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Abstract: Mitochondrial dysfunction and cognitive impairment are common symptoms in many neu-
rologic and psychiatric disorders, as well as nonpathological aging. Ketones have been suggested as
therapeutic for their efficacy in epilepsy and other brain pathologies such as Alzheimer’s disease and
major depressive disorder. However, their effects on cognitive function in healthy individuals is less
established. Here, we explored the mitochondrial and performative outcomes of a novel eight-week
ketone-supplemented ketogenic (KETO) diet in healthy adult male and female mice. In a novel object
recognition test, KETO mice spent more time with the novel, compared to familiar, object, indicating
an improvement in recognition memory. High-resolution respirometry on permeabilized hippocam-
pal tissue returned significant reductions in mitochondrial O2 consumption. No changes in ATP
production were observed, yielding a significantly higher ATP:O2 ratio, a measure of mitochondrial
efficiency. Together, these findings demonstrate the KETO diet improves hippocampal mitochondrial
efficiency. They add to a growing body of evidence that suggests ketones and ketogenic diets are
neuroprotective and metabolically and cognitively relevant, even in healthy adults. They also suggest
that ketogenic lifestyle changes may be effective strategies for protecting against cognitive decline
associated with aging and disease.

Keywords: ketogenic diet; hippocampus; mitochondrial efficiency; recognition memory; metabolism

1. Introduction

Mitochondria wear a number of different hats within the cell. Although they are also
central to processes of Ca2+ homeostasis, apoptosis, and reactive oxygen species production,
their most critical role, arguably, lies in ATP production and cellular nutrient metabolism.
In the brain, neurons are particularly dependent on mitochondria-produced energy for the
maintenance of membrane potential, neurotransmission, and synaptic plasticity [1], all of
which are essential to cognitive health. Mitochondrial dysfunction and dysregulated energy
metabolism, two of the hallmarks of brain aging [2], have been suggested to drive aging and
disease-induced cognitive decline. Therefore, identifying ways to improve mitochondrial
health, pharmacologically and behaviorally (e.g., diet, exercise, etc.), represents a promising
strategy to prolong cognitive health and protect against dementias such as Alzheimer’s
disease (AD), as have been previously suggested [3–5].

The brain only makes up 2–3% of the human body mass, yet receives roughly 15%
of the body’s cardiac output [6,7] and accounts for approximately 20% of its fuel and
oxygen consumption [8]. As a metabolic giant of an organ, the brain is highly sensitive
to even subtle changes in energy homeostasis. The hippocampus, a structure within the
medial temporal lobe, functions as the brain’s primary memory center and is essential for
learning and other cognitive functions. In neurons within the hippocampus, mitochondria
are essential for fueling energetically expensive processes of synaptic plasticity, which

Metabolites 2022, 12, 1019. https://doi.org/10.3390/metabo12111019 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12111019
https://doi.org/10.3390/metabo12111019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-1649-4722
https://orcid.org/0000-0003-2956-7118
https://orcid.org/0000-0001-7298-1889
https://doi.org/10.3390/metabo12111019
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12111019?type=check_update&version=2


Metabolites 2022, 12, 1019 2 of 18

constitute the molecular mechanism of learning and memory formation [9,10]. In mice,
alleviating synaptic mitochondrial dysfunction in the hippocampus is sufficient to decrease
age-associated cognitive impairment [11].

The brain is a “picky eater” and is limited to two main fuel sources—glucose and
ketones. Under low glucose conditions, such as fasting, exercising, and low-carbohydrate
ketogenic diets (KD), the liver produces ketones—most prevalently, acetoacetate (AA) and
beta-hydroxybutyrate (BHB)—from fatty acids to fuel the body. Ketones are metabolized
by the brain even when adequate glucose is available [12], sparing glucose proportionally
to plasma ketone concentrations [13,14], and can account for almost 70% of the brain’s
energy requirements [15].

Low-carbohydrate, high-fat dietary regimens that mimic aspects of fasting via ketoge-
nesis, are widely accepted as neuroprotective due to their well-established use in treating
refractory and childhood epilepsy [16,17]. Since their initial implementation over 100 years
ago [16], ketogenic diets have regained attention in recent decades due to their expanding
utility in the treatment and management of other brain disorders involving bioenergetic
impairments [18]. These include Alzheimer’s [19–21] and Parkinson’s disease [22,23], can-
cers [24,25], and mental health disorders such as major depressive disorder [26,27] and
schizophrenia [28,29]. In these conditions, ketogenic diets have been shown to reduce in-
flammation and oxidative stress, increase the activity of neurotrophic factors, and enhance
energy metabolism [30–32].

