinetic constants [6, 3]. For all modular rate laws, the Haldane relationship

reads

keq
l = kcat

+l /k
cat
−l

∏
i

(kM
li )nil . (S8)

2For kinetic models, it is convenient to use a standard concentration of 1 mM, equal to the measurement unit for concentra-
tions. In thermodynamic flux analysis, the common standard concentration is 1M. The conversion between the two conventions
requires an adjustment of reaction Gibbs free energies, standard Gibbs free energies of formation, and equilibrium constants.
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To construct parameter sets that satisfy this relation, we define the turnover constants kV
l =

√
kcat

+l k
cat
−l as

the geometric means of forward and backward catalytic constants. By rewriting Equation (S8), we can now

express the forward and backward catalytic constants as

kcat
±,l = kV

l (keq
l

∏
i

(kM
li )−nil)±1/2. (S9)

These values satisfy the Haldane relationship by construction.

S2.2 Reaction Elasticities and Thermodynamics

Scaled and unscaled reaction elasticities The derivatives between kinetic laws νl(·) and enzyme con-

centrations ep, metabolite concentrations cj , or other function arguments are called reaction elasticities

(see Figure 1 (a) in main text). Given a rate law νl(el, c), the unscaled reaction elasticities are defined by

derivatives

Evlci =
∂νl
∂ci

, Evlcicj =
∂2νl
∂ci ∂cj

, (S10)

while the corresponding scaled elasticities are defined by logarithmic derivatives

Êvlci =
∂ ln |νl|
∂ ln ci

, Êvlcicj =
∂2 ln |νl|

∂ ln ci ∂ ln cj
. (S11)

Elasticities for other arguments of the rate law function (e.g., the enzyme level el instead of ci) are defined

accordingly. Scaled elasticities are dimensionless and can be seen as effective reaction orders: for mass–

action kinetics, they are given by the substrate molecularities; for an enzyme that is fully saturated with the

metabolite in question, they vanish. Scaled and unscaled elasticities can be interconverted by

Êvlci =
ci
vl
Evlci , Êvlcicj =

ci cj
vl

Evlcicj −
ci cj
v2
l

EvlciE
vl
cj + δij

ci
vl
Evlci (S12)

and

Evlci =
vl
ci
Êvlci , Evlcicj =

vl
ci cj

[
Êvlcicj + Êvlci Ê

vl
cj − δijÊ

vl
ci

]
. (S13)

Analogous conversion formulae hold for all types of sensitivities, including elasticities with respect to other

parameters, control coefficients, and response coefficients [7, 8].

Elasticities and thermodynamic force Elasticities depend on the rate laws, but also on thermodynam-

ics. In reversible rate laws, the net reaction rate vl = v+l − v−l is the difference of forward and backward

rates, whose ratio v+l/v−l = eθl is determined by the thermodynamic force θl. The thermodynamic force,

in turn, depends on reactant concentrations and equilibrium constant as θl = −∆rGl/RT = ln keq∏
i c

nil
i

(see

Figure 1 (b) in main text). If the thermodynamic force is large, the forward flux dominates and the net rate

becomes sensitive to substrate fluctuations, but less sensitive to product fluctuations; therefore, the substrate

elasticity increases and the product elasticity decreases. Near chemical equilibrium, where thermodynamic

forces come close to zero, the scaled elasticities go to infinity.
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Elasticities of modular rate laws The scaled elasticities of the SM rate law Equation (S2) contain the

thermodynamic term as well as four terms that correspond to substrates, products, activators, and inhibitors:

Êvlci =
ζlm

S
li −mP

li

ζl − 1
−mS

liα
M
li −mP

liβ
M
li +mA

li α
A
li −mI

li β
I
li. (S14)

For near-equilibrium reactions (small θl) and for strongly driven reactions (|θl| → ∞), the first three terms

can be approximated by

|θl| ≈ 0 :
1

θl
(mS

li −mP
li) +mS

liα
M
li −mP

liβ
M
li

θl →∞ : (mS
li −mP

li) e−θl +mS
liα

M
li −mP

liβ
M
li

θl → −∞ : (mP
li −mS

li)e
−|θl| −mS

li β
M
li +mP

liα
M
li . (S15)

The last two terms in these formulae represent exactly the formula used in SKM [9], while the first term

employs a thermodynamic correction. The scaled elasticities of the common modular rate law are a bit more

complicated:

Êvlcj = βlj
ζlm

S
lj −mP

lj

ζl − 1
− βlj

mS
ljψ

+
l +mP

ljψ
−
l

ψ+
l + ψ−l − 1

+mA
li α

A
li −mI

li β
I
li, (S16)

where ψ±l =
∏
l(1+ci/k

M
li )m

±
li (see [1]). Formulae for second-order elasticities, unscaled elasticities, parameter

elasticities, and other types of modular rate laws can be found in [1].

Elasticities of factorised rate laws (derivation of Equation (8)) For the factorized rate laws, and

assuming a positive flux v > 0 for simplicity, we obtain

Êvlcj =
∂ ln vl
∂ ln ci

=
∂ ln(1− e−θl)

∂ ln ci
+
∂ ln ηkin

∂ ln ci
, (S17)

where

∂ ln(1− e−θl)

∂ ln ci
=

1

1− e−θl
(−e−θl)(−)∂θl/∂ ln ci =

e−θl

1− e−θl
(−nil) =

−1

e−θl − 1
nil. (S18)

Any set of saturation values yields a consistent model STM relies on two facts about model pa-

rameterisation: first, given consistent fluxes and thermodynamic forces, any choice of the saturation values

yields a consistent kinetic model; and second, any consistent model can be constructed like this. This can

be proven as follows: consider a kinetic model with modular rate laws and a thermodynamically consistent

flux distribution v. For simplicity, enzyme levels are subsumed in the catalytic constants kcat
±,l. As shown in

[1], a consistent set of parameters, realising v, can be obtained by the following procedure:

1. Freely choose standard chemical potentials µ◦i and determine the equilibrium constants.

2. Determine concentrations ci such that the signs of the thermodynamic forces agree with the flux

directions. If the metabolite concentrations are bounded, this may not always be possible, even if the

flux distribution is loopless.

3. Freely choose Michaelis constants kM
li and activation and inhibition constants kA

li and kI
li. Given the

previously chosen metabolite concentrations, this is equivalent to choosing the saturation constants in

the range between 0 and 1 and computing the kX
li values from them.

4. Choose preliminary values for the velocity constants kV
l

′
. Compute the catalytic constants kcat

±,l
′

from

7



the Haldane relationships (S8). Use the rate laws to compute the reaction rates v′l. By construction

(due to the thermodynamically feasible metabolite concentrations and thermodynamically consistent

rate laws), these rates have the same signs as the predefined fluxes. To match reaction rates and fluxes

exactly, we just need to adjust the velocity constants, setting kV
l = (vl/v

′
l) k

V′
l.

5. If our flux distribution contains inactive reactions, we can decide, for each of them, whether we assume

a vanishing thermodynamic force, a vanishing velocity constant, or a vanishing enzyme level. In the

first case, we need to apply the strict energetic feasibility criterion for this reaction (i.e., require that

the thermodynamic force vanish); in the other cases, there is no feasibility criterion for the reaction,

and the kV value or enzyme level is set to zero.

If this procedure yields correct models, then also all models constructed by STM are correct. In STM, we

first determine consistent fluxes vl and thermodynamic forces θl that can be realised by a choice of standard

chemical potentials µ◦i and concentrations ci. Thus, when choosing the saturation constants, any choice is

equivalent to a choice of kM
li , kA

li , and kIli in the algorithm above; the quantities chosen until this point

correspond exactly to the results of step 3; steps 4 and 5 will yield a unique, consistent set of parameters.

Therefore, models obtained by STM satisfy all relevant constraints.

Independently sampled elasticities would yield inconsistent models A main problem with SKM

is that elasticities are replaced by independent random numbers, which means that the resulting kinetic

models may violate constraints. If the forward and backward one-way rates of reactions were independent,

and not constrained by thermodynamics, independent sampling would be justified: the elasticities could be

directly translated into kinetic constants, and each sampled elasticity matrix would define a specific kinetic

model. However, in models with reversible rate laws, independently sampled elasticities lead to inconsistent

results. For example, consider a reaction A � B with reversible mass–action kinetics v = k+ a − k− b: the

scaled reaction elasticities read ÊA = k+ a/v (for substrate A) and ÊB = k+ b/v (for product B), so their

difference ÊA − ÊB = 1 is fixed. If we sample these elasticities independently, this relationship is violated

and our sampled values cannot be realised by reversible mass–action rate laws. Similar constraints hold for

all thermodynamically consistent reversible rate laws.

