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Abstract: The metabolic perturbations caused by competitive rugby are not well characterized.
Our aim is to utilize untargeted metabolomics to develop appropriate interventions, based on the
metabolic fluctuations that occur in response to this collision-based team sport. Seven members of an
English Premiership rugby squad consented to provide blood, urine, and saliva samples daily, over a
competitive week including gameday (GD), with physical demands and dietary intake also recorded.
Sample collection, processing and statistical analysis were performed in accordance with best practice
set out by the metabolomics standards initiative employing 700 MHz NMR spectroscopy. Univariate
and multivariate statistical analysis were employed to reveal the acute energy needs of this high
intensity sport are met via glycolysis, the TCA cycle and gluconeogenesis. The recovery period
after cessation of match play and prior to training recommencing sees a re-entry to gluconeogenesis,
coupled with markers of oxidative stress, structural protein degradation, and reduced fatty acid
metabolism. This novel insight leads us to propose that effective recovery from muscle damaging
collisions is dependent upon the availability of glucose. An adjustment in the periodisation of
carbohydrate to increase GD+1 provision may prevent the oxidation of amino acids which may also
be crucial to allay markers of structural tissue degradation. Should we expand the ‘Fuel for the work
required’ paradigm in collision-based team sports to include ‘Fuel for the damage induced’?

Keywords: metabolomics; rugby; exercise; damage; collision

1. Introduction

Rugby union is a team sport played by 9.6 million people across 159 registered
unions worldwide. Rugby comprises intermittent, high intensity activities incorporating
high speed running, sprinting, and frequent accelerations, and decelerations [1–3]. The
combination of these mechanical stressors with the frequent collision-based activities can
result in exercise induced muscle damage (EIMD) and impact induced muscle damage
(IIMD) with distinct aetiologies [4].

The observation that total energy expenditure (TEE) was increased in young rugby
players, in training weeks involving collisions [5], led to our recent investigation into
how resting metabolic rate (RMR) fluctuates in elite athletes throughout a competitive
match week [6]. We demonstrated that both RMR and carbohydrate oxidation in the
fasted state increased significantly in the days following elite rugby union match play and
proposed this was due to the muscle damage caused by the collisions inherent with the
sport [6]. Despite the reports of individual metabolite fluctuations, TEE and RMR around
rugby match play, our understanding of the metabolic perturbations caused by competitive
rugby are not well characterized. The complex and integrated nature of the whole body
exercise response means the use of metabolomics as an unbiased systems approach may

Metabolites 2021, 11, 544. https://doi.org/10.3390/metabo11080544 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-0708-2964
https://orcid.org/0000-0002-1908-8677
https://orcid.org/0000-0002-7210-9553
https://doi.org/10.3390/metabo11080544
https://doi.org/10.3390/metabo11080544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11080544
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11080544?type=check_update&version=2


Metabolites 2021, 11, 544 2 of 20

be appropriate to fill the critical gaps in our understanding [7]. Recent insights from
exercise metabolome studies were described in a systematic review from Schranner and
colleagues [8]. A total of 196 metabolites significantly changed within 24 h of a bout of
endurance or resistance exercise in human blood, sweat, urine, and saliva [8]. Significantly
altered metabolites in blood samples after these exercise bouts mapped to alterations in
energy production, amino acid metabolism, and indicators of oxidative stress [9,10].

Blood sampling in any athlete population is challenging and so addressing the utility
of the minimally invasive body fluids urine and saliva should be investigated for future use
in these populations [11,12]. Significant challenges remain in determining the suitability of
such easily accessible biofluids, and it has been warned that the concentration of biomarkers
in saliva and blood cannot be used interchangeably [13]. Whilst the comparison of lactate
levels for example, in both biofluids is better in trained athletes, they do exhibit a differing
response to maximal exercise [14].