Ketone esters (KE), used to mimic the KD, are effective at inducing rapid, sustained
elevations in circulating ketones. The oral administration of KEs has also displayed clinical
relevance in multiple neurological disease states in both rodents and humans. Once
ingested, KEs are hydrolyzed by nonspecific gastric and tissue esterases. This frees ketones
from their backbone molecule, often butanediol [33], which is also ketogenic and is oxidized
in the liver to BHB via alcohol and aldehyde dehydrogenase [34]. Ketones are then oxidized
by metabolically active tissues to produce ATP. The KE used in this study, R,S-1,3-butanediol
acetoacetate diester, is a nonionized sodium-free precursor of ketone bodies AA and BHB
that has been previously demonstrated as safe and effective in elevating blood ketone
concentrations [33].

The utilization of ketones and ketogenic diets in the treatment of neurological disease
states and mental health disorders is well-founded. Although it has been demonstrated
that a cyclic KD extends the health span and cognitive function in aging mice [35], its utility
in protecting against cognitive aging in healthy adults is less established. In the current
study, we explore the effects of a novel eight-week KE-supplemented ketogenic (KETO)
diet. We test the hypothesis that the KETO diet improves behavioral recognition memory
and hippocampal mitochondrial bioenergetics in healthy adult, wildtype mice. The results
presented here suggest that ketogenic intervention may represent an effective strategy for
improving hippocampal metabolism and cognition in healthy adults.

2. Materials and Methods
2.1. Animals and Diet

Studies were conducted in accordance with the principles and procedures outlined in
the National Institutes of Health Guide for the Care and Use of Laboratory Animals and
were approved by the IACUC (Institutional Animal Care and Use Committee) at Brigham
Young University. Additionally, experiments have been reported in compliance with the
ARRIVE guidelines 2.0 on reporting animal experiments.

Adult (average age of 10.7 months at sacrifice, SEM = 0.88) male and female C57BL/6 mice
were purchased from Jackson Laboratories, group-housed, and maintained at 22 ± 1 ◦C,
60–70% humidity, and a 12-h light–dark cycle. Mice were randomly divided into two groups
and given ad libitum access to food—a control rodent diet (CON) or a ketogenic diet supple-
mented with an exogenous ketone ester (KETO)—and water. The CON diet was purchased
from LabDiet (5001). The KETO diet was made up of a lard-based KD paste (BioServ (F3666),
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R,S-1,3-butanediol acetoacetate diester (ketone ester, KE; Disruptive Enterprises), and sugar-free
peanut butter (Jif) to improve palatability and prevent excessive weight loss.

The KETO diet was mixed freshly twice a week or more often as was necessary and,
by weight, was composed of 90% KD, 5% KE, and 5% peanut butter, which translated to a
macronutrient composition of 90% kcal fat, 4.7% kcal protein, 2% kcal carbohydrate, and
3.3% kcal KE (Table 1). This assumed a caloric density of 4.7 kcal/g for the KE, previously
established in other work [36]. Weight was measured once a week, or more frequently if
body weight appeared to be declining, especially in KETO mice during the first two weeks
of diet conditioning. To maintain as many mice as possible in the study, if the weights
approached the 20% cutoff, the concentration of peanut butter was increased (and keto
diet paste reduced) to promote palatability and prevent further weight loss. Mice were
excluded if >20% of their initial body weight was lost.

Table 1. CON and KETO macronutrient profile by kcal%.

CON KETO

Component kcal% kcal%

Fat 13.4 90
Protein 28.7 4.7

Carbohydrate 57.9 2
Ketone Ester 0 3.3

Ketone and glucose measurements were taken once a week to ensure diet efficacy.
Blood was drawn via tail tip amputation and tail massage, which has been suggested as
a superior method for reducing animal distress compared to tail vein incision and facial
vein puncture [37]. Precision Xtra blood glucose and ketone meters (Abbott) were used
to measure the blood glucose and R-BHB concentrations. BHB is a chiral molecule, with
R and S enantiomers, which are differentially metabolized [38]. R-BHB is the primary
product of normal metabolism and is readily metabolized to acetyl CoA to produce ATP.
S-BHB, however, is not a normal product of rodent nor human metabolism. Although it is
largely converted to R-BHB, the metabolism of S-BHB is much slower, and can account for
sustained elevations in ketones with KE administration [39]. Although we did not measure
the blood S-BHB, the racemic R,S-1,3-butanediol acetoacetate diester likely elevated both R-
and S-BHB.

Researchers collecting data were not blinded to the animals’ diets.

2.2. Two-Object Novel Object Recognition

The novel object recognition (NOR) assay is a simple, widely used behavioral test of
memory that does not rely on food reward (radial arm maze) or survival instincts (Morris
water maze) but on rodents’ innate predisposition to explore novelty in the absence of
external stimuli. It is a widely used test of nonspatial memory that can be configured to
probe multiple aspects of memory [40] without inducing significant stress. Here, we used
the basic two-object procedure due to its more common use in the recent literature [41–43].

Preliminary pilot tests were conducted with a small group of mice (3–6) to confirm
that mice spent at least 20 s with each object within the allotted 8 min and that there were
no initial biases toward either object (discrimination index of approximately 0).