There can also be inconsistencies between the elasticities of different reactions. Here is a simple example:

the reaction A → B is catalysed by two isoenzymes with reversible mass–action kinetics:

v1 = ν1(a, b) = k+
1 a− k

−
1 b

v2 = ν2(a, b) = k+
2 a− k

−
2 b. (S19)

The symbols a and b denote the concentrations of A and B, and k±1 and k±2 denote the rate constants. In

each reaction, forward and backward kinetic constants must have the same ratio given by the equilibrium

constant:

keq =
k+

1

k−1
=
k+

2

k−2
. (S20)

Therefore, the scaled elasticity matrix can be written as

Ê =

(
∂ ln ν1
∂ ln a

∂ ln ν1
∂ ln b

∂ ln ν2
∂ ln a

∂ ln ν2
∂ ln b

)
=

(
k+

1
a
v1
−k−1 b

v1

k+
2

a
v2
−k−2 b

v2

)
=

(
keq a
keq a−b

−b
keq a−b

keq a
keq a−b

−b
keq a−b

)
=

(
ζ
ζ−1

−1
ζ−1

ζ
ζ−1

−1
ζ−1

)
(S21)

with ζ = keq/(b/a). All four elasticities are determined by the same parameter ζ, so sampling them inde-

pendently leads to a contradiction.
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Dependencies between first- and second-order elasticities For a given modular rate law, the scaled

elasticities can be computed from stoichiometric coefficients, thermodynamic forces, and saturation values.

The fact that one model detail (e.g., the thermodynamic force of a reaction) can influence different reaction

elasticities leads to dependencies between these elasticities: if this model detail is varied, the resulting

elasticities will be statistically dependent. Here is an example. When a thermodynamic force becomes larger,

the substrate elasticities tend to increase and the product elasticities tend to decrease. When comparing

all elasticities in a network, or when comparing different instances of an ensemble model, the relationship

between thermodynamic force and elasticities leads to positive correlations among substrate elasticities,

positive correlations among product elasticities, and negative correlations between substrate and product

elasticities within reactions. Just like first-order elasticities, the second-order elasticities are also dependent.

Second-order elasticities Êvlcicj tend to be negatively correlated with the product Êvlci Ê
vl
cj . To see this,

consider a simple mass–action or power-law rate law without regulation: the elasticities are directly given

by the thermodynamic terms

Êvlci =
mS
li ζl −mP

li

ζl − 1
=

{
i is a substrate : ζl

ζl−1 m
S
li

i is a product : −1
ζl−1 m

P
li

(S22)

Êvlcicj = −ζl h
2
l nil njl

(ζl − 1)2
=


i, j are substrates : − ζlm

S
lim

S
lj

(ζl−1)2 ≈ − 1
ζ Ê

vl
ci Ê

vl
cj

one substrate, one product :
ζlm

S
lim

P
lj

(ζl−1)2 ≈ − Êvlci Ê
vl
cj

i, j are products : − ζlm
P
lim

P
lj

(ζl−1)2 ≈ −ζ Êvlci Ê
vl
cj

. (S23)

In this formula, the distinction between substrates and product is not made based on the actual flux direction,

but on their roles in the reaction formula; the flux direction enters the formulae via ζl, which may be larger

or smaller than 1, depending on the sign of the thermodynamic force and thus on the flux direction. The

second-order elasticities read

Êvlcicj = ϑlij Ê
vl
ci Ê

vl
cj , (S24)

where, in the present case (non-regulated mass–action rate law), the prefactor ϑlij reads

ϑlij =


i, j are substrates : −1/ζl

one substrate, one product : −1

i, j are products : −ζl
. (S25)

Due to this negative prefactor, we can expect a negative statistical correlation between the second-order

elasticity Êvlcicj and the product Êvlci Ê
vl
cj of first-order elasticities. In particular, close to equilibrium (where

θl ≈ 0 and therefore ζl ≈ 1), we obtain ϑlij ≈ −1 and thus the general formula Êvlcicj ≈ −Ê
vl
ci Ê

vl
cj , which

is symmetric between substrates and products. For completely forward-driven reactions (with θl → ∞ and

ζl → ∞), in contrast, we obtain Êvlcicj ≈ 0 because the factor ζl/(ζl − 1)2 is close to 0. Can we expect the

same relationship also for other rate laws? For generic saturable rate laws, a splitting as in Equation (S24)

is formally possible, but there is no simple formula for ϑlij . Therefore, a tendency for negative correlations

between Êvlcicj and Êvlci Ê
vl
cj may remain, but the negative correlation will be weaker.

S2.3 Metabolic Control Theory

Steady states and metabolic control A steady state is a metabolic state in which metabolite concen-

trations and fluxes are constant in time. Steady-state fluxes vl(e,x) and concentrations ci(e,x) depend on

enzyme levels el and external metabolite concentrations xj . These dependencies may be complicated and
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not explicitly known (see Figure S2.1 (c)). However, if steady-state concentrations and fluxes are given, their

sensitivities to parameter changes can be computed from the elasticities. The sensitivity Rypm = ∂y/∂pm

between a target variable y—e.g., a stationary concentration ci or a flux vl—and model parameters pm is

called a response coefficient. If each reaction has one reaction-specific parameter pl, for example the enzyme

level el, then we can divide the response coefficients Ry
il by the elasticities Evlpl and obtain the control coeffi-

cients Cyvl = Rypl/E
vl
pl

(Figure 1 (c) in main text). Control coefficients describe how local perturbations of a

reaction rate affect the network-wide steady state. By definition, they depend on the perturbed reaction, but

not on the perturbation parameter. Thus, response coefficients refer to perturbed parameters and control

coefficients to perturbed reactions. The effects of global parameters such as temperature, which affect many

reactions, are described by response coefficients Rypm =
∑
l C

y
vl
Evlpm (for more details, see Section S5.2 and

[7, 10, 8]). Elasticities, response coefficients, and control coefficients can be defined in their unscaled form

∂y/∂x (denoted by a bar X̄) or in their scaled form ∂ ln y/∂ lnx (denoted by a hat X̂) (see Section S2.2). If

an enzyme catalyses a single reaction, the enzyme level appears as a prefactor in the rate law and its scaled

response and control coefficients are identical. The summation and connectivity theorems [2], a central find-

ing of Metabolic Control Theory (MCT), entail linear dependencies among the control coefficients along a

stationary flux distribution or in the reactions surrounding a common metabolite. Quantities and formulae

related to fluctuations in time (such as spectral response coefficients, spectral power density, and variability

on different time scales) are described in the Section S4.

Enzyme synergies The synergy effects of enzyme pairs on a flux v (or on some other steady-state variable)

can be approximated by second-order response coefficients, called synergy coefficients. Assume that two

enzymes are inhibited, thus decreasing their levels ea and eb to small values u∗a and u∗b , and that this leads

to relative flux changes wa = va/v, wb = vb/v for the single inhibitions and wab = vab/v for the double

inhibition. Based on these numbers, we define the synergy effect

ηv
ab = ln

wab

wawb
. (S26)

A positive value of ηv
ab indicates a buffering synergy (wab > wa wb), while a negative value indicates an

aggravating synergy (wab < wa wb). If wab = wa wb, there is no synergy. In a second-order expansion

around the unperturbed state, the synergistic effect can be written as (see Section S5.4)

ηv
ab ≈ R̂y

eaeb
∆r ln ea ·∆r ln eb, (S27)

so the scaled synergy coefficients R̂y
eaeb

quantify synergisms between two enzymes. If perturbations and

target variables are measured on non-logarithmic scale, the synergistic effects ηv
ab = wab − wa − wb can be

approximated by ηv ≈ Ry
eaeb

∆ea ∆eb with the unscaled response coefficient Ry
eaeb

.

S2.4 Model Construction by STM

Constraints between parameters and variables in kinetic steady-state models A kinetic steady-

state model is determined by its network structure, rate laws, state variables, and saturation values: these

values define the elasticities and kinetic constants. For a consistent model, these variables have to satisfy a

number of constraints, explained by the dependence schema.

• Wegscheider conditions Some biochemical quantities, for example the Gibbs free energies of reac-

tions, can be written as differences ∆rxl along reactions, or in vector form ∆rx = Ntot>x, where Ntot

is the stoichiometric matrix including both internal and external metabolites. Such quantities must

obey the Wegscheider condition K>∆rx = 0, where K is a null-space matrix satisfying Ntot K = 0.
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Wegscheider conditions must hold, for example, for equilibrium constants (ln keq = Ntot> ln ceq),

mass–action ratios (ln qma = Ntot> ln c), and thermodynamic forces (A = −∆rµ = −Ntot>µ).

• Haldane relationships In a chemical equilibrium state, all metabolic fluxes vl must vanish. If

we consider a single reaction in equilibrium, set its rate to zero (νl(c
eq, ...) = 0), and solve for the

equilibrium constant, we obtain an equation between equilibrium constant and kinetic constants, the

so-called Haldane relationship [11]. For example, for a reversible mass–action law vl = kcat
+l a−kcat

−l b, the

Haldane relationship reads keq
l = kcat

+l /k
cat
−l . For the modular rate laws, it reads keq

l =
kcat+l

kcat−l

∏
i(k

M
li )hl nil

(see [1]).

• Equilibrium constant and chemical standard potentials In chemical equilibrium, the Gibbs

free energies of reaction ∆rGl = ∆rµl must vanish. With the formula for chemical potentials µi =

µ◦i +RT ln ci (i.e., assuming an activity coefficient and a standard concentration equal to 1), this leads

to the formulae ln keq
l = − 1

RT

∑
i µ
◦
inil and θl = − 1

RT ∆rµl = ln
keql
qma
l

.