Nevertheless, saliva and urinary metabolome analyses have been employed to investi-
gate performance testing in soccer players [15], pre- and post-match play [16], and during
a season to examine fatigue [17] or physical load [18] as well as in basketball throughout
match play [19]. Recent work in youth soccer analyzed blood plasma, urine, and saliva
to observe the effect of short-term physical activity upon the metabolome [20]. In addi-
tion to the synchronous analysis of multiple biofluids, it is also crucial to investigate the
recovery period beyond 24 h as no exercise metabolomics research has examined this to
date [8]. It is also paramount in this rugby population because the secondary muscle
damage, experienced as delayed onset muscle soreness (DOMS), and accompanied by
inflammation and satellite cell activity, peaks between 24–48 h post-match [21]. Previous
work investigating inflammatory cell signaling molecules and immunoendocrine responses
have gained insight measuring at these extended timepoints [22–26].

Taken together, our overarching objective is to capture the metabolic fluctuations
that occur in response to elite rugby union match play prior to, and in the days after the
cessation of the match, which will allow us to generate new hypotheses around athlete
recovery after competitive match play (Figure 1). Moreover, this is the first research to
investigate the blood, urine and saliva body fluids in an elite athletic population and will
provide a novel view of collision-based team sport upon the metabolome.
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Figure 1. Schematic overview of the study design. (A) Participants (n = 7) began the study at GD-2 
and completed a whole match week schedule of rugby specific sessions, resistance training and rest. 
(B) Biofluids sample processing. Participants provided samples of blood, urine, and saliva every 
morning apart from the GD sample which was taken immediately post-match play. Samples were 
processed immediately with timings rigorously repeated each day. Biofluids were then frozen for 
later analysis. (C) Dietary intake for all seven days using the Snap’n’Send method, with all GPS and 
load data were collated. This was all analyzed to further translate changes to the metabolome. (D) 
Sample preparation and analysis by 1H-NMR. Spectra were acquired and then peaks assigned using 
Chenomx. Full spectrum parameter sets are available with the data deposited at MetaboLights pub-
lic repository (ID number MTBLS2967). (E) Statistical analysis. Univariate and multivariate data 
analysis was performed in R to elucidate key metabolites between all sample timepoints. Metabo-
Analyst 4.0 pathway enrichment analysis was then carried out with those statistically significant 
and key discriminatory metabolites. Figure created using BioRender. 

  

Figure 1. Schematic overview of the study design. (A) Participants (n = 7) began the study at GD-2 and completed a whole
match week schedule of rugby specific sessions, resistance training and rest. (B) Biofluids sample processing. Participants
provided samples of blood, urine, and saliva every morning apart from the GD sample which was taken immediately
post-match play. Samples were processed immediately with timings rigorously repeated each day. Biofluids were then
frozen for later analysis. (C) Dietary intake for all seven days using the Snap’n’Send method, with all GPS and load data
were collated. This was all analyzed to further translate changes to the metabolome. (D) Sample preparation and analysis
by 1H-NMR. Spectra were acquired and then peaks assigned using Chenomx. Full spectrum parameter sets are available
with the data deposited at MetaboLights public repository (ID number MTBLS2967). (E) Statistical analysis. Univariate and
multivariate data analysis was performed in R to elucidate key metabolites between all sample timepoints. MetaboAnalyst
4.0 pathway enrichment analysis was then carried out with those statistically significant and key discriminatory metabolites.
Figure created using BioRender.
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2. Results

This section will be divided in to the ‘acute’ changes to the metabolome analyzed uti-
lizing the samples gathered immediately after match play, and the ‘recovery’ period which
compares the fasted samples from the day preceding (GD−1) with the days after match
play. Dietary intake was analyzed for every day to ensure specific metabolite appearance
and pathways potentially related to macronutrient intake could be accounted for.

2.1. Dietary Intake

Macronutrient and energy intakes are reported here as mean (±SD) for the week with
a more detailed Table S1 od daily intakes available in the supplementary material. There
was no difference in daily protein intake 2.39 ± 0.33 g/kg (p = 0.3743), and fat intake
1.16 ± 0.15 g/kg (p = 0.3666) across the match week. There were significant differences
in carbohydrate intake across the days of the match week 3.17 ± 0.37 g/kg (p < 0.0001).
Intake on GD−1 (4.32 ± 0.89 g/kg) and GD (5.62 ± 0.85 g/kg) were significantly higher
than every other day and GD itself was higher than GD−1 (p = 0.0032). This pattern was
mirrored in total energy with a mean intake of 3323 ± 630 kcal/day across the week.