The two-object NOR was carried out in a round, plastic, open field arena with a
diameter of 45.72 cm (18 in) and height of 60.96 cm (24 in) and recorded with a GoPro for
later analysis with AnyMAZE software. The protocol consisted of one day of habituation
(T0), one day of training (T1), and one day of testing (T2), with 24 h between each session.
During habituation, mice were placed in the middle of the open arena and left to explore
for 8 min. Once finished, mice were placed in a separate holding cage until their home
cage was empty; at which point, they were returned. The arena was thoroughly cleaned
between each mouse. On T1, two identical objects were placed in the arena, equidistant
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from the opposite wall. Mice were placed in the arena facing the opposite wall, equidistant
from both objects to prevent directional biases upon release. Mice were left to navigate and
interact with the identical objects for 8 min. Similar to habituation, mice were placed in a
separate holding cage after the trial until their home cage was empty. On T2, one of the
familiar objects (FO) was replaced with a novel object (NO). Again, mice were placed in the
arena facing the opposite wall and left to explore the objects for 8 min.

Using AnyMAZE software, the amount of time mice spent with each object, defined
as the time spent touching the object or within 2 cm facing the object, velocity, and distance
traveled were measured. A discrimination index ((NO − FO)/(NO + FO) × 100) was
calculated. Mice that did not reach a 20-s minimum of exploration for both objects in T1
within 8 min were excluded from the analysis.

2.3. Brain Slice Preparation

The methods used to prepare brain slices were similar to those described previ-
ously [44–46]. Mice were anesthetized with isoflurane in a vapomatic chamber and sub-
sequently decapitated via guillotine. Following decapitation, the brains were rapidly
extracted and placed in ice-cold, oxygenated artificial cerebrospinal fluid (ACSF) con-
taining 119 mM NaCl, 26 mM NaHCO3, 2.5 mM KCl, 1 mM NaH2PO4, 2.5 mM CaCl2,
1.3 mM MgSO4, and 10 mM glucose saturated with 95% O2 and 5% CO2, pH 7.4). Salts
were purchased from Sigma-Aldrich (St. Louis, MO, USA), Mallinckrodt-Baker (Phillips-
burg, NJ, USA), or Fisher Scientific (Waltham, MA, USA) and dissolved in double-distilled
water (ddH2O). A vibratome (Leica) was used to cut coronal hippocampal slices (350 µm)
in ice-cold, oxygenated ACSF. The hippocampi were then dissected out and transferred to
a holding chamber containing room temperature oxygenated ACSF. Here, the hippocampi
were either set aside for mitochondrial respirometry or snap-frozen in liquid nitrogen and
stored at −80 ◦C for ATP quantification, Western blots, and other assays.

2.4. Mitochondrial Respirometry

Mitochondrial oxygen consumption rates were determined at 37 ◦C from freshly
isolated hippocampal tissue using the Oroboros O2K Oxygraph (Innsbruck, AUT) with
MiR05 respiration buffer, as described previously [47]. Prior to loading in the O2K machine,
the hippocampi were permeabilized in 0.05 mg/mL of saponin (Sigma-Aldrich) in MiR05
for 30 min at 4 ◦C. After the addition of hippocampi, the chambers were hyperoxygenated
to ∼350 nmol/mL and shut. A stable baseline respiration rate was established, which took
approximately 5 min. Changes in the respiration rates were then determined following
a substrate–uncoupler–inhibitor–titration protocol. The electron flow through complex
I was supported by glutamate + malate (GM, 10 and 2 mM, respectively) to determine
the leak oxygen consumption (OGM). Following stabilization, ADP (2.5 Mm) was added
to determine the oxygen consumption associated with oxidative phosphorylation (OADP).
Succinate (S) was then added to support complex I and II electron flow into the Q-junction
(OS). To maximize the electron transport capacity given these substrates, the chemical
uncoupler carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was added
(0.05 Mm, OFCCP). The respiratory control ratio (RCR) and CII factor were determined by
calculating the ratio of OADP:OGM and the difference between OS and OADP, respectively.

Samples were then collected and stored at −20 ◦C. Protein concentrations were mea-
sured via the BCA assay (Perkin Elmer, Waltham, MA, USA), and the respiration rates were
normalized to the protein concentration.

2.5. ATP Quantification

The ATP concentrations were quantified from hippocampal homogenates using an
ATPLite Luminescence Assay kit (Perkin Elmer). Frozen hippocampi were thawed on
ice and homogenized via sonication in approximately three volumes of ice-cold ATP-
stabilizing buffer (PBS containing 20 mM glycine, 50 mM MgSO4, and 4 mM EDTA), similar
to methods described previously [48]. Homogenates were diluted in ddH2O and were
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transferred to opaque, white, 96-well plates in volumes of 100 µL per well. The ATPLite
protocol was then followed. ATPLite lysis buffer was added (50 µL) to each well, and the
plates were agitated for 5 min at 700 rpm at room temperature. ATPLite substrate solution
was then added (50 µL) to each well. The plates were covered with aluminum foil, agitated
for an additional 5 min at 700 rpm at room temperature, and dark-adapted for 10 min.
Luminescence was subsequently measured with a Victor Nivo Multimode Plate Reader
(Perkin Elmer), and the ATP concentration was normalized to the protein concentration via
the BCA assay (Perkin Elmer).

