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Abstract: Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory
syndrome coronavirus infection (PASC, or “long-COVID”). Exercise intolerance in PASC is associated
with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded
exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It
remains unclear whether the profound disturbances in metabolism that have been identified in plasma
from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To
bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require
hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into
those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from
the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared
against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic
and clinical data were retrospectively abstracted from the medical record. Compared to plasma of
healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly
higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by
markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate),
polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19
exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and
higher levels of spermine and taurine. Of note, depletion of tryptophan—a hallmark of disease severity
in COVID-19—is not normalized in PASC patients, despite normalization of kynurenine levels—a
tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC
plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-
dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously
reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention
focused on restoring mitochondrial fat-burning capacity.

Keywords: keyword post-acute sequelae of COVID-19; long COVID; exercise intolerance; metabolomics;
plasma
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1. Introduction

Sometimes known as “post-COVID-19 syndrome” or “long COVID”, the syndrome of
post-acute sequelae of SARS-CoV-2 infection (PASC) is a clinical condition characterized by
lingering symptoms such as exercise intolerance for four weeks or more following acute
COVID-19. PASC is associated with increased morbidity and a high societal cost, and
the lack of available therapies [1] urge for a better understanding of its pathogenesis. We
recently reported that, compared with historical pre-COVID era controls, individuals in a
small cohort of PASC evaluated for exercise intolerance showed higher levels of arterial
lactate and slower rates of fatty acid (FA) oxidation (FAtOx) during graded exercise testing,
consistent with mitochondrial dysfunction [2,3]. Our findings, since corroborated since by
others [4], provide the impetus for further insight into mitochondrial function and fatty
acid metabolism in PASC.

To meet the demands of increasing load and duration of exercise requiring an acceler-
ated capacity for adenosine triphosphate (ATP) production, mitochondria rely on metabolic
flexibility to utilize various substrates. For physical efforts of extended duration (>1 min),
ATP is preferentially generated via oxidative phosphorylation in the Tricarboxylic Acid
Cycle (TCA). The substrates utilized in TCA to generate reducing equivalents that fuel the
electron transport chain are FA (β-oxidation, FAtOx) and carbohydrates (CHOx). To enter
the mitochondria, FA (acyl-CoAs) must be first conjugated by carnitine palmitoyl trans-
ferase (CPT) I to acylcarnitine, followed by the intra-mitochondrial exchange of carnitine
for CoA by CPT II [5]. Lactate taken up from the cytosol is then oxidized in mitochondria
by lactate dehydrogenase to pyruvate, which is transported across the inner mitochondrial
membrane into the matrix, where pyruvate dehydrogenase generates acetyl-CoA for TCA
metabolism and energy production [6]. The evidence of lower FAtOx in PASC may explain
the inefficiency of mitochondria to sustain endurance exercise, whereas the premature
lactate accumulation suggests either a metabolic shift in increased glycolysis or the inability
to utilize lactate in the mitochondria as an alternative source of energy during exercise. A
broader examination of metabolites in plasma may help to clarify metabolic derangements
in PASC.

By measuring lactate and other small-molecule metabolites < 1.5 kDa, metabolomics
offers a functional ‘post-genomic’ characterization of biochemical and signaling pathways
influenced by COVID-19 [7–12], and provides noninvasive measurements of mitochondria-
related metabolites in plasma and tissues. Indeed, the pathobiology of COVID-19 elicits
substantial acute changes to the metabolome [7–11] that may be caused by the virus-
driven mobilization of macromolecular building blocks such as nucleic acids, amino acids,
and FA necessary for its replication [7–14], or by host responses to viral infection. If the
latter involves mitochondrial dysfunction, the resultant incomplete FAtOx manifests as an
accumulation of medium-chain acylcarnitines in plasma [15], a signature found in those
with more severe acute illness or of increased age [12]. Interestingly, individuals recovering
from moderate- and critical illness also exhibit higher plasma medium-chain acylcarnitines
and lower levels of circulating TCA cycle intermediates such as succinate [16,17], suggesting
lingering impaired mitochondrial capacity. While studies have documented prolonged
alterations to the metabolome in patients who fully recovered from COVID-19 [17,18], the
metabolomic signature of PASC, especially in the absence of severe acute COVID-19, has
not been reported. To bridge this gap, we set out to measure metabolites in venous plasma
of PASC individuals, compared with individuals who recovered from COVID-19 without
PASC and healthy individuals.