2.2. Acute Changes to the Metabolome Post Match Play

Univariate analyses yielded four significant metabolites (alanine, citrate, and two
unidentified saccharides) in the GD samples in serum. Multivariate analyses of all biofluids
generated seven high quality PLS-DA models which identified the key discriminatory
metabolites which went forward to pathway enrichment analyses and are displayed in
Table 1.

Table 1. Metabolites identified as key discriminators between samples collected immediately post-match play (GD) and the
GD−1, GD+1, and GD+2 timepoints via PLSDA modelling were then put forward for pathway enrichment analysis using
MetaboAnalyst 4.0. The unadjusted ranked p-values are displayed here.

Biofluid Acute Pathways
Timepoint Comparison (Unadjusted p-Value)

Metabolites Included
GD−1 vs. GD GD vs. GD+1 GD vs. GD+2

Blood Serum

Glucose-Alanine
Cycle 0.0019 0.0019 0.0025 D-Glucose, L-Glutamic acid,

L-Alanine

Urea Cycle 0.0022 0.0193 0.0032 L-Glutamic acid, L-Alanine,
L-Arginine, L-Glutamine

Warburg Effect
(aerobic glycolysis) 0.0050 0.0050 0.0075

Citrate, D-Glucose,
L-Glutamic acid, Lactate,

L-Glutamine
Valine, Leucine,
and Isoleucine
Degradation

0.0301 0.0301 0.0087
L-Glutamic acid,

L-Isoleucine, L-Leucine,
L-Valine, Acetoacetate

Phenylalanine and
Tyrosine

Metabolism
0.0175 0.0225 Acetoacetate, L-Glutamic

acid, L-Tyrosine

Arginine and
Proline

Metabolism
0.0272 Creatine, L-Glutamic acid,

L-Proline, L-Arginine

Ammonia
Recycling 0.0252 0.0252 0.0321 L-Glutamic acid,

L-Histidine, L-Glutamine

Urine Tryptophan
Metabolism 0.0051 0.0132

Formic acid, L-Alanine,
Serotonin, L-Kynurenine,

Kynurenic acid,
5-Hydroxyindoleacetic acid,

Xanthurenic acid,
L-Tryptophan,

N-Acetylserotonin



Metabolites 2021, 11, 544 5 of 20

Table 1. Cont.

Saliva

Urea Cycle 0.0254
L-Glutamic acid, L-Alanine,

L-Aspartic acid,
L-Glutamine

Glucose-Alanine
Cycle 0.0129 D-Glucose, L-Alanine,

L-Glutamic acid
Ketone Body
Metabolism 0.0129 0.012 Acetoacetic acid, Succinic

acid, Acetone

Ammonia
Recycling 0.0353

L-Glutamic acid, L-Aspartic
acid, Urocanic acid,

L-Glutamine

2.2.1. Meeting the High Energy Demands of Elite Rugby Union

The high energy demands of this sport are demonstrated by the inclusion of gly-
colysis, glucose-alanine cycle, and pathways associated with amino acid degradation
being highly ranked in both serum and saliva samples immediately post-match (Table 1,
Figures 2 and 3).
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Figure 2. Heatmap of metabolites identified as significant via univariate analysis and as key discrimi-
nators between timepoints via PLSDA modelling in blood serum samples. The fold change calculated
from the GD−1 sample is displayed as the natural logarithm to indicate an increase (greater than 0,
red) or decreased (less than 0, blue).
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Two unidentified saccharides were significantly elevated in the GD serum samples 
(p = 0.030 and p < 0.0001) due to the ingestion of carbohydrate gels and drinks. Conversion 
of pyruvate into lactate ensures glycolysis can continue, explaining the serum lactate peak 
immediately post-match (Figure 2). Higher salivary pyruvate and lactate were also key 
discriminators in acute PLSDA models (Figure 3). Univariate analysis identified serum 
citrate (p = 0.032) as significantly increased at the GD sample, together with increases in 
serum acetate, and salivary TCA cycle intermediaries explaining the key pathways iden-
tified for energy provision during the match.  