2.6. Western Blot

Frozen hippocampi were thawed on ice and sonicated with RIPA buffer supplemented
with protease and phosphatase inhibitors at a final concentration of 1% v/v each (P8340,
P0044, Sigma-Aldrich). Protein concentrations were determined via the BCA protein assay
kit (Pierce), and the sample volumes were adjusted to load 20 µg of protein per lane.
Sample buffer (4× Laemmli buffer, 10% beta mercaptoethanol) was added to each sample
and heated at 95 ◦C for 10 min. Samples were resolved by SDS/PAGE (12%) at 70 V
and transferred onto nitrocellulose membranes. The membranes were blocked using 5%
nonfat dry milk dissolved in 1× tris-buffered saline with 0.1% tween (TBST) for 30 min and
incubated with primary antibodies diluted to their final concentrations in 5% BSA, 0.02%
sodium azide (see Table 2 for primary antibody information and dilutions) overnight at
4 ◦C. Membranes were then washed with TBST and incubated with fluorescently labeled
donkey anti-mouse and anti-rabbit secondary antibodies (LI-COR) at a 1:2500 dilution at
room temperature for one hour. Membranes were washed with TBST and imaged on a
LI-COR Odyssey CLx. Target protein fluorescence was normalized to the loading control
(β-actin) fluorescence. Target protein: β-actin ratios were compared between the CON and
KETO groups.

Table 2. Primary antibody information and dilutions.

Target Dilution Host Company ID

DRP1 1:1000 Rabbit Novus Biologicals NB110-55288
pDRP1 1:1000 Rabbit Cell Signaling 3455
OPA1 1:1000 Rabbit Novus Biologicals NB110-55290

OXPHOS 1:5000 Mouse Thermo 45-8099
β-actin 1:1000 Rabbit Cell Signaling 13E5
β-actin 1:1000 Mouse Cell Signaling 8H10D10

2.7. Statistics

Data are presented as the means ±SEM. Differences between the CON and KETO
means were compared using Student’s t-tests (GraphPad Prism; Microsoft Excel). The
Shapiro–Wilk test was used in conjunction with the visual assessment of q–q norm plots to
determine normality for all analyses. The significance was determined at p < 0.05.

2.8. Sex as a Biological Variable

The rodent estrous cycle lasts approximately 4–5 days, in which time 17β-estradiol
levels gradually increase until proestrus, when 17β-estradiol quickly rises and falls. Cir-
culating estradiol in the mouse is highest during the proestrus phase of the estrus cycle
and has been shown to alter hippocampal physiology and cognition [49,50]. High estro-
gen during the proestrus phase of the cycle has been shown to enhance LTP [51], BDNF
expression [52], and reduce ROS production [53]. To control for fluctuations in circulating
estrogen, female estrus cycles were visually tracked. The vaginal opening was evaluated
based on the criteria described by Champlin et al. [54]. Mice underwent behavioral testing
and sacrifice when mice were not in proestrus.
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3. Results
3.1. Ketogenic Diet Elevates Blood Beta-Hydroxybutyrate

In the initial tests, male and female C57BL/6 mice placed on the ketogenic lard diet
(BioServ F3666) alone displayed only mild elevations in blood ketone concentrations (data
not shown). Supplementing the KD with 5% exogenous ketone ester (R,S-1,3-butanediol
acetoacetate diester) displayed significantly higher levels (Figure 1A; week 0 p = 0.01,
week 1 p < 0.001), week 2 p < 0.001, week 4 p < 0.001, and week 8 p < 0.001) of blood BHB
and significantly lower levels of blood glucose (Figure 1B; week 0 p = 0.42, week 1 p = 0.016,
week 2 p = 0.16, week 4 p = 0.001, and week 8 p = 0.015) compared to CON mice throughout
diet conditioning. Despite these data, the weights were not significantly different between
CON and KETO mice (Figure 1C; week 0 p = 0.56, week 1 p = 0.16, week 2 p = 0.53, week 4
p = 0.48, and week 8 p = 0.54).
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Figure 1. Ketogenic diet elevates blood ketone β-hydroxybutyrate (BHB). (A) Blood BHB (CON,
n = 15; KETO, n = 14), (B) weight (CON, n = 15; KETO, n = 11), and (C) blood glucose (CON, n = 12;
KETO, n = 13) over the course of an 8-week ketogenic diet in C57BL/6 mice. * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3.2. Ketogenic Diet Improves Recognition Memory and Locomotion

At the end of diet conditioning, CON and KETO recognition memory was assessed in
the novel object recognition test. During NOR testing (T2), KETO mice spent significantly
more time (Figure 2C; p < 0.001) with the novel compared to a familiar object. However,
the discrimination index, a measure of the mouse’s ability to discriminate the novel from
familiar object, indicated a trend toward significance (Figure 2B; p = 0.12). Measures of the
average distance traveled and velocity indicated general increases in locomotion with the
KETO treatment, such that KETO mice traveled significantly further (Figure 2D; p = 0.047)
and strongly trended toward a significant increase in velocity (Figure 2E; p = 0.066) com-
pared to CON mice.
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Figure 2. Ketogenic diet enhances novel object recognition and locomotion. (A) Two-object novel
object recognition test layout and resulting measures of recognition memory ((B) discrimination
index and (C) exploration time) and locomotion ((D) distance and (E) velocity). CON n = 20; KETO
n = 22. * p < 0.05, *** p < 0.001.