2. Materials and Methods
2.1. Study Design and Human Individuals

We conducted a single-center retrospective cohort analysis, approved by the In-
stitutional Review Board at National Jewish Health (NJH), with consent requirement
waived. We identified three groups of individuals, and their informed consent-compliant
de-identified blood samples were obtained from the NJH Biobank. De-identified demo-
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graphic data and COVID-19 status associated with the blood samples were obtained from
the bioinformatics team via NJH dataSCOUTTM. The three groups of participants included
in this study (Table 1) were defined as individuals with: PASC (n = 29); a history of testing-
confirmed acute COVID-19 without PASC (n = 16); and those who lacked any history
of positive testing for COVID-19 (n = 30). All three groups were seen in an ambulatory
clinic/capacity. Patients with COVID-19 without PASC will herein be referred to simply
as post-COVID. All participants enrolled were of at least 18 years of age and had blood
samples in the Biobank. PASC individuals were patients evaluated at the NJH Center
for Post-COVID Care between 16 March 2020, and 22 March 2020. They were enrolled
only if blood was collected > 28 days after testing positive by SARS-CoV-2 PCR and were
experiencing fatigue or exercise intolerance, consistent with PASC. Exclusion criteria were:
(a) abnormal CT chest findings due to COVID-19, (b) baseline cardiomyopathy defined as
ejection fraction (EF) < 50%, (c) chronic severe pulmonary disease and/or impaired baseline
oxygen saturation (SpO2) and/or chronic hypoxia requiring supplemental O2, (d) chronic
myopathy for any reason, (e) post-ICU admission within 12 months, and (f) acute COVID-
19 infection requiring hospitalization. De-identified blood samples were transferred to
the University of Colorado School of Medicine Metabolomics Core for processing and
metabolomic analysis, under a mutually approved Material Transfer Agreement. Further
clinical data, such as retrospective baseline laboratory values, radiography, echocardiogra-
phy, and pulmonary function testing, were obtained in a de-identified manner via the NJH
Bioinformatics team.

Table 1. Individual characteristics by COVID-19 status (from 16 March 2020 to 22 March 2020).

Characteristic
COVID (+) COVID (+) COVID (-)
PASC Post-COVID Controls
(n = 29) (n = 16) (n = 30)

Age (years), mean ± SD 42 ± 13 60 ± 14 48 ± 11

Male/Female, n 12/17 8/8 19/11

BMI (kg/m2), mean ± SD 27.5 ± 7 25.9 ± 3.9 N/A

Race, n (% total)
White 22 (76%) 12 (75%) 24 (80%)
Black or African American 0 0 0
American Indian/Alaska Native 0 0 0
Native Hawaiian/Pacific Islander 0 0 0
Asian 2 (7%) 0 1 (3%)
Unknown or declined or multiple 5 (17%) 4 (25%) 5 (17%)

Ethnicity, n (% total)
Hispanic or Latino 1 (3%) 4 (25%) 2 (7%)
Non-Hispanic 26 (90%) 12 (75%) 24 (80%)
Unknown or declined 2 (7%) 0 4 (13%)

Smoking status, n (% total) 29 (100%) 11 (69%)
N/AEver smoker 8 (28%) 3 (27%)

Never smoker 21 (72%) 8 (73%)

COPD, n (% total) 0 0 N/A

Asthma, n (% total) 8 (28%) 7 (44%) N/A

Chronic heart disease
(includes arrhythmias) 4 (14%) 2 (12%) N/A

Diabetes, n (% total) 4 (14%) 3 (19%) N/A

Hyperlipidemia, n (% total) 1 (3%) 2 (12%) N/A
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Table 1. Cont.