• Signs of fluxes and thermodynamic forces According to the second law of thermodynamics, all

chemical reactions must dissipate Gibbs free energy. This implies that rates and thermodynamic forces

have the same signs (v > 0⇒ θ > 0 and v < 0⇒ θ < 0), in agreement with the relationship θ = ln v+
v−

.

A stricter version of this constraint, excluding near-equilibrium reactions, imposes a minimum force

|θ| > θmin.

• Steady-state fluxes For applying MCT, the metabolic reference state must be a steady state, i.e., a

state in which the metabolic fluxes satisfy the stationarity condition N v = 0. In addition, we may

impose bounds vmin ≤ v ≤ vmax on the reaction rates and bounds vmin
ext ≤ Nextv ≤ vmax

ext on the

production or consumption of external metabolites. Such bounds can be used to predefine reaction

directions or to keep fluxes close to measured values.

• Stability of the steady state For applying MCT to a metabolic reference state, this state must

be asymptotically stable, i.e., its Jacobian matrix must not have eigenvalues with positive real parts.

This constraint depends on all model details, and we cannot guarantee it by the dependence schema.

Following [9], stable states can be obtained by generating a model ensemble and omitting all model

instances with unstable states.

• Amounts or concentrations In compartmentalised models, we need to distinguish between metabo-

lite amounts and metabolite concentrations, which are related by compartment volumes. Generally,

mass balances concern amounts while rate laws depend on concentrations. In STM, fortunately,

amounts as such do not play a role. While concentrations appear as model variables, amounts are

modelled only implicitly (e.g., if stationarity is imposed on fluxes).

A model construction algorithm that violates these constraints would lead to inconsistent models or metabolic

states.

Model construction algorithm In a model with predefined kinetic constants, enzyme levels, and exter-

nal metabolite concentrations, steady-state fluxes and concentrations can be determined numerically (Figure

S2 (a)). However, to construct models with physiologically plausible states, it may be safer to start from

reasonable metabolic fluxes and to construct metabolite concentrations and kinetic rate laws around them

in such a way that they yield the predefined fluxes (Figure S2 (b)). Model construction based on STM

combines ideas from thermodynamic flux analysis [12, 13, 14] (in the metabolic state phase), SKM [9] and

thermodynamically consistent model parametrisation [15, 3] (in the kinetics phase). Like in SKM, steady-

state concentrations and fluxes can be predefined. To satisfy Wegscheider conditions, Haldane relationships,

and the sign constraint between reaction rates and thermodynamic forces, steady state and kinetic constants
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Compute Jacobian matrix, response and

(b) Retromodelling from steady state to kinetic model(a) Modelling from kinetic model to steady state

Compute the elasticities from the rate laws

Figure S2: Constructing kinetic metabolic models in steady state. (a) In “causal” kinetic modelling, we
start with rate equations and determine a steady state. A kinetic model is defined by network structure
and rate laws. Given the kinetic constants, we solve for a steady state and compute the elasticities in this
state by taking the derivatives of the rate laws. The elasticities determine the linearised dynamics around
our steady state and are central to Metabolic Control Theory. (b) Retromodelling, starting from metabolic
fluxes. First, the steady-state variables (metabolite concentrations, fluxes, and equilibrium constants) are
chosen under thermodynamic constraints. Then, saturation values or dissociation constants are chosen, and
kinetic constants and elasticities are computed. The basic model variables (state variables and saturation
values or dissociation constants) can be independently chosen, sampled, or optimised based on predefined
values, bounds, or probability distributions. Prior knowledge about kinetic constants can be employed when
choosing the saturation values.

are chosen sequentially. The network structure, our starting point, is defined by stoichiometric matrix, reg-

ulation matrix, and the list of external metabolites. In the algorithm, basic variables (steady-state variables

and saturation values) are determined step by step based on known values, constraints, or probability dis-

tributions: they can be chosen manually, by optimisation, by fitting them to data, or by random sampling.

Derived variables (e.g., kinetic constants) are computed from variables chosen previously, as described by

the dependence schema in Figure 2 (main text). Finally, models can be checked for a stable steady state (if

such a state is required for the further analysis, e.g., Metabolic Control Analysis). All models shown in the

article passed this test.

Reconstruction of kinetic rate laws In STM, the scaled elasticities are not directly given by satura-

tion values, but depend on saturation values and thermodynamic forces. Each sampled elasticity matrix

corresponds to one instance of the model ensemble, that is, zo a particular kinetic model with consistent

kinetic constants. In a variant of the STM algorithm, we do not sample the saturation values directly (βM
li ,

βA
li , β

I
li), but compute them from sampled dissociation constants (kM

li , k
A
li , and kI

li). In both cases, the cat-

alytic constants kcat
± are computed from two constraints: the ratio kcat

+l /k
cat
−l is determined by the Haldane

relationships while their geometric mean
√
kcat

+l · kcat
−l , treated as a model parameter kV, depends on their

absolute scaling. To choose this scaling, we may either predefine the enzyme levels el and scale the catalytic

constants kcat
± such that the reaction rate matches the predefined flux; or we predefine the kcat

± values and

solve for the enzyme levels.

Combining modular and hand-curated rate laws Once generic rate laws have been assigned, some

of them may be replaced by more detailed rate laws (obtained from enzyme assays) to make the model more

realistic [16]. To ensure a consistent model, the fluxes, concentrations, and equilibrium constants in these
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reactions must be equal between the reconstructed model and the new rate laws to be inserted. There are

different ways to guarantee this: either reaction rates and equilibrium constant, taken from the rate law, are

imposed as constraints when sampling the elasticities; or kinetic constants and enzyme level in the rate law

are adjusted to the network model3.

S3 Model Ensembles

S3.1 Sampling the Model Variables

Model ensembles Our models represent samples from an ideal, infinitely large model ensemble defined

by three types of information: (i) restrictions on model structure and steady state, set by the modeller

(e.g., the choice of a fixed flux distribution); (ii) the independence between basic variables, and dependencies

of other variables on them, as encoded in the dependence schema (Figure 2 in main text); (iii) the random

distributions from which the basic variables are sampled. Together, these choices define the distributions

and statistical dependencies of all model variables. Any kinetic model that satisfies the constraints can be

obtained by the algorithm.

Standard saturation values of 1
2 Why are saturation values of 1

2 a meaningful choice (assuming substrate

concentrations c = kM)? In an irreversible Michaelis–Menten rate law, an enzyme with a scaled substrate

elasticity of 1
2 would work at its half-maximal rate. To see this, we note that d

dx
1

1+x = 1
(1+x)2 : in the

point x = 1, the function value is 1
2 and the value of the derivative is 1/4, so the scaled elasticity in this

point is given by 1/4
1/2 = 1

2 . In our reversible modular rate laws, kM denotes the dissociation constant (the

concentration leading to half-saturation). A concentration equal to the kM value need not lead to a half-

maximal rate, but it still represents a good compromise between a very sensitive but inefficient enzyme (in

the linear range) and a very efficient but insensitive enzyme (at full saturation).

Beta distributions In the sampling of saturation values, what are the reasons for using beta distributions?

The beta distribution is a probability distribution on the interval [0, 1], with two parameters determining the

mean and width. It generalises the uniform distribution and provides a convenient description for saturation

values for several reasons. A saturation value represents a concentration and corresponding dissociation

constant, combined in the form X/(X + Y ). If two independent random variables X and Y follow gamma

distributions with the same scale parameter, the random variable X/(X+Y ) will follow a beta distribution.

Gamma distributions with suitable shape parameters resemble log-normal distributions, which have been

previously used for choosing concentrations and dissociation constants, for example in parameter balancing

[17]. The log-normal distributions of biological variables represent the assumption that the variables are

positive and determined by many independent, multiplicative random effects. A second reason for using

beta distributions is that saturation values represent the occupancy of enzyme binding sites. At given

enzyme molecule number and occupation probabilities, the count numbers of occupied binding sites are

binomially distributed. The beta distribution is the conjugate prior of this distribution. Therefore, in a

Bayesian model for binding site occupancies, it is a natural choice for describing priors and likelihood terms

for occupation probabilities.

Sampling basic variables randomly or based on data In the metabolic state phase, a flux distribu-

tion may be chosen by flux minimisation. Metabolite concentrations, Gibbs free energies of formation, and

thermodynamic forces may be determined by parameter balancing [17], using upper and lower bounds for

concentrations and thermodynamic forces, known values (for concentrations) and predicted values (for Gibbs

3If an irreversible rate law is given, the equilibrium constant can be ignored in the network model
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free energies of formation) as data, and flux directions as inequality constraints. Upper and lower bounds,

signs, predefined values, and distributions used for sampling reflect model assumptions and available data;

by choosing them, we can adjust the model to specific metabolic states and to kinetic or metabolic data.

Fluxes and thermodynamic forces may be sampled uniformly, under linear constraints and with predefined

sign patterns. metabolite concentrations, enzyme levels, and dissociation constants can be sampled from

log-normal or gamma distributions, and saturation values can be sampled, e.g., from uniform or beta dis-

tributions. In all phases of model construction, instead of sampling the variables freely, experimental data

can be inserted, or distributions centred around data values can be used. To use experimental data in a

more solid way, the entire model construction procedure can also be integrated into a Bayesian framework,

in which a posterior for the model parameters is determined from data and priors.