Serum alanine, using univariate analysis was significantly increased at GD compared 
to GD−1 (p < 0.0001). The pathway enrichment for both serum and saliva had the glucose-
alanine cycle ranked most highly, indicating gluconeogenesis as required to meet the total 
energy needs. 

The key discriminatory metabolites associated with the ketone body metabolism 
pathway identified in saliva are succinic acid, acetoacetate, and acetone. Salivary acetone 
is much reduced compared to GD−1 levels, as are serum acetoacetic acid and 3-hydroxy-
butyrate. This indicates a reduced fatty acid oxidation during match play. 
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Both the urea cycle and ammonia recycling are highly ranked pathways in serum and 
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Figure 3. Heatmap of metabolites identified as key discriminators between timepoints via PLSDA
modelling in saliva samples. The fold change calculated from the GD−1 sample is displayed as the
natural logarithm to indicate an increase (greater than 0, red) or decreased (less than 0, blue).

Two unidentified saccharides were significantly elevated in the GD serum samples
(p = 0.030 and p < 0.0001) due to the ingestion of carbohydrate gels and drinks. Conversion
of pyruvate into lactate ensures glycolysis can continue, explaining the serum lactate peak
immediately post-match (Figure 2). Higher salivary pyruvate and lactate were also key
discriminators in acute PLSDA models (Figure 3). Univariate analysis identified serum
citrate (p = 0.032) as significantly increased at the GD sample, together with increases
in serum acetate, and salivary TCA cycle intermediaries explaining the key pathways
identified for energy provision during the match.

Serum alanine, using univariate analysis was significantly increased at GD compared
to GD−1 (p < 0.0001). The pathway enrichment for both serum and saliva had the glucose-
alanine cycle ranked most highly, indicating gluconeogenesis as required to meet the total
energy needs.

The key discriminatory metabolites associated with the ketone body metabolism
pathway identified in saliva are succinic acid, acetoacetate, and acetone. Salivary ace-
tone is much reduced compared to GD−1 levels, as are serum acetoacetic acid and
3-hydroxybutyrate. This indicates a reduced fatty acid oxidation during match play.

2.2.2. Amino Acid Metabolism

Both the urea cycle and ammonia recycling are highly ranked pathways in serum
and saliva acutely post-match (Table 1). All serum amino acids apart from alanine, histi-
dine and tyrosine are reduced in the GD samples (Figure 2). The metabolites of leucine;
2-hydroxyisocaproate, and 3-hydroxy-3-methylglutarate are also identified in urine to
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increase in the GD samples, further confirming the degradation of this branched chain
amino acid (BCAA) (Figure 4).
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Figure 4. Heatmap of metabolites identified as key discriminators between timepoints via PLSDA
modelling in urine samples. The fold change calculated from the GD−1 sample is displayed as the
natural logarithm to indicate an increase (greater than 0, red) or decreased (less than 0, blue).

The acute changes in the urinary metabolome identified tryptophan metabolism as the
key pathway (Table 1). The changes in associated metabolites are visualized in Figure 4 and
the potential mechanisms induced by exercise shown in Figure 5. There is an acute shift for
downstream metabolites of the kynurenine pathway such as kynurenate (KA), quinolinate
(QA), and xanthurenate to increase, with a marked reduction in kynurenine (KYN).

2.2.3. Acute Oxidative and Metabolic Stress

The organic acid 2-hydroxybutyrate peaks acutely post-match in serum. Whilst
salivary purines, xanthine and hypoxanthine are at their lowest levels in the GD samples.