Characteristic
COVID (+) COVID (+) COVID (-)
PASC Post-COVID Controls
(n = 29) (n = 16) (n = 30)

Medications, n (% total)

N/A
Corticosteroids/immunosuppressants 1 (3%) 5 (31%)
Inhaled corticosteroids 6 (21%) 7 (44%)
Insulin 3 (10%) 0
Anti-hyperlipidemic agents 3 (10%) 2 (12%)

Pulmonary function test, n (% total) 17 (59%) 8 (50%)
N/AFEV1 pre-bronchodilator, % predicted 103% 92%

FEV1/FVC pre-bronchodilator 0.81 0.77

Laboratory tests, n PASC, n Post-COVID

N/A

CRP (mg/dL), n = 23, n = 3 0.38 ± 0.58 0.08 ± 0.07
Hb (g/dL), n = 26, n = 7 14.9 ± 1.4 15 ± 1.4
ALT (U/L), n = 23, n = 6 25 ± 14 22.5 ± 11.5
Albumin (g/dL), n = 23, n = 6 4.5 ± 0.39 4.6 ± 0.3
Alkaline phosphatase (U/L), n = 23 65 ± 18 62.7 ± 14
AST (U/L), n = 25 20 ± 8 18.8 ± 2.6
Bilirubin (mg/dL), n = 25 0.99 ± 1.24 0.77 ± 0.2
Creatinine (mg/dL), n = 25 0.9 ± 0.16 0.95 ± 0.12
SPO2 awake at rest (%), n = 8, n = 2 97 ± 1.9 96.5 ± 0.7

LVEF% biplane, n = 8, n = 5 60 ± 4 62.7 ± 5.3 N/A

2.2. Sample Processing and Metabolite Extraction

Plasma samples were extracted as described [19], by adding 240 µL of ice-cold
methanol/acetonitrile/water 5:3:2 to 10 µL of plasma. Samples were then vortexed at
4 ◦C for 30 min and centrifuged at 14,000 × g for 10 min at 4 ◦C. Supernatants were
transferred to a new tube for metabolomics analysis.

2.3. Ultra-High-Pressure Liquid Chromatography (UHPLC)-Mass Spectrometry (MS)
Metabolomics and Lipidomics

Analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive
mass spectrometer (Thermo Fisher, Bremen, Germany). Samples were analyzed using a
5 min gradient, as described [20,21]. Solvents were supplemented with 0.1% formic acid for
positive mode runs and 1 mM ammonium acetate for negative mode runs. MS acquisition,
data analysis, and elaboration were performed as described [20,21].

2.4. Metabolomics

UHPLC-MS metabolomics analyses were performed as described in method 19–21
and application papers,8,22 using a Vanquish UHPLC system coupled online with a high-
resolution Q Exactive MS (Thermo Fisher, Bremen, Germany). Samples were resolved over
a Kinetex C18 column (2.1 × 100 mm, 1.7 µm; Phenomenex, Torrance, CA, USA) at 45 ◦C.
A volume of 10 µL of sample extracts was injected into the UHPLC-MS. Each sample was
injected and run four times with two different chromatographic and MS conditions, as
follows: (1) using a 5-min gradient at 450 µL/min from 5–95% B (A: water/0.1% formic
acid; B: acetonitrile/0.1% formic acid), and the MS was operated in positive mode and
(2) using a 5-min gradient at 450 µL/min from 5–95% B (A: 5% acetonitrile, 95%water/1 mM
ammonium acetate; B: 95%acetonitrile/5% water, 1 mM ammonium acetate) and the MS
was operated in negative ion mode. The UHPLC system was coupled online with a Q
Exactive (Thermo, San Jose, CA, USA) scanning in Full MS mode at 70,000 resolution in
the 60–900 m/z range, 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas, operated in
negative or positive ion mode (separate runs).
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2.5. Quality Control and Data Processing

Calibration was performed prior to analysis using the PierceTM Positive and Negative
Ion Calibration Solutions (Thermo Fisher Scientific). Acquired data were then converted
from raw to mzXML file format using Mass Matrix (Cleveland, OH, USA). Samples were
analyzed in randomized order with a technical mixture (generated by mixing 5 µL of all
samples tested in this study) injected every 10 runs to qualify instrument performance. This
technical mixture was also injected three times per polarity mode and analyzed with the
parameters above, except collision-induced dissociation (CID) fragmentation was included
for unknown compound identification (10 ppm error for both positive and negative ion
mode searches for intact mass, 50 ppm error tolerance for fragments in MS2 analyses).

2.6. Metabolite Assignment and Relative Quantitation

Metabolite assignments were performed using MAVEN (Princeton, NJ, USA) [22],
against an in house library of 3000 unlabeled (MSMLS, IROATech, Bolton, MA, USA;
IroaTech; product A2574 by ApexBio; standard compounds for central carbon and nitrogen
pathways from SIGMA Aldrich, St Louis, MO, USA).