Varying the thermodynamic forces at given fluxes To systematically study the impact of ther-

modynamic forces on model dynamics, one may vary the thermodynamic forces at a fixed metabolic flux

distribution. Varying the thermodynamic forces (e.g., doubling all their values) requires a variation of

metabolite concentrations, but these metabolite variations are not uniquely defined. For a simple procedure,

we start from a metabolic state with concentration vector corig and force vector θorig (which must agree with

the flux directions). To realise a different force vector θ (with the same signs as θorig), we choose the new

concentration vector

c = argminc || ln c− ln corig||2

s.t. θ − θorig = −N>[ln c− ln corig]. (S28)

The idea is to apply a minimal change in the metabolite profile (Euclidean distance on logarithmic scale).

In this procedure, we may impose upper and lower bounds on c. However, depending on the bounds there

may be no solution.

S3.2 Do Model Variants Differ in Their Behaviour? Some Useful Statistical

Tests

Among the dynamic features of a metabolic model, which of them result from network structure and which

depend mostly on quantitative factors like kinetic constants? To pose this question more generally, we

may consider two model variants that differ in some aspect (e.g., network structure or flux distribution),

while other aspects (e.g., rate constants) can be varied for each of the variants. Then, we ask whether a

(qualitative or quantitative) model output differs significantly between the variants. To prove or disprove

such differences, we describe each model variant by a model ensemble, sample instances from both ensembles,

compute their target variables, and compare them for significant differences. This allows us, for example, to

compare two variants of a kinetic model and to check whether these differences between the variants lead to

typical differences in synergy patterns, irrespective of variable kinetic parameters. The test described below

has been implemented in Matlab (see github.com/liebermeister/stm).

Significant differences in binary target variables If we consider a qualitative model property (e.g., is

the steady state stable or unstable?), each model ensemble can be characterised by the fraction p of “positive”

model instances. Given a set of sampled model instances (with count numbers n+ and n− for “positive” and

“negative” model instances), the true fraction p can be estimated by Bayesian estimation. If p were the true

fraction, the number n+ of positive model instances (out of N = n+ + n− model instances sampled) would

be binomially distributed with mean pN and maximal value N . Knowing this, we can estimate the value

of p from the given number n+ by using Bayesian estimation. Assuming a flat prior, the posterior of p is a

beta distribution Prob(p) ∼ pα−1(1− p)β−1, where α = n+ + 1 and β = N −n+ + 1. The mean value of this
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distribution, 〈p〉 = α/(α + β) = (n+ + 1)/(N + 2), can be used as an estimator for p. The corresponding

variance reads σp = αβ
(α+β)2 (α+β+1) = (n++1)(N−n++1)

(nperm+2)2 (N+3) .

Significant differences in the occurrence of positive and negative synergies Given a matrix of

enzyme synergies (where small-magnitude values have been removed by thresholding), we count the positive

and negative synergies (numbers n+ and n−) between two groups of enzymes, e.g., between enzymes involved

in two metabolic pathways. As a null hypothesis, we assume that synergies can be positive or negative with

equal probabilities. Under this null hypothesis, and assuming that only very few synergies remain after

thresholding, n+ and n− would be independently binomially distributed with the same unknown mean value

n. Given n, the difference n+ − n− would have a mean value of 0 and a standard deviation of
√

2n. Thus,

the ratio between an observed difference n+−n− and this standard deviation can be used as a score for sign

bias. Since the value of n is unknown, we approximate it by n++n−
2 and obtain the empirical sign bias score

zsign = n+−n−√
n++n−

.

Quantitative target variables Finally, we consider quantitative target variables and their differences

between model variants as seen in model ensembles. As an example, we consider predicted enzyme synergies.

The general idea is as follows. To see whether a synergy (between two enzymes i and j) differs significantly

between two model variants, we compute the synergies for many instances of the two model variants, take

the mean value for each variant, and compare the two values using a p-value (obtained from a permutation

test) as a criterion for significant differences. Since we run many such significance tests in parallel (namely,

for many different enzyme pairs), we expect a certain amount of false positives. To account for multiple

testing, we choose a false discovery rate and select significant enzyme pairs based on their p-values [18]. This

is how the procedure works in detail:

1. Sample synergy values We sample nmodel model instances for each of the two model variants. For

each model instance, we compute the synergies of all enzyme pairs. Altogether, we obtain a collection

of synergy values ηijk, indexed by i ∈ 1, .., npairs for enzyme pairs, j ∈ {1, 2} for the two model variants,

and k ∈ 1, .., ninst for the sampled model instances of each variant. If the network contains nr enzymes,

there are npairs = nr(nr−1)/2 enzyme pairs, i.e. possible synergies, to be computed. The synergy data

ηijk are now tested for significant differences.

2. Quantify large (positive or negative) synergies by p-values For each enzyme pair i, we first test

whether this pair shows a significantly large (or small) synergy value caused by the model structure.

If it does, the synergy values will stand out from the general distribution of synergy values, even if we

average over many random choices of the kinetic parameters. We apply the following statistical test:

for each enzyme pair i, we test whether the mean value ηi·· (averaged over all model variants and all

Monte Carlo samples) is significantly larger (or smaller) than other mean synergy values. We use a

permutation test: the actual mean value ηi·· for our enzyme pair is compared to mean values obtained

from batches of resampled ηijk values. In each permutation run l ∈ 1, .., N , we resample 2 · ninst of

the ηijk values with replacement and compute their mean value 〈ηil〉. Let ni denote the number of

resampled mean values 〈ηil〉 larger than ηi··. Whether ηi·· is significantly large is indicated by a p-value

pi, estimated by

pi =
ni + 1

N + 2
(S29)

(for a justification, see the above treatment of binary variables). Small values pi ≈ 0 indicate that

ηi·· is larger than expected by chance (i.e., significantly large), large values pi ≈ 1 indicate that ηi·· is

smaller than expected by chance (i.e., significantly small).
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3. Quantify differences in synergies (between model variants) by p-values Next, for each enzyme

pair i, we ask whether the synergy values differ significantly between the two model variants. In the

test, we consider the mean values ηi1· and ηi2· of the two model variants, averaged over all kinetic

parameter samples, and check whether they differ significantly. Again, we use a permutation test.

This time, we compute the mean difference ∆ηij = ηi1· − ηi2·. In each run d of the permutation test,

we randomly permute the values ηijk for the pair a under study, divide them into two batches of size

ninst, and compute the mean difference ∆〈ηil〉 between the two batches. A p-value, stating whether

∆ηij is large, is computed as above by counting how many of the permutation samples lead to larger

values.

4. Select significant synergies or differences based on p-values Given the previously computed p-

values, we determine which of their mean values η·j· and of their mean differences ∆η·j· are significantly

high (or low). Since we test this for many npairs gene pairs, we need to account for multiple testing:

we fix a false discovery rate of 5% and choose the confidence level α = 0.05 for the individual tests.

With this choice, α · npairs of the apparently significant values (for each of the four tests, high or low

mean synergy and difference in synergy) are expected to be false positives.

S3.3 Extensions of STM

The algorithm for model construction can be extended in many ways:

• Cell compartments In kinetic models with compartments, the compartment sizes appear in the

balance equations and may follow differential equations themselves. In our model construction, com-

partments are not modelled explicitly, but a compartment structure can be added to the reconstructed

kinetic model. This, however, changes control properties such as Jacobian, response, and control

matrices.

• Dilution by cell growth In models with dilution (due to growth rate λ), intracellular metabolites will

be effectively “consumed” by a dilution flux λ ci. This changes the stationarity condition and directly

couples fluxes to metabolite concentrations. Given a steady state, the elasticities can be computed as

normally, but the Jacobian, response, and control coefficients will be affected. The elasticities for the

dilution reactions are directly given by dilution rate and metabolite concentrations.

• Thermodynamically infeasible fluxes Equation (2), a main formula in elasticity sampling, requires

that flux directions follow the thermodynamic forces, that is, fluxes must lead from higher to lower

chemical potentials. In practice, even valid flux distributions may violate this assumption, for example,

if cofactors or protons are omitted in the model. To apply STM regardless, we may choose to ignore

thermodynamics and treat some reactions as irreversible—that is, we ignore the thermodynamic term

in the substrate elasticity and set the product elasticity to zero. Alternatively, we may adjust the

thermodynamic forces to the given flux directions: whenever sign(−∆rµl) differs from the flux direction,

we add a virtual substrate and choose its chemical potential µx such that the thermodynamic force

−∆rµ
∗ = −(∆rµl + µx) has the correct sign. The virtual substrate changes the equilibrium constants

and thermodynamic forces, but can otherwise be ignored in the kinetic rate law.

• Avoiding divergencies close to chemical equilibrium In reactions close to chemical equilibrium,

with a thermodynamic force θl ≈ 0, the one-way rates v±l and scaled elasticities become very large.

In modelling, this may cause numerical problems. Moreover, also implies that the enzyme is very fast

or abundant, and thus able to sustain a finite flux at an enzyme efficiency close to 0. To avoid such

unrealistic assumptions our models, we set a constraint v±l < ρ |vl| on the forward and backward rates
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in each reaction. With a threshold ρ = 100, for example, forward fluxes can be at most 100 times

as large as the net flux. This translates into a constraint for thermodynamic forces in the metabolic

state phase: the flux sign constraint (vl 6= 0 ⇒ sign(vl) θl ≥ 0) is replaced by the stricter constraint4

vl 6= 0⇒ sign(vl) θl ≥ 1/ρ. It will prevent extreme values in the thermodynamic elasticity term Êrev
li .