2.3. Changes in the Metabolome in Recovery from Match Play

Univariate analysis identified one metabolite, alanine as significantly (p = 0.0019)
increased at GD+2, in the recovery period. Multivariate analysis across all biofluids
generated seven high quality models (ROC > 0.75) via PLSDA. The metabolites identified
as key discriminators (VIP > 1) between samples were put forward for pathway enrichment
analysis, the results of which are displayed in Table 2.
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oxygenase (IDO); kynurenine 3-monooxygenase (KMO); kynurenine aminotransferase (KATs); pro-
liferator-activated receptor-gamma coactivator-1alpha (PGC-1α). Urinary metabolites identified via 
multivariate analysis are in bold. Figure created with BioRender. 
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Figure 5. Potential mechanisms of tryptophan (TRP) metabolism and the kynurenine (KYN) pathway
induced by exercise. Redrawn from [27] with additional information and the specific metabo-
lites identified as key discriminators via PLSDA modelling in the acute post-match and recovery
period. Kynurenate (KA); quinolinate (QA); oxidized form of nicotinamide adenine aminotrans-
ferase (NAD+); 3-hydroxykynurenine (3-HK); tryptophan 2,3-dioxygenase (TDO); indolamine 2,3-
dioxygenase (IDO); kynurenine 3-monooxygenase (KMO); kynurenine aminotransferase (KATs);
proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α). Urinary metabolites identified
via multivariate analysis are in bold. Figure created with BioRender.

Table 2. Results of pathway enrichment analysis using the key discriminatory metabolites generated via PLSDA modelling.
The unadjusted ranked p-values are displayed here.

Biofluid
Recovery
Pathways

Timepoint Comparison (Unadjusted p-Value)
Metabolites Included

GD−1 vs. GD+1 GD−1 vs. GD+2 GD+1 vs. GD+2

Blood Serum

Glucose-Alanine
Cycle 0.0182 0.0005 0.0182 D-Glucose, L-Alanine

Galactose
Metabolism 0.0224 D-Glucose, D-Mannose,

Myo-inositol
Glutathione
Metabolism 0.0314 L-Glutamic acid, L-Alanine

Glycine and Serine
Metabolism 0.0420 L-Glutamic acid, L-Alanine,

L-Threonine
Valine, Leucine,
and Isoleucine
Degradation

0.0438 L-Glutamic acid,
L-Isoleucine, L-Valine.

Pyruvate
Metabolism 0.0414 Acetic acid, Lactate,

Propylene glycol

Urine Tryptophan
Metabolism 0.0349

Indoleacetic acid, Quinolinic
acid, Serotonin,

L-Kynurenine, Kynurenic
acid, L-Tryptophan.
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Table 2. Cont.

Saliva

Urea Cycle 0.00333
L-Glutamic acid, L-Alanine,

L-Aspartic acid, Urea,
Glutamine

Aspartate
Metabolism 0.00772 0.0309

Acetic acid, L-Glutamic acid,
L-Aspartic acid,

L-Glutamine, Guanosine
triphosphate

Glucose-Alanine
Cycle 0.0104 0.00828 D-Glucose, L-Glutamic acid,

L-Alanine, Pyruvic acid

Ammonia
Recycling 0.0275 0.0229

L-Glutamic acid, L-Aspartic
acid, Urocanic acid,

L-Glutamine

Methionine
Metabolism 0.0147

Betaine, Choline, Sarcosine,
L-Methionine,
L-Homoserine

Warburg Effect 0.0477 D-Glucose, L-Glutamic acid,
Succinic acid, L-Glutamine

Gluconeogenesis 0.0282
D-Glucose, L-Lactic acid,
Pyruvic acid, Guanosine

triphosphate

2.3.1. Amino Acid Metabolism

Levels of serum amino acids appear to normalize at GD+1 (Figure 2). Alanine remains
above pre-match levels with citrate, lactate, and acetate. However, between the morning
after the match at GD+1, and the GD+2 timepoint there is a shift denoted by pathways
of glucose-alanine cycle, gluconeogenesis, aerobic glycolysis, BCAA degradation, and
ammonia recycling being ranked highly in serum and saliva (Table 2, Figures 2 and 3).

Serum levels of alanine are significantly higher again (p = 0.019) at GD+2 compared
with GD−1, and the levels of all glucogenic amino acids are reduced. The ketogenic amino
acids leucine and lysine remain at pre-match levels in blood serum.

2.3.2. Markers of Structural Protein Degradation

3-Methylhistidine (3-MH) is a key discriminatory metabolite in both urine and saliva
(Figures 3 and 4). Levels in both biofluids peak at GD+1 with elevated levels in urine at
GD and in saliva at GD+2 also. Collagen metabolites, glycylproline and 4-hydroxyproline
are both elevated in urine post-match and into the recovery period (Figure 4).