3.3. Ketogenic Diet Enhances Hippocampal Mitochondrial Efficiency

High-resolution respirometry (Figure 3A,B) indicated that the KETO diet significantly
reduced the mitochondrial respiration rate of hippocampi with the addition of ADP (OADP,
p = 0.013). ADP sustains oxidative phosphorylation supported by the complex I-mediated
electron flow. The KETO diet also significantly reduced the mitochondrial oxygen con-
sumption rate with the addition of succinate (OS, p = 0.044), which supports the complex
II-mediated electron flow, and carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
(OFCCP, p = 0.021), which induces the maximum oxygen flux due to uncoupling. A strong
trend toward significance was observed with the addition of glutamate and malate (OGM,
p = 0.053), which support complex I-mediated respiration associated with the proton leak.
Representative traces of oxygen consumption with the addition of GM, ADP, S, and FCCP
were plotted versus time in Figure 3B. The time at which O2 flux began to plateau was
designated as time = 0. The plateau occurred within 5 min following the addition of
hippocampi to the respiration chambers and directly prior to starting the SUIT protocol.
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Figure 3. Ketogenic diet improves hippocampal mitochondrial efficiency. (A) Rates of mitochondrial
oxygen consumption were measured via a substrate–uncoupler–inhibitor–titration protocol from
hippocampi following an 8-week control or ketogenic diet. The protocol included the addition of
glutamate and malate (GM), ADP, succinate (S), and carbonyl cyanide 4-(trifluoromethoxy) phenyl-
hydrazone (FCCP). (B) Representative traces of oxygen consumption are plotted versus time with
indicated substrate additions. (C) Respiratory control ratios (RCR) and (D) complex II-associated
respiratory flux (CII factor) were calculated (CON, n = 21; KETO, n = 22) (E) ATP concentration
and (F) ATP:O2 flux ratios were quantified (CON, n = 18; KETO, n = 19).* p < 0.05, ** p < 0.01, and
*** p < 0.001.

ATP quantification indicated no significant change in ATP concentration between the
CON and KETO hippocampi (Figure 3E; p = 0.42). However, the ratio of ATP to oxygen
consumed with the activation of oxidative phosphorylation (ATP:OADP) demonstrated
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improvements in mitochondrial coupling and efficiency (Figure 3F; p < 0.001). Additionally,
ATP:OS demonstrated a significant improvement in mitochondrial efficiency (Figure 3F;
p = 0.005). The KETO ATP:OADP ratios were, on average, almost 20% higher (19.7%) than
the CON ratios. On average, the KETO ATP:OS ratios were almost 12% higher than the CON
ratios. The respiratory control ratio (RCR), a general measure of the general mitochondrial
fitness (Figure 3C), and the complex II factor (CIIF), a measure of complex II’s contribution
to the respiration rate (Figure 3D), indicated no significant differences between the CON
and KETO mice (p = 0.7, p =0.39).

3.4. Ketogenic Diet Induces Sex-Specific Hippocampal Mitochondrial Complex V Expression

To determine whether changes in the mitochondrial respiration rates were due to
changes in the expression of the mitochondrial complexes, Western blots were performed
probing for complexes I–V. Together, male and female mice did not display any significant
changes in the expression of the mitochondrial complexes (CI p = 0.28, CII p = 0.33, CIII
p = 0.76, CIV p = 0.52, and CV p = 0.71). However, when compared separately, female mice
on the ketogenic diet displayed a significant reduction in the expression of CV (Figure 4A,B;
p = 0.001), while male mice did not (Figure 4C,D; p = 0.64).
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Figure 4. Ketogenic diet significantly reduces complex V expression in female mice. Representative
Western blots against mitochondrial complexes I–V in (A,B) female (CON, n = 4; KETO, n = 4) and
(C,D) male (CON, n = 3; KETO, n = 4) mice and their relative expression. ** p < 0.01.

3.5. Ketogenic Diet Does Not Alter the Expression of Hippocampal Mitochondrial
Dynamics Proteins

To determine whether a ketogenic diet alters the expression of proteins involved in
mitochondrial dynamics, Western blots were performed probing for DRP1, a mitochondrial
fission protein, and OPA1, a mitochondrial fusion protein (Figure 5A). DRP1 expression
was not significantly altered by KETO conditioning (Figure 5B; p = 0.21). pDRP1 expression,
expressed as pDRP1:DRP1, was similarly unaffected (Figure 5C; p = 0.36). OPA1 expression,
however, exhibited a trend toward significance (Figure 5E; p = 0.11).
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Western blots against DRP1 (CON, n = 8; KETO, n = 7), pDRP1 (CON, n = 8; KETO, n = 8), OPA1
(CON, n = 7; KETO, n = 7), and their (B–E) respective relative quantifications.