The unscaled elasticities, in contrast, do not diverge in chemical equilibrium and can be computed

from non-divergent formulae [1].

• Enzyme reactions composed of elementary steps If we think of enzyme mechanisms as composed

of elementary mass–action steps, we can also represent them in this way in a model, replacing each

reaction by a more fine-grained description. In the resulting model, there is a much larger number of

(elementary) reactions. Since all rate laws are mass–action kinetics, the elasticities are directly given

by reversibility terms and completely determined by thermodynamic forces. It sounds surprising: by

knowing the fluxes and thermodynamic forces, we completely know the enzyme kinetics! But we should

not forget that we are now talking about the thermodynamic forces of elementary steps and that the

equilibrium constants of these steps corresponds to kM values (of saturable modular rate laws) in the

more coarse-grained model.

• Prior distributions for saturation values Saturation values β = k/(k + x) can be set to fixed

values (e.g., β = 0 for enzymes believed to be in the linear range, β = 1
2 for enzymes in half-saturation,

or β = 1 for enzymes in full saturation), or they can be sampled independently from the range ]0, 1[. If

β is drawn from a uniform distribution (as suggested by the principle of minimal information [19]) and

if the metabolite concentrations are fixed, the resulting dissociation constant k is randomly distributed

with probability density p(k) = k
(c+k)2 (see Section S5.1). If a saturation value is approximately known,

we can use a beta distribution instead, with density p(β) ∼ βa−1(1−β)b−1 with a mean value a/(a+b)

given by the known value. This yields a distribution p(k) = k
(c+k)2 ( c

k+c )
a−1( k

k+c )
b−1 = kb−1ca−1

(k+c)a+b for

the dissociation constant. Saturation values can also be sampled from dependent distributions: this

may be necessary if enzymes bind to different reactants, for example NAD+ and NADH, with unknown

but similar binding affinities, leading to correlations between their saturation values in physiological

states.

• Multiple steady states Under different choices of external metabolite concentrations and enzyme

levels, a kinetic model will show different steady states. Each of these states is characterised by

different metabolite concentrations, fluxes, saturation values, and elasticities. For constructing a model

with multiple states directly, the STM algorithm needs to be modified: we need to ensure that the

saturation values and elasticities in different states correspond to the same set of kinetic constants.

This is simple. In the metabolic state phase, we sample a set of equilibrium constants and different

sets of state variables for the multiple steady states; in the kinetics phase, we sample a single set

of kinetic constants, which determine the saturation values, elasticities, and enzyme levels for each

steady state. Again, enzyme levels are determined last; to adjust them to measured enzyme levels

from proteomics, some previously chosen model variables can be adjusted (e.g. the velocity constants).

Another possibility to account for enzyme data is to embed the entire algorithm into another layer of

parameter fitting or posterior sampling.

• Adaptation of enzyme levels In our metabolic models, enzyme levels appear as parameters. In re-

ality, they are controlled by transcriptional regulation, an important mechanism for shaping metabolic

behaviour. To include transcriptional regulation into our metabolic models, the model must be ex-

tended to describe the production of enzymes. Alternatively, we may treat enzyme levels as choice

4The constraint can be derived as follows (assuming vl > 0 without loss of generality): the ratio between forward and
net reaction rate is given by v+l/vl = ζl/(ζl − 1). Close to equilibrium, we can approximate 1/ζl ≈ 1 − θl and obtain

ρ ≥ v+l

vl
= 1

1−1/ζl
≈ 1/θl.
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variables and attempt to derive plausible enzyme adaptation profiles from optimality considerations

[20]. To improve metabolic efficiency, enzymes should be expressed in the right proportions to adapt

continuously to the current metabolic tasks. For instance, a rising demand for a certain metabolite

may lead to the induction of a biosynthesis pathway for this metabolite. If such feedback systems are

in place, changes in enzyme levels will affect the metabolic state, and induce secondary adaptations

of other enzymes, and so on. In order to predict the effects of, e.g., gene knock-downs, we need to

consider the global interplay of such adaptations. Given a kinetic model with a metabolic objective

function and an enzyme cost function, optimal enzyme adaptations to external changes or single-

enzyme knock-downs can be predicted with the help of synergy coefficients [20]. Again, the predicted

enzyme adaptations reflect network structure and elasticities.

• Analysis of sampled target variables A model ensemble can be seen as a statistical model with

independent (“basic”) and dependent (“derived”) variables. The dependencies are described by a

schema like the one from Figure 2 (main text). Each binary property (e.g., the sign of a control

coefficient) has a certain probability in the ensemble. In practice, we can only estimate this probability

from a limited number of model instances. If n out of N sampled models show the property P , the

probability of P , called q, can be estimated as follows: assuming that q has a uniform prior, its posterior

mean and variance read µq = n+1
N+2 and σ2

q = (n+1)(N−n+1)
(N+2)2(N+3) . For each target variable (e.g., a control

coefficient), we obtain a number of sampled values. Their distribution can be characterised by mean

value, variance, probabilities of signs, and correlations with other model variables.

• Significant differences between model variants By choosing network structure, fluxes, thermo-

dynamic forces, and enzyme saturation step by step, we can implement a nested sampling procedure

that produces a hierarchy of model variants. In this hierarchy, each model variant is represented by a

model ensemble with a specific distribution of target variables. To make model variants comparable,

the variants should at least have the same metabolite and reaction lists, but they can differ in their

network structures and in the values assigned to any of the basic variables. Using statistical tests,

we can determine significant differences between the distributions of model targets, if necessary with

corrections for multiple testing (see Section S3.2 for details). By comparing the distributions of model

variables between subensembles, we can study how structural model features affect the target variables:

for example, whether certain regulation arrows can enhance the stability of steady states. More gen-

erally, we can systematically study the effects of network structure, regulation, thermodynamic forces,

enzyme saturation, and different rate laws on our model outputs.

• Choosing the distributions of target variables To see how specific values or ranges of target

variables can be obtained, we can build a model ensemble and then filter it for models that show

these values or ranges. Again, we obtain a subensemble of models with different distributions and

correlations of the model variables. Even basic variables that were chosen independently can become

dependent by the subselection. Alternatively, we can set the distribution of our target variables during

model construction by applying a Bayesian posterior sampling. In this approach, the basic variables are

not sampled freely but by a Metropolis Monte Carlo procedure: as prior distributions, we can use the

same probability distributions as employed normally in STM; for the likelihood function, we compare

the resulting target variables to the prescribed distribution, for example, a distribution defined by

experimental data.

S3.4 Example Model: Glycolysis in Human Hepatocytes

In the original publication [21], thermodynamically feasible fluxes were determined by flux minimisation with

various different flux objectives. I first focused on aerobic rephosphorylation of ATP on glucose. Optimising
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Figure S3: A kinetic model reconstructed by STM. The threonine synthesis pathway in E. coli converts as-
partate into threonine. A kinetic model from [22] was used to simulate the metabolic dynamics after a sudden
increase of the external aspartate level (dashed blue lines): the internal metabolite concentrations increase
with different time delays. Aspartate and threonine are treated as external metabolites with predefined
concentrations. Based on the network structure, steady state fluxes, and concentrations as in the original
model, a model was reconstructed by STM. The reconstructed model shows the qualitative behaviour (solid
red lines). Abbreviations: asp (aspartate); aspp (aspartyl phosphate); asa (aspartate beta-semialdehyde));
hs (homoserine); hsp (O-phospho-homoserine); and thr (threonine).

this objective leads to a sparse flux distribution that uses only a small part of the network, containing

glycolysis and TCA cycle. With this flux distribution, I first determined a standard model in which all

saturation values were set to values of 1
2 , assuming half-saturated enzymes. In the resulting state, the steady

ATP rate (our model output) is strongly controlled by glucose import; all control coefficients are positive,

i.e., a small increase of any enzyme will always increase the metabolic target (ATP level). Although the flux

distribution was chosen to support ATP rephosphorylation, this is not a trivial finding: first, flux analysis

can capture the ATP rephosphorylation rate, but not the ATP level as a target function; second, flux analysis

describes which fluxes—and in which proportions—are optimal to realise a certain metabolic objective, but

it does not capture the marginal effects of enzyme levels, i.e., how the objective would change following

small enzyme changes. By sampling the saturation values, we obtain a model ensemble, and the statistical

distribution and correlations of these control coefficients can be studied.