2.3.3. Metabolic and Oxidative Stress

Pathway enrichment of the key discriminatory metabolites between GD-1 and GD+2
also identified glutathione metabolism, and glycine & serine metabolism in serum, together
with methionine metabolism in saliva (Table 2). Urinary 3,5-dibromotyrosine peaks in
recovery at GD+1 and is above pre-match abundances in all comparison timepoints.

2.3.4. Fatty Acid Metabolism

Acetoacetate in serum normalizes in recovery with 3-hydroxybutyrate levels staying
well below pre-match concentrations throughout. Serum lipoprotein fractions shift with
reductions in HDL at GD and GD+1, whilst VLDL rises in recovery at GD+2. The urinary
metabolome in recovery exhibits a 21-fold increase of 2-aminoadipic acid (2-AAA).

2.4. Training and Match Demands

Tables 3 and 4 present the training objectives for the match week together with physical
metrics of load. Demonstrating that these athletes are exposed to a training load containing
high-speed running (HSR), very high-speed running (VHSR), high velocity accelerations,
and decelerations comparable to a match day, repeatedly in training. We can conclude
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they are accustomed to the volume and intensity of dynamic high-speed movements as per
match play but not exposed to full collisions in training.

Table 3. The in-season training schedule including session content and physical objectives.

Time Point GD−3 GD−2 GD−1 GD GD+1 GD+2 GD+3 GD+4

Purpose Rest &
Recovery

Intensity
Execute
tactical

specifics at
high

intensity

Team Run
Low

intensity
rehearsal of
game plan

Match Play
Maximal
physical
perfor-
mance

Rest &
Recovery

Installation
Tactical
learning

Overload
run volume

Rest &
Recovery

Resistance
Training
Content

None

Upper
Limb

Strength
(45 min)

None None None

Lower
Limb

Strength
(45 min)

Upper
Limb

Strength
(45 min)

None

Physical
Rugby

Content
None

Specific
Game Prep

(45 min)
Unit Split
(20 min)

Execution
of specific
game plan

at a low
intensity
(35 min)

Individual
& Team

prep.
Rugby

Match Play
(80 min).

None

Low
intensity

attack
shapes and
defensive

system
installation.

(50 min)

High
Intensity

throughout
rugby

specific
drills. (75

min)

None

Table 4. In-Season physical metrics from training sessions and game day throughout the match week. * Significant
difference in pairwise comparison with Gameday (GD) metrics after one-way repeated measures ANOVA and Tukey
post-hoc correction.

Time Point GD−2 GD−1 GD GD+2 GD+3 ANOVA
(p-Value)

Player Load
(sRPE x Time) 600.71 ± 69.72 78.00 ± 13.90 * 533.14 ± 120.32 253.57 ± 173.00

* 512.14 ± 211.79 p < 0.0001

HSR Distance
(m) 164.00 ± 71.65 72.57 ± 25.13 * 198.43 ± 80.05 100.43 ± 86.42 150.29 ± 97.21 p = 0.0327

HSR Efforts (n) 13.57 ± 5.07 7.00 ± 2.27 12.57 ± 3.42 7.57 ± 5.80 8.57 ± 5.04 p = 0.0513
VHSR Distance

(m) 17.00 ± 13.28 0.57 ± 1.40 16.29 ± 21.62 4.86 ± 7.85 17.86 ± 13.14 p = 0.0733

VHSR (n) 1.71 ± 1.28 0.14 ± 0.35 * 1.29 ± 0.88 0.43 ± 0.73 1.29 ± 1.03 p = 0.0007
Accelerations >

3 ms (n) 9.00 ± 2.45 2.00 ± 1.41 * 6.43 ± 0.90 2.71 ± 3.15 3.14 ± 3.31 p < 0.0001

Decelerations >
3 ms (n) 10.29 ± 6.94 3.29 ± 1.67 10.71 ± 5.75 4.29 ± 2.96 5.14 ± 4.52 p = 0.0289

3. Discussion

This is the first research to investigate the metabolome across multiple biofluids in
an elite athletic population and to provide characterization of the metabolic perturbations
caused by competitive rugby union. The acute energy needs of this high intensity sport are
met via glycolysis, the TCA cycle and gluconeogenesis. The recovery period after cessation
of match play and prior to training recommencing sees a re-entry to gluconeogenesis,
coupled with markers of oxidative stress, structural protein degradation, and altered fatty
acid metabolism. This complex and integrated whole-body response allows us to discuss
how best to fuel recovery after collision-based team sports for the first time.