2.7. Statistics

Demographic and clinical characteristics were compared between the three study
groups. Metabolomic data were normalized in MetaboAnalyst 5.0 [23], via Autoscale
normalization (i.e., mean-centered and divided by the standard deviation of each variable).
Global differences in mean metabolic values between the three study groups were assessed
using one-way ANOVA. Pairwise differences in metabolic values between PASC, post-
COVID, and healthy control groups were carried out using two-sample t-tests assuming
equal variance. Benjamini–Hochberg (BH) adjustments to p-values were implemented to
control for a false discovery rate (FDR) ≤0.05. Metabolic profiles were assessed using partial-
least squares discriminant analysis (PLS-DA) and important metabolites were identified
by a variable importance in projection (VIP) score >1.5. Additionally, heat maps of the top
25 significant metabolites (via ANOVA) were created. Volcano plots of log-transformed
p-values and log-transformed fold-change for all pairwise comparisons of metabolite values
were created. Differences in reported PASC symptoms between PASC and post-COVID
groups were assessed using Chi-squared or Fisher’s exact tests. Statistical significance was
considered at the α = 0.05 significance level. Analyses were carried out in GraphPad Prism
software and R software version 4.1.2.

3. Results
3.1. Characteristics of the Participants

From the initial 76 individual samples obtained for this study, one sample (from the
PASC group) was excluded from analysis due to outlier data indicating technical errors in
collection, storage or processing. Of the 75 participants included in the analysis (Table 1),
59% identified as female, 83% as non-Hispanic, and 77% as White. Individuals in the PASC
group were younger (42 years vs. 60 years in post-COVID, p < 0.05). Median body mass
indices (BMI) were > 25 kg/m2 and did not differ between PASC and post-COVID individu-
als. Fewer than half of individuals had history of pulmonary diagnoses, with asthma being
the most common (28% of PASC and 44% of post-COVID), and most were never-smokers.
Consistent with the exclusion criteria, all included participants lacked any radiographic
changes of acute lung disease. Diagnostic testing and medication data were inconsistently
available in the three studied groups, particularly amongst healthy controls. No significant
differences noted between PASC and post-COVID individuals in the available laboratory
values were deemed potentially relevant, such as hemoglobin, transaminases (AST, ALT),
creatinine, glucose, bilirubin, albumin, or alkaline phosphatase, consistent with previous re-
ports [23]. Spirometry data were within normal limits and similar between the two groups
(mean FEV1 %predicted of 103% and 92% in PASC and post-COVID, respectively, p = 0.12).
Of the few individuals with available echocardiography results (8 PASC and 5 post-COVID),



Metabolites 2022, 12, 1026 6 of 16

all showed normal findings (e.g., left ventricular EF > 60%). SpO2 values were normal in
both PASC and post-COVID groups. Interestingly, post-COVID individuals had a higher
use of inhaled and systemic corticosteroids or immunosuppressant medications compared
to PASC individuals (Table 1).

The most common symptoms reported in the PASC and post-COVID groups are listed
in Table 2. As anticipated, PASC individuals had higher frequency than post-COVID
individuals of dyspnea (15 vs. 3) and brain fog (9 vs. 0) (p = 0.031 by Chi-squared test and
p = 0.017 by Fisher’s exact test, respectively). Other common complaints amongst PASC
were fatigue, palpitations and chest discomfort.

Table 2. Symptoms Assessed Post-COVID.

PASC Associated Symptoms COVID (+)PASC
(n = 29)

COVID (+)No PASC
(n = 16)

Fatigue 10 (34%) 1 (6%)
Dyspnea 15 (52%) 3 (19%)
Exercise intolerance 1 (3%) 0
Cough 3 (10%) 4 (25%)
Fever 0 0
Myalgia 1 (3%) 0
Chest discomfort 5 (17%) 0
Headache 4 (14%) 0
Brain fog 9 (31%) 0
Diarrhea 0 0
Nasal congestion 0 0
Anosmia 1 (3%) 2 (13%)
Dysgeusia 0 0
Nausea 0 0
Abdominal pain 0 0
Vomiting 0 0
Blood clot 0 0
Palpitations 6 (21%) 1 (6%)