4. Discussion

The current study provides further evidence of metabolically relevant, neuroprotective
effects of ketones within the brain, adding to a large body of evidence that suggests manipu-
lating peripheral nutrient metabolism through diet can offer neuroprotection. Our findings
are consistent with previous studies utilizing KE-based diets that demonstrate improve-
ments in behavioral anxiety and memory [55,56], as well as hippocampal metabolism [57].
Here, we assessed the effects of a novel ketone-supplemented KETO diet on recognition
memory and hippocampal bioenergetics in healthy adult mice and found that the diet
improves cognitive function and mitochondrial efficiency.

At the inception of this study, C57BL/6 mice were initially placed on a control rodent
chow (CON, LabDiet 5001) or a lard-based KD alone (KD, Bioserv F3666). The CON-fed
mice displayed elevated blood BHB levels similar to the KD-fed mice (Figure 1A; week 1,
0.47 mM). This was surprising, as we found little evidence of this in previously published
reports on the topic. Although the KD significantly elevated the blood BHB levels compared
to the CON, the difference in blood concentration was minimal (~0.2 mM, data not shown)
and, we deemed, not robust enough to justify using the KD alone to quantify the effects of
ketones on hippocampal physiology. The KD lard-based diet was then supplemented with
the ketone ester, R,S-1,3-butanediol acetoacetate diester, which further elevated the blood
BHB (Figure 1A; week 1, 1.69 mM), allowing us to proceed with the study. These findings
highlight the necessity of directly measuring blood BHB levels in rodent studies exploring
the effects of ketones on physiology in the context of ketogenic diets. These findings also
call attention to the innate differences in nutrient metabolism between humans and mice,
such that mice have a basal metabolic rate per kg of body mass that is approximately
seven time higher than humans [58] and, as we observed, have a greater predisposition
to a ketogenic state without severe carbohydrate restriction (CON 57.9% carbohydrate,
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13.4% fat, and 28.7% protein). These must be taken into consideration when evaluating the
translational potential of ketogenic diet research in mice and other model organisms.

We observed KETO-induced improvements in behavioral recognition memory
(Figure 2) that were accompanied by enhancements in the hippocampal mitochondrial
efficiency (Figure 3). High-resolution respirometry revealed that, with the addition of
glutamate, malate, ADP, and succinate, which induce CI and CII electron flow into the
Q junction, the KETO diet significantly reduced the oxygen flux (Figure 3A) but main-
tained the same concentration of ATP as the CON diet (Figure 3D). In other words, the
KETO diet significantly improved mitochondrial efficiency within the hippocampus or
ATP produced per unit of oxygen consumed (Figure 3E). We also observed a significant
reduction in oxygen consumption with glutamate, malate, and ADP addition or complex I
(NADH:ubiquinone oxidoreductase) contribution to oxidative phosphorylation (Figure 3E).
Paired with the unchanged ATP concentrations, this also produced a significantly higher
rate of ATP:O2, which suggests that both complex I and II (succinate–coenzyme Q reduc-
tase) are likely involved in the KETO-induced improvements in mitochondrial efficiency.
Overall, these data indicate that hippocampal mitochondrial respiration is more tightly
coupled to ATP production under prolonged KETO compared to CON exposure.

This oxygen-sparing effect has implications for the conditions of cerebral hypoxia, for
example, traumatic brain injury (TBI), stroke, and other forms of ischemia in which the
blood oxygen supply to the brain is occluded. The hippocampus has been demonstrated
as particularly vulnerable to hypoxic stress and is one of the first brain regions to display
degeneration [59,60]. Rats placed on a KD after a controlled cortical impact injury have
demonstrated a decrease in cortical contusion volume and a reduction in cortical and
hippocampal neurodegeneration [61]. Other studies have explored the effect of ketogenic
diets on TBI and have demonstrated that the diet has protective effects against apoptosis
and delays TBI-induced deficits in energy metabolism in juvenile rats [62,63]. The results
presented here suggest a potential additional mechanism: KETO-induced oxygen sparing
may promote cell survival by extending oxygen supply. This is especially impactful,
because clinical trials assessing the safety and efficacy of the KD as a treatment for TBI are
ongoing (NCT03982602).