S4 Metabolic Synergies and Fluctuations

S4.1 Synergies Between Static Perturbations

Synergy effects between enzymes can be important in medical applications, e.g., to model drug interactions

or patient-specific side effects, to plan combination therapies, and to prevent bacterial resistance [23]. Epis-
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(a) Flux analysis (b) Metabolic control theory
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Figure S4: Enzyme synergies in a schematic metabolic pathway. This figure is an extended version of Figure
5 (main text). Enzyme synergies in a linear pathway with alternative routes between the intermediates S1
and S3. (a) Synergies for double inhibitions, predicted by constraint-based methods. Synergies are shown
by arc colours (red: aggravating, blue: buffering). Different panels show synergies computed by different
methods (FBA and MoMA) and inhibition strengths (flux decrease by applying scaling factors of 0.1 or 0.9).
In the calculation, the “double inhibition” of a single enzyme is realised by applying the relative inhibition
twice, i.e., leading to inhibition strengths of 0.01 and 0.81, respectively. Colour scales differ between panels,
spanning the range of synergy values in each case. Small values (below one percent of the maximal absolute
value) are not shown. (b) Synergies computed by Metabolic Control Theory. The panels show results for
different rate laws (CM: common saturable rate law; SM: simultaneous-binding modular rate law). Results
based on half-saturated enzymes (top) are compared to mean results from a model ensemble with random
saturation values (bottom). The two results are almost identical.

tasis, an important concept in genetics, denotes the synergistic effects of gene knock-outs on cell viability.

Epistasis can shape genetic variability in populations and the evolvability of genetic features. Moreover,

as shown by FBA simulations and experimentally, epistatic interactions can indicate functional associa-

tions between proteins, for example the cooperation or alternative usage of enzymes in metabolic pathways

[24]. Importantly, while synergies are described here for enzyme perturbations, they can also be computed

and used for any other parameter perturbations, including synergistic effects between concentrations in the

growth medium.

Epistasis Epistasis describes synergy effects of gene deletions on Darwinian fitness. In buffering epistasis

(that is, the effect of a double deletion is less severe than expected), the loss of a first gene decreases the

selection pressure on the second one: in evolution, such genes will tend to co-occur in genomes, a phenomenon

called phylogenetic correlation [25]. In the opposite case, called aggravating epistasis, the double-deletion

phenotype is more severe than expected: here the loss of one gene increases the selection pressure on the

other one, leading to phylogenetic anti-correlation. In [24], epistatic synergies in the yeast S. cerevisiae were

computed by FBA. The maximal biomass production rate was used as a quantitative output function and

enzyme deletions were simulated by setting the corresponding reaction rates to zero. The predicted epistasis

pattern showed a modular structure [24].
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Epistasis measure by Segrè et al. Segrè et al. introduced a synergy score for double enzyme deletions

[24], in which a special weighting makes buffering synergies better detectable. Let vwt denote a target

variable observed in the wildtype network (e.g., maximal biomass production rate computed by FBA), and

let va, vb, and vab denote the values in mutant networks in which enzyme a, enzyme b, or both, have been

deleted. After a scaling by the wild-type value, the target values read wwt = 1, wa = va/vwt, wb = vb/vwt,

and wab = vab/vwt. Since deletions can decrease, but cannot increase the target in FBA, the values must

satisfy wa ≤ 1, wb ≤ 1, and wab ≤ min(wa, wb). The effect wab of a double deletion is compared to the

effects wa and wb of single deletions, yielding an epistasis score. To obtain a clear distinction between neutral

(wab = wa wb), aggravating (wab < wa wb), and buffering (wab > wa wb) gene pairs, Segrè et al. introduced

a heuristic epistasis measure with the following definition:

εSegre
ab =


neutral : 0

aggravating : wab

wa wb
− 1

buffering :
wab

wa wb
−1

1
wb
−1

. (S30)

In the formula for buffering epistasis, we assume wa ≤ wb without loss of generality. In summary, neutral

and aggravating synergies are defined “normally”, but buffering synergies are given special weights: if one

of the single-deletion effects is mild, then wb is close to 1 and the buffering synergy is increased by this

definition. If both single deletions are already severe, then the buffering synergy obtains a lower weight.

Synergies predicted by FBA and MCT FBA, MoMA, and MCT all predict enzyme synergies, but

based on different assumptions and input data. For double inhibitions, all three methods predict, not

surprisingly, that cooperating enzymes (i.e., enzymes in one linear pathway) tend to show buffering synergies,

while alternative enzymes (e.g., enzymes in alternative pathways) show aggravating synergies. However, these

methods explain synergies in different ways. An example is shown in Figure 5 (main text). As expected,

a double inhibition that blocks both alternative routes has an aggravating effect, while enzymes within the

same linear pathway show buffering synergies. MCT explains this by reference to the control coefficients: in

the first case (across alternative pathways), inhibition of one branch increases the flux control of the other

branch, while in the second case (within one linear pathway), the first enzyme inhibition decreases the flux

control of all other enzymes (see Figure (S4)).

S4.2 Metabolic Fluctuations

Computing the fluctuations caused by chemical noise To model a metabolic pathway under dy-

namic external perturbations, we may model these perturbations as a random process. The perturbations

themselves, and the resulting metabolite fluctuations are described by spectral power density matrices. These

matrices resemble the static covariance matrices but are frequency-dependent. If the noise amplitudes are

small, we can use a linearised model and compute the spectral densities of concentration fluctuations from

the spectral response coefficients [26]

Sc(ω) = Rc(ω)Sp(ω) Rc†(ω). (S31)

Sc(ω) and Sp(ω) denote the spectral power densities of metabolites and of perturbation parameters at circular

frequency ω, the symbol † indicates the adjoint matrix, and the unscaled first-order spectral response matrices

Rc(ω) and Rv(ω) can be computed from the elasticities [27, 26]. There is a similar formula for fluctuations

of the reaction rates.
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Chemical noise An important example of random fluctuations is chemical noise. On a microscopic scale,

chemical reactions do not run continuously, as assumed in kinetic models, but as discrete random events,

converting individual molecules. The resulting random dynamics can be described by a Langevin equation,

i.e., a kinetic model with additive noise and separate forward and backward rates [28]. The fluctuations

spread in the network, leading to fluctuations of molecule numbers in the macroscopic steady state. In the

Langevin equation, the noise term scales with the square root of the mean reaction rate (in units of reaction

events per second). Therefore, the smaller the particle numbers, the bigger the relative noise. If the average

rates become very small, the approximation breaks down and a more detailed model with discrete reaction

events must be used. The fluctuations can be described by Equation (S31), setting Epl∗ =
√

vl∗
NAΩ (where

∗ marks once-way fluxes) and Sp(ω) = I, because the chemical fluctuations originate from white noise (see

[26]). In practice, the spectral power density of the original noise in reaction l is given by

Sp(ω) =
v+l + v−l
NA Ω

=
coth(hl θl) vl

NA Ω
≈ 1

NA Ω

vl
hl θl

, (S32)

where the approximation holds close to equilibrium (small thermodynamic force θl). Mediated by the

metabolic dynamics, these input fluctuations lead to fluctuations of metabolite concentrations and fluxes

(for an example, see Figure S6). Fast fluctuations are strongly damped: the noise spectrum of the metabolite

concentrations decreases at high frequencies, and the system acts as a low-pass filter. Since each reaction

rate is also directly affected by its own noise, fluxes also fluctuate at high frequencies. If a stable metabolic

state is close to a Hopf bifurcation, it will show a tendency towards oscillations. This becomes apparent

in the way the metabolic system transmits random fluctuations, and in its noise spectrum: noise will be

amplified around a resonance frequency close to the oscillation frequency after the Hopf bifurcation. All this

can be seen from the eigenvalue spectrum of the Jacobian matrix [26].

Limiting behaviour of spectral power densities at high or low frequencies For low or high frequen-

cies, the noise amplitudes can be understood through simple approximations. The spectral power density

matrix for metabolite fluctuations has the form Rc(ω) M Rc(ω)† with a diagonal matrix M. The noise

variances for individual metabolites, at specific frequencies, are given by diagonal values∑
p

||Rc
p(ω)||2mp. (S33)

The spectral response matrix itself is given by Rc
p(ω) = C (A− i ω I)−1 B, with matrices C and B and the

Jacobian matrix A. For large frequencies (ω much larger than any eigenvalue of the Jacobian), the term iω I

dominates and the entire expression (S33) becomes proportional to 1
ω2 . High-frequency noise is dominated by

direct effects of chemical noise on the adjacent reactant levels, i.e., by fast, non-stationary fluctuations around

the stationary fluxes. For low frequencies, in contrast, the spectral power density approaches the variability

expected for static variability, and the correlations reflect slow, stationary variations of the stationary fluxes.

Fluctuations on different timescales The amplitude of random fluctuations at specific frequencies are

described by the spectral power density. However, in reality, we are usually not interested in the noise level

at a precise frequency, but in noise affecting processes on a certain time scale, where much faster noise

averages out and much slower noise can be seen as quasi-static. To measure the relevant noise on a time

scale of interest, we consider a noisy curve from our model, e.g., the curve of a metabolite concentration,

compute a sliding average with a Gaussian kernel (of width τ , e.g., one second), and study how much this

average varies across the statistical ensemble at one point in time, or along time in one realisation of the

process. Alternatively, we can also consider a sliding average. By changing the width of the kernel, we obtain

the variance of our metabolite curve on different time scales. This measure of concentration fluctuations at

different time scales can be computed from the spectral power densities using a Fourier transformation (see
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Figure S5: Fluctuations caused by chemical noise. (a) Smoothing of stochastic time courses (e.g., of metabo-
lite concentrations or fluxes) with a Gaussian kernel function leads to “observed” stochastic time courses at
a given time resolution τ (reflecting the time resolution of measurements). The variability (red arrows on
the right) depends on the time resolution chosen. (b) Flux fluctuations (compare Figure 7 (main text).