3.2. Plasma Metabolic Phenotypes in PASC Compared to Those Fully Recovered from COVID-19
(Post-COVID) and Healthy Controls

Metabolomics analyses were performed on plasma of individuals from PASC (n = 29),
COVID-19 fully recovered without PASC (n = 16), and healthy controls (n = 30) (Figure 1A).
Partial least square-discriminant analysis (PLS-DA) of the metabolomics data (Table S1)
showed that the three groups separated across principal component 1 (PC1), which ex-
plained 12.1% of the total variance (Figure 1B). Variable importance in projection (VIP)
analysis of the top 15 metabolites with the highest loading weight on PC1 (Figure 1C)
ranked lactate and pyruvate highest, followed by long-chain acyl-carnitines and free fatty
acids, and the carboxylic acids 2-hydroxyglutarate and malate. Pathway analysis of the
PASC plasma features that were statistically different from the other groups (by ANOVA)
revealed marked alterations in the fatty acid biosynthesis/activation/metabolism/beta
oxidation and the TCA cycle pathways (Figure 1D). Many of these compounds were also
identified in the top 25 metabolites that were most significantly changed (by ANOVA)
(Figure 1E).

3.3. Higher Levels of Fatty Acid Metabolites in PASC Plasma

Compared to the other two groups, PASC plasma exhibited significantly higher acyl-
carnitines and free fatty acids (Figure 3A,B, respectively). These included saturated (C8,
C10, C14, C16), monounsaturated (C14:1, C16:1), poly-unsaturated (16:2, 18:3), and hy-
droxylated (C12-OH, C14-OH, C16-OH, C18-OH, C14:1-OH, C16:1-OH) acylcarnitines
(Figure 3A); as well as saturated (C10, C12, C14, C16), monounsaturated (C14:1, C16:1,
C18:1), and poly- and highly unsaturated very-long-chain (C18:2, 18:3, 20:3, 20:4, 20:5 and
22:6) free fatty acids (Figure 3B). BH FDR adjustment for all metabolites are reported in
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Supplementary Table S1. The most significant changes among all three groups were noted
in acylcarnitine 10:0, 14:1, 16:2, and 14:0 and fatty acids 18:2, 1:3, 14:0, 20:3, and 18:1.
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Figure 1. Metabolomics profiles of PASC Plasma. (A) Plasma from healthy (n = 30), post-COVID
without PASC (n = 16), and PASC (n = 29) individuals was collected at rest and assessed by non-
targeted metabolomics using LC-MS. (B) Partial Least-Squares Discriminant Analysis (PLS-DA) of
metabolomics data. (C) Variable Importance in Projection (VIP) scores of the top 15 metabolites
contributing to PLS-DA clustering pattern. (D) Enriched metabolic pathways of annotated untargeted
negative polarity LC-MS features. The size of each circle corresponds to its enrichment factor and
color corresponds to p-value (from white to red). Fatty acid oxidation (FAO), saturated fatty acid
oxidation (SFAO). (E) Heat map with top 25 metabolites significantly different among the 3 groups
of individuals based on ANOVA (red color indicates higher levels and blue indicates lower levels
in pairwise comparisons).Separate comparisons of plasma between healthy individuals and post-
COVID (Figure 2A) or PASC (Figure 2B) revealed distinct and marked metabolic phenotypes between
the groups. A direct comparison between post-COVID and PASC individuals by PLS-DA highlights
that these two groups can be only subtly distinguished by untargeted metabolomics of plasma at
rest (Figure 2C), with 7 significantly lower metabolites and 1 significantly higher metabolite in PASC
plasma (Figure 2D).
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Figure 3. Fatty Acid Oxidation. (A) Relative levels of acylcarnitines and (B) free fatty acids are
depicted as violin plots normalized to median control value. Statistically significant changes noted
between * controls and post-COVID, + control and PASC, and ‡ post-COVID and PASC; FDR
uncorrected * or + p < 0.05; ** or ++ p < 0.01, +++ p < 0.001, ++++ p < 0.0001.
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3.4. Lower Levels of Mono-, Di- and Tri-Carboxylates in PASC Plasma