Mitochondria are incompletely coupled, meaning during oxidative phosphorylation,
some of the redox energy is dissipated rather than coupled to ATP production. This
occurs as a regulated process via uncoupling protons but also occurs as an unregulated
background proton leak across the inner mitochondrial membrane (IMM). Proton leak-
associated oxygen consumption exhibited a very strong trend (p = 0.053) toward significant
reduction in the KETO hippocampus compared to the CON. Glutamate and malate feed
into the malate–aspartate shuttle, which transports NADH-reducing equivalents from
the cytoplasm to the mitochondrial matrix, where they have access to mitochondrial
complex I. In the absence of ADP, this activates a non-phosphorylated respiratory state
in which oxygen consumption is associated with a proton leak across the IMM back into
the matrix [64]. Although not the only means of uncoupling, a proton leak is the primary
mechanism that uncouples mitochondrial oxygen consumption from ATP production [65].
Increased proton conductance (leak) across the IMM has been theorized to minimize
oxidative damage at the expense of compromising energy homeostasis [66]. However,
these data suggest that the KETO diet decrease the hippocampal proton leak without
compromising energy production. While we did not quantify the expression of uncoupling
proteins, the strong trend toward reduction in proton leak-associated oxygen consumption
with the KETO treatment indicated less leak-associated uncoupling. This is consistent with
our ATP data, in which we observed a significant increase in the ATP:O2 ratio and tighter
bioenergetic coupling (Figure 3E).

Proton permeability of the IMM is susceptible to modulation, which can result in fluctua-
tions in uncoupling. This includes physical changes in the lipid composition and structure of
the IMM lipid bilayer and the presence or absence of uncoupling proteins [67,68]. For example,
hyperthyroidism in rats has been shown to increase liver IMM proton permeability. This
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occurs via thyroid hormone-induced changes in the phospholipid bilayer components that
increased the IMM surface area [69]. Environmental factors such as temperature and diet have
also been shown to alter the IMM lipid composition in rodents and other organisms and, con-
sequently, ATP:O2 ratios and animal performance [70]. Therefore, although we did not assess
this directly, it is possible that the KETO diet we used in this study altered the hippocampal
IMM lipid composition to decrease the proton leak and improve the mitochondrial efficiency.

Oxidative damage is one of the hallmarks of brain aging [2] and is a well-established
driver of cognitive decline [71,72] and neurodegenerative disease [73,74]. Mitochondria are
a significant source of ROS. This is due to their role in oxidative phosphorylation in which
molecular oxygen is reduced to water by complex IV (cytochrome C oxidase) of the electron
transport system. Within the mitochondria, complexes I and III (ubiquinol–cytochrome
c reductase) are the primary sites of ROS production [75]. Although we did not directly
quantify the ROS, it is possible the KETO treatment also decreased the ROS production
due to a reduced mitochondrial O2 flux and improved the energy efficiency. This would be
consistent with the literature demonstrating ketones reduce oxidative stress [76–78] but
would require further testing.

In this study, the novel object recognition test was selected as an indicator of cognitive
function. The hippocampal formation is organized in a way to support memory storage
and recall. Following exposure to a stimulus (for example, the visual stimulus of an object),
the hippocampus must determine whether the information is novel and requires encoding
as a new memory or old and requires retrieval of a previously encoded memory. These
rely on hippocampus-dependent processes of pattern completion and separation. Pattern
completion, the ability to retrieve whole memories (neural representations) from partial or
noisy cues, is dependent on CA3 recurrent collaterals, while pattern separation, the process
of distinguishing similar experiences by minimizing overlap in neural representations, is
dependent on mossy fiber inputs to CA3 [79]. Together, the significant increase in time
with the NO combined with the trend toward significance in the increased discrimination
index (Figure 2B,C) indicated KETO-induced improvement in recognition memory, which
requires both pattern separation and completion. Although we did not distinguish changes
in the bioenergetics in dentate gyrus granule cells from CA3 pyramidal neurons, here, we
display general enhancements in the hippocampal bioenergetic efficiency that correlate
with improvements in the recognition memory (Figures 2 and 3).

More generally, the ability to recognize stimuli that have been previously experienced
relies on recollection of the stimulus in the context of its original exposure and general familiar-
ity with aspects of the stimulus. Historically, recollection and familiarity have been thought to
be anatomically distinct processes, whereby recollection is mediated by the hippocampus and
familiarity is mediated by the surrounding perirhinal cortex [80,81]. However, more recent
evidence suggests the hippocampus is necessary for both [82–84]. Alzheimer’s disease (AD)
is the most common form of senescence-related dementia, affecting approximately 6.5 million
individuals in the United States and approximately 55 million globally. AD is characterized
by neurodegeneration that progressively impairs cognition and behavior. Research suggests
that both recollection and familiarity are affected in AD patients—recollection at all stages and
familiarity at the later stages of disease progression [85,86]. Although we did not assess the
effects of the KETO diet on recognition memory in a mouse model of AD, the results presented
here suggest that ketones may be therapeutic due to their ability to improve recognition via
hippocampal mitochondrial function.

In the NOR, we also observed a significant increase in distance traveled and a trend
toward a significant increase in the relative velocity (Figure 2D,E) that indicated KETO
treatment also enhanced the locomotion. Combined, these cognitive and locomotive data
agree with previous research demonstrating a KD enhances the physical and cognitive
performance in rats [87].