Section S5.3).

S4.3 Role of Thermodynamics and Enzyme Saturation in Metabolic Control

and Fluctuations

Effect of varying thermodynamic forces Thermodynamic forces and saturation values have effects

on metabolic control and fluctuations. Figure S6 shows these effects for a simple model, a pathway of five

unimolecular reactions without regulation. In the standard model version, all thermodynamic forces are set

to RT and all saturation values are set to 1
2 . To assess the effects of parameter changes, the parameters

in the third reaction were systematically varied, setting the force to values of 0.1 RT, 1 RT, and 10 RT,

while keeping the metabolite concentrations close to their original values (see Section S3.1). Similarly, the

substrate and product saturation values were set to values of 0.1, 0.5, and 0.9. The figure shows static

control coefficients and spectral power densities of chemical noise (for metabolite concentrations and fluxes).

There are some clear patterns: if the third reaction is close to equilibrium (0.1 RT), it has little control over

concentrations and fluxes, and also little influence on the control exerted by other reactions. In contrast, if
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Figure S6: Thermodynamic forces in a linear chain and their effects on metabolic control. Variants of a
pathway model with different thermodynamic forces (0.1 RT, RT, 10 RT) and saturation values (0.1, 0.5,
0.9) in the central reaction. (a) The thermodynamic force of the central reaction was made smaller, equal to
or larger than in the other reactions by varying the chemical potentials (white: high; red: low). (b) Static
control coefficients (for concentrations and fluxes) obtained from different model variants.

the reaction is strongly driven, it exerts a larger control, while the control exerted by downstream enzymes

decreases. If the reaction is close to equilibrium, the substrate saturation does not play a role; as the reaction

is driven strongly, the substrate saturation increases the control exerted by the reaction. Thus, for a high

flux control, reactions must be strongly driven and enzymes must be saturated with substrate.

S5 Mathematical Derivations

S5.1 Probability Densities for Saturation Values and Dissociation Constants

The fraction of enzyme molecules (of one sort of enzyme) bound by a certain metabolite depends on the

metabolite concentration c and on the dissociation constant k (indices omitted for simplicity). It can be

described by saturation values α = 1
1+c/k = k

k+c or β = c
k+c = 1 − α. The saturation values are directly

related to c and k. If α is uniformly distributed in the interval ]0, 1[, the conditional probability densities

read

p(c) =
k

(k + c)2
for fixed k (S34)

p(k) =
c

(k + c)2
for fixed c. (S35)
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Similar formulae hold for the sampling of β. According to this formula, ln(c/kM) follows a logistic distribution

with location parameter 0 and scale parameter 1. Mean, median, and mode of ln(c/kM) are given by 0, and

the variance is given by π2/3

Proof: The probability density of α is p(α) = 1. For fixed parameter k, we obtain ∂α/∂c = −k/(c + k)2

and thus

p(c) = C p(α)

∣∣∣∣∂α∂c
∣∣∣∣ = C

k

(k + c)2
. (S36)

The normalisation constant C has a value of 1 because

1/C =

∫ ∞
0

k

(c+ k)2
dc =

−k
k + c

∣∣∣∣∞
0

= 1. (S37)

For fixed concentration c, we compute ∂α/∂k = k/(c+ k)2 and obtain

p(k(α)) = C p(α)

∣∣∣∣∂α∂k
∣∣∣∣ = C

c

(k + c)2
, (S38)

again with normalisation constant C = 1 because

1/C =

∫ ∞
0

c

(k + c)2
dk =

k

c+ k

∣∣∣∣∞
0

= 1. (S39)

S5.2 Metabolic Control and Response Coefficients

Metabolic control and response coefficients (first order) Control and response coefficients describe

the effects of small parameter changes on state variables (metabolite concentrations ci and reaction rates

vl) in a first- or second-order approximation [2, 8]. The unscaled response and control coefficients can be

computed from the unscaled elasticities and the stoichiometric matrix [26]. In systems without conservation

relations, the first-order unscaled control matrices read

Cc = −(NEc)−1N (S40)

Cv = I + Ec Cc. (S41)

In models with linear conservation relations, the Jacobian NEc is rank-deficient and not invertible, but we

can still compute the control coefficients [7]: we select a set of independent internal metabolites (such that

the reduced matrix NR has full row rank, and the same rank as N). Then, the stoichiometric matrix can

be split into a matrix product N = L NR, and Equation (S40) is replaced by

Cc = −L(NREcL)−1NR. (S42)

The response matrices with respect to system parameters pm read

Rc
p =

∂s

∂p
= Cc Ep, Rv

p =
∂j

∂p
= Cv Ep. (S43)

Scaled control and response matrices, e.g., R̂cip = ∂ ln ci/∂ ln p, are defined similar to the scaled elasticities.

Since the enzyme concentrations appear as prefactors in the rate laws, it turns out that scaled response

coefficients and scaled control coefficients are identical. With other perturbation parameters (e.g., external

metabolite concentrations), this will not be the case.
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Metabolic synergy coefficients (second-order response coefficients) For general perturbation pa-

rameters up and uq (i.e., enzyme levels or other parameters), we can write the unscaled synergy tensors [10]

as

Rciupuq
=

∑
k

Ccivl Γvlupuq
, Rvjupuq

=
∑
k

Cvjvl Γvlupuq
, (S44)

with a tensor Γ defined as

Γvlupuq
=

∑
ij

EvlcicjR
ci
up
Rcjuq

+
∑
j

Evlcjup
Rcjuq

+
∑
i

Evlciuq
Rciup

+ Evlupuq
. (S45)

Enzyme levels are parameters with specific properties: there is only one enzyme per reaction, and enzyme

levels appear as prefactors in the rate law. Thus, for two enzyme levels ep and eq, we obtain the unscaled

response coefficients (see Equation (S66))

Ryelej = Cyvk

[
Evkcqcr C

cq
vl
Ccrvj vl vj + δkj E

vk
cq C

cq
vl
vl + δklE

vk
cr C

cr
vj vj

] 1

el ej
. (S46)

The scaled synergy coefficients between a steady-state variable y and enzyme levels el and ej read (see

Equation (S67))

R̂yelej =
∑
kqr

(ĈyvkÊ
vk
cqcr Ĉ

cq
vl
Ĉcrvj ) +

∑
q

(Ĉyvj Ê
vj
cq Ĉ

cq
vl

)

+
∑
r

(Ĉyvl Ê
vl
cr Ĉ

cr
vj )− (ĈyvlĈ

y
vj ) + (δlj Ĉ

y
vl

). (S47)

The synergy coefficients describe second-order effects of an enzyme (indices l = j) or synergies of enzyme

pairs (indices l 6= j). For enzyme pairs, the Kronecker δlj vanishes and we can set Êvlci Ĉ
ci
vj = Ĉvlvj (see

Equation (S40)). By rewriting the second-order elasticities Êvkcqcr as in Equation (S24) and rearranging

Equation (S47), we obtain

Ryelej = Ĉyvl Ĉ
vl
vj + Ĉyvj Ĉ

vj
vl
− ĈyvlĈ

y
vj +

∑
kqr

Ĉyvkϑ
k
qr Ĉ

vk
vl
Ĉvkvj . (S48)

For mass–action rate laws close to equilibrium and without regulation, the term ϑkqr is approximately –1.

S5.3 Spectral Power Density and Temporal Variability Due to Chemical Noise

To describe metabolic fluctuations caused by chemical noise, we use the chemical Langevin equation

dx

dt
= N [a+ − a−] + N

[
Dg
(√

a+
)
ξ+ −Dg

(√
a−
)
ξ−
]

(S49)

for particle numbers xi. The reaction propensities a±l denote the probabilities per time (in s−1) for events of

reaction l in forward (+) or backward (-) direction, and ξ+ and ξ− are vectors of standard Gaussian white

noise5 (in units of s−1/2). In a cell volume Ω, molecule numbers and propensities are related to concentrations

and reaction rates as

xi = NA Ω ci, a±l = NA v
±
l , (S50)

5White noise appears in the formula as the derivative of a Wiener process. It has the covariance function covξ(τ) =

〈ξ(t) ξ(t + τ)〉t = δ(τ) (in s−1) and a spectral power density Sξ(ω) = 1
2π

(unitless). Note the prefactor convention used for

Fourier transforms: x(t) =
∫∞
−∞ x̃(ω) ei ω tdω and x(ω) = 1

2π

∫∞
−∞ x(t) e−i ω tdt.
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with Avogadro’s constant NA ≈ 6 · 1023 mol−1. Using these variables, we can rewrite the chemical Langevin

equation as

dc

dt
= N

1

Ω
v + N

1

Ω
[Dg

(√
v+

NA

)
ξ+ −Dg

(√
v−
NA

)
ξ−]. (S51)

For deviations ∆ci from a stationary state, and setting ξ =
(ξ+

ξ−

)
, we can approximate it by

d∆c

dt
= N Ev

c ∆c + N Ev
ξ ξ, (S52)

with the unscaled elasticity matrices

Ev
c =

1

Ω

∂v

∂c
, Ev

ξ =
1

Ω
√
NA

(
Dg (
√

v+) , −Dg
(√

v−
))