Compared to the other two groups, PASC plasma exhibited lower levels of in mono-
(pyruvate, lactate), di- (succinate, malate, 2-hydroxyglutarate) and tri-carboxylates (citrate)
(Figure 4).
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Figure 4. Glycolysis and TCA Cycle. (A) A pathway map for energy metabolism is shown, along
with metabolite values for (B) glycolysis, and (C) the tricarboxylic acid (TCA) cycle. FDR uncorrected
* p < 0.05; ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.5. Lower Levels of Amino Acid Metabolites in PASC Plasma

Amino acids tended to be lower in both PASC and post-COVID individuals, with
markedly lower levels in PASC (Figure 5). While both groups had lower levels of alanine,
asparagine, methionine, and threonine, PASC plasma additionally had lower levels of
leucine/isoleucine, proline, tryptophan, tyrosine, and valine. In addition, PASC levels of
tyrosine were lower than those of post-COVID individuals.

Metabolites 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

Demographically, our PASC cohort was similar to others that have been reported, indi-

cating that individuals with PASC are young and without pre-morbid pulmonary func-

tional impairment [30]. As with other autoimmune and inflammatory conditions that 

manifest with increased severity in younger age groups, we noted that demographic dif-

ferences in our groups, with PASC individuals being younger than post-COVID without 

PASC. In addition to the potential impact of an exuberant immune response, this differ-

ence may also be due to our study design, which captured individuals who presented for 

medical care. Younger individuals who develop PASC may seek medical attention sooner 

than those of older age, who may be less concerned or attribute PASC symptoms to other 

comorbidities or advanced age. We recently reported that patients who developed PASC 

with exercise intolerance, despite mild acute COVID-19, exhibit lactate accumulation and 

respiratory gas exchange indicative of impaired fatty acid oxidation during exercise chal-

lenge, suggesting mitochondrial dysfunction [2]. The results of the plasma metabolomics 

obtained during rest in the current study are consistent with this report and support the 

hypothesis that a dysfunction in substrate utilization in mitochondria underlies the met-

abolic manifestations of PASC. 

 

Figure 4. Glycolysis and TCA Cycle. (A) A pathway map for energy metabolism is shown, along 

with metabolite values for (B) glycolysis, and (C) the tricarboxylic acid (TCA) cycle. FDR uncor-

rected * p < 0.05; ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Figure 5. Changes in Amino Acids profiles. The relative levels of amino acids reported by single 

letter code are depicted as violin plots normalized to median control value. To identify significant 
Figure 5. Changes in Amino Acids profiles. The relative levels of amino acids reported by single
letter code are depicted as violin plots normalized to median control value. To identify significant
comparisons, * healthy and COVID19 without PASC, + healthy and PASC, and ‡ COVID and PASC
with FDR uncorrected * or + p < 0.05; ** or ++ p < 0.01, *** or +++ p < 0.001.

4. Discussion

These results, which, to our knowledge, provide the first characterization of the plasma
metabolome in individuals with PASC, indicate several major metabolic derangements.
In the context of previously published metabolomic studies of individuals with exercise
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intolerance resulting from other etiologies and interpreted in light of the clinical manifes-
tations of PASC, our data provide a novel insight into the potential role of metabolism
in the pathogenesis of this condition. Although the metabolic pathways associated with
prognosis and severity of COVID-19 have been studied [24–27], and recent studies have
documented the lingering metabolic effects of COVID-19, even in patients who fully recov-
ered [17,18], little is known about development of PASC and related exercise intolerance.
The risk factors and mechanisms of PASC development are poorly understood, despite
its affecting a large number of individuals: ~60% of COVID-19 complicated by severe
pneumonia and 37% of COVID-19 patients without pneumonia [28]. Given the persistence
of fatigue and exercise intolerance of more than 6 months in more than half of COVID-19
survivors [29], there is a clear need to understand and manage PASC. Demographically,
our PASC cohort was similar to others that have been reported, indicating that individuals
with PASC are young and without pre-morbid pulmonary functional impairment [30]. As
with other autoimmune and inflammatory conditions that manifest with increased severity
in younger age groups, we noted that demographic differences in our groups, with PASC
individuals being younger than post-COVID without PASC. In addition to the potential
impact of an exuberant immune response, this difference may also be due to our study
design, which captured individuals who presented for medical care. Younger individuals
who develop PASC may seek medical attention sooner than those of older age, who may
be less concerned or attribute PASC symptoms to other comorbidities or advanced age. We
recently reported that patients who developed PASC with exercise intolerance, despite mild
acute COVID-19, exhibit lactate accumulation and respiratory gas exchange indicative of
impaired fatty acid oxidation during exercise challenge, suggesting mitochondrial dysfunc-
tion [2]. The results of the plasma metabolomics obtained during rest in the current study
are consistent with this report and support the hypothesis that a dysfunction in substrate
utilization in mitochondria underlies the metabolic manifestations of PASC.