A recent RNA-seq study showed that a 90-day KD induced changes in the metabolic
gene expression in neurons isolated from whole brain homogenates [88]. Researchers found
that the KD increased the expression of oxidative phosphorylation-related genes in neurons
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but not astrocytes. They speculated that the upregulated expression of mitochondrial
complex genes would likely cause an increase in oxygen consumption to enhance oxidative
phosphorylation. In our study, we observed the opposite—a reduction in mitochondrial
oxygen consumption—with the stimulation of mitochondrial complexes I–V (Figure 3A),
and no change in the expression of the complexes themselves, with the exception of complex
V in the female mice (Figure 4). We determined this difference in female mice may be a
female-specific effect independent of circulating 17β-estradiol, as we accounted for estrogen
via visually tracking the estrus cycle.

While it could be easy to label the results presented here as conflicting, there are
several differences that must be accounted for. The current study assessed hippocampus-
specific physiology, while the RNA-seq study analyzed whole brain homogenates and
isolated neurons and astrocytes. Since we used hippocampal homogenates, it is possible
that the expression of neuronal mitochondrial complexes was, in fact, increased with KETO
treatment. However, our data is limited to hippocampal homogenates, making it impossible
to distinguish neuronal versus astrocytic gene expression.

More generally, the brain is a heterogenous organ, containing substantial populations
of glial cells that support neuronal activity. In addition to their functions in the blood–
brain barrier permeability, myelin production, and immune function, glial cells—notably,
astrocytes and oligodendrocytes—play central roles in brain energy metabolism. They
provide aerobic glycolysis-derived lactate to neurons, especially during periods of high
synaptic activity [89]. Although it was historically believed that glia occurred in the brain at
a high 10:1 glia:neuron ratio, more recent evidence suggests a global ratio closer to 1:1 [90],
which also varies by brain region [91]. As a substantial proportion of cells are in the brain,
it is worthwhile to note that we did not assess the contributions of specific glial populations
to the results presented here. While they likely contributed to the significant changes
we observed in mitochondrial efficiency and behavior, further study will be required to
elucidate their specific contributions.

Mitochondria are remarkably dynamic organelles that vary in size, number, and
location to meet the local energetic demands. Variations in the mitochondria size and
number are mediated by processes of fission and fusion. The balance of fission and fusion
have effects on mitochondrial bioenergetics, such that mitochondrial fusion is generally
associated with an increase in mitochondrial efficiency and fission with a decrease in
efficiency [92], and is, therefore, tightly regulated. Due to this, we explored the effects of
the KETO diet on the expression of DRP1, a protein involved in mitochondrial fission, and
OPA1, a protein involved in fusion. Here, we demonstrate no significant change in DRP1
or OPA1 expression, despite a significant increase in mitochondrial efficiency with KETO
treatment. While we did not visualize the mitochondria directly, together, these suggest
that the improvement in energy efficiency within the hippocampus occurred independent
of changes in the mitochondrial dynamics.

Similar to other research investigating the effects of ketogenic diets on physiology, it is
difficult to parse out whether the observed effects were due to carbohydrate restriction, the
direct effects of the ketones themselves, or both. Additionally, because the caloric intake
was not directly quantified and compared between CON and KETO mice, it is possible that
some effects—for example, the significant reduction in blood glucose—were due to reduced
food consumption rather than the direct effects of the KETO diet. However, the lack of
significant changes in body weight throughout the KETO treatment argued against this. In
total, these data confirmed that environmental factors, such as diet, can induce variations in
mitochondrial efficiency [70] and that changes in efficiency can alter animal performances.

While age-related cognitive decline is a normal symptom of nonpathological aging,
the dramatic rise in obesity over the last 50 years has proven to not only increase the
risk of developing diseases with clear metabolic underpinnings such as insulin resistance,
type 2 diabetes, and cardiovascular disease but also exacerbate cognitive aging [93,94]. In
recent decades, it has become clearer that peripheral metabolic dysfunction has serious
implications for brain health and cognitive function, as insulin resistance and its comor-



Metabolites 2022, 12, 1019 14 of 18

bidities significantly increase the risk of developing Alzheimer’s disease (AD) and other
dementias later in life [95–98]. Identifying ways to reduce the cognitive burden of obesity
and protect against the development of dementias will be essential to public health, as
trends in AD parallel those of obesity continue to rise.

Compensating for brain energy deficits is a core feature of metabolic strategies to
delay the onset and slow the progression of a number of neurodegenerative diseases
and brain disorders. Ketones have been suggested as therapeutic due to their ability to
directly fuel the brain despite aging and disease-induced impairments in cerebral glucose
metabolism [99,100] and are currently being explored in clinical settings (NCT04701957,
NCT03935854, etc.). The data presented here suggest that ketones may also reduce the brain
energy deficit by improving the mitochondrial fuel efficiency within the hippocampus, and
represent a plausible strategy for protecting cognitive health in adulthood.

5. Conclusions

Ketogenic diets are metabolically and cognitively relevant in healthy adult mice and
may be an effective strategy for protecting against cognitive decline associated with aging
and disease.
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