(S53)

in units of s−1 and mM s−1/2, respectively. Equation (S52) has the form of a standard linear model with

perturbation parameters in a vector ξ. For this model, we can compute the frequency-response matrices (see

[26])

Rc
ξ(ω) = −L (NR Ev

cL− i ωI)−1 NR Ev
ξ

Rv
ξ (ω) = Ω

[
Ev
ξ + Ev

c Rc
ξ(ω)

]
(S54)

in units of mM s1/2 and mol s−1/2, respectively. The concentration fluctuations have the spectral power

density matrices

Sc(ω) = Rc
ξ(ω)Sc(ω) Rc

ξ(ω)† =
1

2π
Rc
ξ(ω) Rc

ξ(ω)† (S55)

(in mM2 s). An analogous formula holds for flux fluctuations (in mol2 s−1). To study fluctuations on a

specific time scale σ (in units of seconds), we consider the fluctuating concentration curve and smoothen it

by convolving it with a (normalised) Gaussian function of width σ. The resulting function has the spectral

power density

S(σ)
c (ω) = (e−

1
2ω

2 σ2

)2 Sc(ω). (S56)

The function in parenthesis is the Fourier transform of our Gaussian function. The covariance function of

the smoothed curve is given by the reverse Fourier transform of the spectral power density

cov(σ)
c (τ) =

∫ ∞
−∞
S(σ)
c (ω) ei ω τ dω. (S57)

The variance (the covariance function for time shift τ = 0) is therefore given by

cov(σ)
c =

∫ ∞
−∞
S(σ)
c (ω) dω =

1

2π

∫ ∞
−∞

e−ω
2 σ2

Rc
ξ(ω) Rc

ξ(ω)† dω (S58)

An analogous formula holds for the covariance of flux fluctuations.
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S5.4 Synergy Effects

Here we derive Equation (S27) for synergy effects. The effect of a double enzyme perturbation on a target

variable y can be seen as the sum of three terms: the single-inhibition effects plus a synergy effect ηab:

∆yab = ∆ya + ∆yb + ηab. (S59)

The synergy effect ηab, defined as the difference ηab = ∆yab−∆ya−∆yb, can be approximately determined

from the metabolic response coefficients. Given a vector ∆e of enzyme changes, a second-order Taylor

expansion yields

y(e + ∆e) ≈ y(e) + Ry
e∆e +

1

2
∆e>Ry

uu∆e. (S60)

Therefore, if two enzyme concentrations ea and eb are decreased by ∆ea and ∆eb, the target changes by

∆yab ≈ −Ryea∆ea −Ryeb∆eb +
1

2
Ryeaea∆e2

a +Ryeaeb∆ea∆eb +
1

2
Ryebeb∆e2

b . (S61)

The single perturbations yield

∆ya ≈ −Ryea∆ea +
1

2
Ryeaea∆e2

a

∆yb ≈ −Ryeb∆eb +
1

2
Ryebeb∆e2

b . (S62)

With the second-order approximation Equations (S60) and (S61), the synergy effect is given by the unscaled

synergy coefficient Ryeaeb multiplied by the perturbations:

ηab ≈ ∆yab −∆ya −∆yb ≈ Ryeaeb∆ea∆eb. (S63)

If all quantities (enzyme levels and target variable) are measured on the logarithmic scale, it is natural to

consider the splitting

∆ log yab = ∆ log ya + ∆ log yb + ηab. (S64)

This splitting corresponds to a “null hypothesis” of multiplicative effects and contains the scaled synergy

ηab. In the corresponding formulae, the scaled response coefficients are used.

S5.5 Response and Synergy Coefficients

Synergy cofficients for stationary concentrations and fluxes Here, we derive Equation (S47) for

scaled synergy coefficients. The unscaled synergy cofficients between general parameters ul and uj and state

variables y read (as in Equation (S44) and using Einstein’s sum convention):

Ryuluj
= CyvkΓvkuluj

= Cyvk

[
Evkcqcr R

cq
ul
Rcruj

+ Evkcquj
Rcqul

+ Evkulcr
Rcruj

+ Evkuluj

]
. (S65)

28



If the perturbation parameters are enzyme levels el and ej , we can write the elasticities as Evkcqej = δkj
1
ej
Evkcq ,

Evkcrel = δkl
1
el
Evkcr , Evkelej = 0, and set Rciel = Ccivl

vl
el

. By inserting this into Equation (S65), we obtain

Ryelej = Cyvk

[
Evkcqcr R

cq
el
Rcrej + δkj

1

ej
Evkcq R

cq
el

+ δkl
1

el
Evkcr R

cr
ej

]
= Cyvk

[
Evkcqcr C

cq
vl
Ccrvj vl vj + δkj E

vk
cq C

cq
vl
vl + δklE

vk
cr C

cr
vj vj

] 1

el ej
, (S66)

which is equivalent to the formula given in [10]. The scaled synergy coefficients read, analogous to Equa-

tion (S12),

R̂yelej =
el ej
y
Ryelej −

el ej
y2

RyelR
y
ej + δlj

el
y
Ryel

=
1

y
Cyvk

[
Evkcqcr C

cq
vl
Ccrvj vl vj + δkjE

vk
cq C

cq
vl
vl + δklE

vk
cr C

cr
vj vj

]
− 1

y2
CyvlC

y
vjvl vj + δlj

1

y
Cyvlvl (S67)

They can be written—again with sum symbols—as

R̂yelej =
∑
krq

(ĈyvkÊ
vk
cqcr Ĉ

cq
vl
Ĉcrvj ) +

∑
q

(Ĉyvj Ê
vj
cq Ĉ

cq
vl

) +
∑
r

(Ĉyvl Ê
vl
cr Ĉ

cr
vj )− (ĈyvlĈ

y
vj ) + (δlj Ĉ

y
vl

). (S68)

Response coefficients for general state variables The previous formulae hold for targets y that are

stationary concentrations ci or fluxes vl. How can we generalise them to other target variables z(c,v), which

are functions of these state variables yp? Let the unscaled derivatives be called zyp and zypyq . We shall first

compute the unscaled, and then the scaled response coefficients of z. The unscaled response coefficients read

(with sum convention)

Rzel =
∂z

∂el
=

∂z

∂yp

∂yp
∂el

= zyp R
yp
el
. (S69)

We next introduce the scaled derivatives ẑyp = ∂ ln y
∂ ln |yp| and ẑypyq = ∂2 ln y

∂ ln |yp|∂ ln |yq| . With their help, we write

the unscaled derivatives as

zyp =
z

yp
ẑyp

zypyq =
z

yp yq

[
ẑypyq + ẑyp ẑyq − δpq ẑyp

]
. (S70)

The unscaled synergy coefficients for our target z read

Rzelej =
∂2z

∂e
l
∂ej

=
∂

∂ej
Rzel =

∂

∂ej

[
∂z

∂yp
Rypel

]
=

[
∂

∂ej

∂z

∂yp

]
Rypel + zyp R

yp
elej

=

[
∂2z

∂ypyq

∂yq
∂ej

]
Rypel + zyp R

yp
elej

=
[
zypyq R

yp
ej

]
Rypel + zyp R

yp
elej

= zypyq R
yp
el
Ryqej + zyp R

yp
elej

. (S71)

Let us now consider the scaled response coefficients. The first-order scaled response coefficients read

R̂zel =
el
z
Rzel =

el
z
zyp R

yp
el

= ẑyp R̂
yp
el
. (S72)
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The scaled synergy coefficients read (compare Equation (S69))

R̂zelej =
el ej
z
Rzelej −

el ej
z2

RzelR
z
ej + δlj

el
z
Rzel

=
el ej
z

[
zypyq R

yp
el
Ryqej + zyp R

yp
elej

]
−RzelR

z
ej + δljR

z
el

=
[
ẑypyq + ẑyp ẑyq − δpq ẑyp

]
Rypel R

yq
ej + ẑyp R

yp
elej
− ẑyp Rypel ẑyq R

yq
ej + δlj ẑyp R

yp
el

= ẑypyq R
yp
el
Ryqej + ẑyp R

yp
elej
− δpq ẑyp Rypel R

yq
ej + δlj ẑyp R

yp
el
. (S73)

For functions z(c,v) that are multiplicative in fluxes and concentrations (i.e., that are linear if all quantities

are given at the logarithmic scale), the first term vanishes.
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[4] R. Wegscheider. Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und

Reactionskinetik homogener Systeme. Z. Phys. Chem., 39:257–303, 1902.

[5] S. Schuster and R. Schuster. A generalization of Wegscheider’s condition. Implications for properties of

steady states and for quasi-steady-state approximation. J. Math. Chem., 3:25–42, 1989.

[6] W. Liebermeister and E. Klipp. Biochemical networks with uncertain parameters. IEE Proc. Sys. Biol.,

152(3):97–107, 2005.

[7] C. Reder. Metabolic control theory: a structural approach. J. Theor. Biol., 135:175–201, 1988.

[8] J.-H.S. Hofmeyr. Metabolic control analysis in a nutshell. In ICSB 2001 Online Proceedings,

http://www.icsb2001.org/toc.html, 2001.

[9] R. Steuer, T. Gross, J. Selbig, and B. Blasius. Structural kinetic modeling of metabolic networks.

PNAS, 103(32):11868–11873, 2006.
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