Although our study is of limited size and did not follow individuals longitudinally
across the disease spectrum, by using an observational design that included both individu-
als who fully recovered from COVID-19 and those with PASC, our data provide insight into
the temporal evolution of metabolic derangements in COVID-19. Our group was among
the first to provide evidence of metabolic dysregulation in patients with acute COVID-19 as
a function of disease severity correlated to circulating levels of inflammatory cytokines such
as IL-6 [11,12]. When compared to those abnormalities, our results indicate that several
metabolomic abnormalities discovered in acute COVID-19 may be persistent in those with
PASC. Metabolomic differences and particularly fatty acid pathways identified in our am-
bulatory cohort of PASC individuals are concordant with findings of others investigating
the severity of acute hospitalized COVID-19 patients [31].

The higher levels of plasma carnitine-conjugated and free fatty acids, especially poly-
and highly unsaturated, as well as hydroxylated, fatty acids in PASC are consistent with
the lower fatty acid oxidation capacity of mitochondria. This metabolomic signature was
reported in acute COVID-19, where disease severity was associated with both dyslipidemia
and markers of mitochondrial dysfunction [32]. Whereas the impact of higher levels
of circulating free fatty acids on functional manifestations of PASC is unclear, during
acute disease, they are suspected to promote and sustain viral particle formation [12]. Of
note, the accumulation of specific lipid classes in plasma (especially free and carnitine-
conjugated fatty acids) was associated with erythrocyte dysfunction 8, which would,
in turn, impair oxygen delivery to target organs and, therefore, decrease the oxidative
processes necessary for fatty acid substrate utilization in mitochondria. Since red blood cells’
lifespan is ~120 days, these abnormalities may persist for months after COVID-19 and could
explain PASC symptoms such as fatigue and exercise intolerance. There are several lines of
evidence that oxygen consumption is impaired in COVID-19 survivors, as measured by VO2
kinetics shown during on-time 85% oxygen deficit, 28% greater mean response time in this
population, with an 11% longer half-time of VO2 recovery of at the off-transient [33]. Indeed,
VO2 max was impaired (albeit modestly) in a cohort of 50 individuals with PASC studied
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during graded maximal exercise testing, that also exhibited indirect evidence of markedly
reduced FatOx capacity [2]. Although in that cohort, the CHOx capacity was slightly
reduced, it was not significantly different from historic cohorts of healthy individuals. In
the current study of PASC plasma obtained in resting individuals, compared to controls,
we found significantly lower circulating levels of carboxylic acids (mono-, di- and tri-
carboxylates). These changes are suggestive of impaired pyruvate/lactate metabolism,
which may occur at the level of mitochondrial catabolism. Long considered a “dead-
end” metabolic product of anaerobic metabolism (glycolysis) [34], lactate is an important
substrate for oxidative metabolism, gluconeogenesis, muscle glycogenesis, and a regulator
of FAtOx [35–37].

Interestingly, the PASC metabolomic phenotypes of higher levels of circulating car-
nitines and lower levels of carboxylic acids are similar to those noted in individuals with
sickle cell traits [38] who carry a single copy of genetically altered beta globin gene (E6V).
These individuals, while phenotypically silent (asymptomatic) at rest, are exercise or high-
altitude intolerant. Interestingly, COVID-19 causes metabolic, structural and morphological
alterations to the erythrocytes [10,39,40], which may circulate for up to 120 days, well past
the clearance of the infection, and yet contribute to dysregulated oxygen kinetics for up
to 4 months post-viral-exposure [41]. Moreover, higher baseline levels of fatty acids and
acylcarnitines (including marked increases in medium chain lengths) are indicative of
ongoing mobilization of fatty acids but show impaired ability for oxidation due to mito-
chondrial dysfunction. Importantly, these signatures have also been observed in patients
with Type 2 diabetes [42–46] and sepsis [47–51], both pathologies that stem from metabolic
and mitochondrial dysfunction. These signatures are recapitulated in amateur [52] and
elite cyclists at exhaustion and are a marker of exertion [53,54]. Thus, it is relevant that
incomplete fatty acid oxidation presents in PASC patients at baseline, and this rationalizes
future studies to determine whether the PASC phenotypes we reported here are modulated
by moderate/intense exercise, and whether specific interventions can be envisaged to
restore fat-burning capacity. In the latter case, targets may include both the normalization
of oxygen-carrying/delivery capacity by circulating erythrocytes, or by molecular or train-
ing strategies (e.g., long aerobic training [55,56]) aimed at increasing mitochondrial mass
and/or restoring optimal mitochondrial function.

We also identified that PASC plasma was characterized by a significant depletion
of multiple amino acids, including those (alanine, aspartate, asparagine, and serine) that
are involved in transamination reactions. The depletion of methionine may reflect higher
levels of oxidant stress-induced isoaspartyl-damage repair, as reported in red blood cells
of COVID-19 patients [10], or alternative methionine use, for example to fuel long-term
epigenetic regulation (e.g., DNA methylation at CpG island; methyl-6-adenosine RNA
modification, histone methylation). The lower levels of branched-chain amino acids
leucine/isoleucine and valine is consistent with altered catabolism, perhaps as compen-
satory mechanism to overcome blockade in fatty acid oxidation. Alternatively, alterations
in dietary intake and/or exercise regimens may drive the depletion in the levels of these
amino acids in this population. It is worth noting that the depletion of taurine is a hall-
mark of COVID-19 disease severity [11], to the extent that taurine supplementation has
been proposed as an adjuvant in the treatment of COVID-19 [57]. Here, we show that
circulating levels of taurine are restored to healthy control levels in post-COVID patients
but not in PASC. Of note, depletion in tryptophan is consistent with observations in
acute COVID-19 patients [8,11,12,58–60]. During acute stages of COVID-19, we linked the
tryptophan-kynurenine metabolism to the activation of antiviral responses, seroconversion
and resolution of the infection, and overall disease severity and prognosis15. The activation
of the cGAS/STING/interferon signaling axis upregulates tryptophan consumption to fuel
the immunomodulatory [32] kynurenine pathway in a sex-, age- and body-mass-index-
specific manner. Interestingly, the lower levels of tyrosine and related catabolites at baseline
in PASC relative to healthy plasma mirror a relationship between elite cyclists stratified by
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endurance capacity that is dependent upon mitochondrial function [53], further suggesting
a link between these amino acids and exercise tolerance.

We recognize that this study holds several limitations, including the small sample
size, which precluded adequate stratification of metabolomic signatures based on prior
COVID-19 disease severity, correlation with specific PASC symptoms, or other biological
factors such as sex, age, or ethnicity. Owing to the sample size, the study was not sufficiently
powered to afford correction for the impact of such variables on the metabolome of patients
with PASC, a limitation that will be addressed in currently ongoing follow-up studies.
Samples tested in this study were collected at rest, while a more clearly dysfunctional
metabolic signature would likely manifest itself upon exercise challenge. In addition,
only steady-state plasma analyses were performed, which clearly highlight a signature
of dysfunctional fatty acid catabolism and also highlight the need to determine sources
of incompletely oxidized fatty acids. Nevertheless, our data offer compelling evidence of
metabolic dysfunction in PASC and should fuel future investigations of oxygen and lactate
kinetics and mitochondria biology.

In conclusion, our novel findings offer compelling evidence of metabolic dysfunction in
PASC and should fuel future investigations of oxygen and lactate kinetics and mitochondria
biology. Furthermore, the appreciation of the long-lasting derangement in fatty acid
catabolism in PASC could pave the way for interventions aimed at promoting mitochondrial
biogenesis and restoring fat-oxidation capacity. Although such interventions and strategies
in PASC are awaiting further research, low-intensity or interval exercise regimens have
been shown to exert such an effect by boosting metabolic flexibility in healthy athletes
and less fit individuals [55,61,62], including sedentary individuals [63], and patients with
chronic obstructive pulmonary disease [64,65].
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