A novel part of our exercise metabolomics research design was the simultaneous anal-
ysis of dietary intake to account for the influence of nutrition on the metabolomic responses
to rugby match play. This was particularly important as we analyzed the metabolome
beyond the previously reported 24 h time point post exercise [8]. Monitoring dietary
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intake is essential to ensure our data can be translated in to the world of applied sports
nutrition [28]. Carbohydrate intake of the players here was periodized with training load
influenced by the ‘Fuel for the work required’ paradigm framework [29], and prioritising
a high intake at GD−1 to ensure high glycogen levels for performance [30]. A target of
6 g/kg carbohydrate may be appropriate on GD−1 to ensure sufficient glycogen and may
be more appropriate than 3 g/kg [30]. Carbohydrates were also consumed during the
match as per ingestion guidelines of 60 g/h [31] in the form of drinks and gels, which
yielded the two significant unidentified saccharides in serum. These athletes did not meet
the upper target of carbohydrate on GD−1 but at 4.32 ± 0.89 g/kg we would not expect
this combined with the high intake on GD pre-, and peri-match to have limited glucose
availability. Nevertheless, this novel insight provides further evidence as to the importance
of carbohydrates for performance. Glycolysis, together with the TCA cycle and glucose-
alanine cycle are the predominant pathways accounting for energy production during
match play. Serum acetate levels do peak at GD and the beta-oxidation of fatty acids could
contribute to this. However, there is no accumulation of acetoacetate or 3-hydroxybutyrate
in serum which would indicate the saturation of β-oxidation as seen previously in pro-
longed endurance exercise [32]. This combined with reduced saliva acetone leads us to
conclude the high intensity nature of elite rugby union reduces the utilization of fatty acids
for energy provision.

Rather, pyruvate conversion to lactate ensures glycolysis can continue, pyruvate can
also enter the TCA cycle to further generate ATP [33]. Lactate is transported to the liver
and converted to glucose to be transported back to the muscle or peripheral tissues [34].
Pyruvate can also be converted to alanine in the muscle via the aminotransferase enzyme,
in turn also converting glutamate to alpha-ketoglutarate [33]. The significant increase in
serum alanine as reported here, has previously been observed within 30 min of exercise [8],
specifically after high intensity training (HIT) rather than isoenergetic, moderate intensity
exercise [9]. This gluconeogenesis is accompanied by amino acid degradation and the
upregulation of the urea cycle and ammonia recycling, evidenced in serum and saliva. It is
important to note that the origin of these amino acids is unclear, as they may be entering
the bloodstream via the gut as the GD samples were not fasted and protein sources were
consumed at breakfast and pre-match meal. Glutamate in the muscle can be converted to
glutamine, transported in the blood to the liver to be converted back into glutamate to aid
in the ammonia recycling to supply the alanine aminotransferase reaction for alanine to
pyruvate conversion, and then the ammonia feeds into the urea cycle for detoxification [34].
The rise in serum tyrosine levels can be explained by the conversion of phenylalanine into
tyrosine during exercise [35]. Amino acid metabolism during prolonged exercise appears in
the early phases to create a net consumption of glutamate from the muscle to replenish TCA
cycle intermediates [36]. The formation of α-oxoglutarate, succinyl-CoA, and oxaloacetate
from glutamate, valine, and isoleucine are mechanisms for anaplerosis in exercise which
may explain a number of the reductions in serum amino acids witnessed here [35].

The urinary metabolome further supports how the system copes with the high energy
demands. Post-match there was a drop in tryptophan and an increase in serotonin together
with the downstream products of the kynurenine (KYN) pathway, the neuroprotective
kynurenate (KA), and quinolinate (QA) which is associated with excitotoxicity [37]. The de
novo synthesis of NAD+ can occur from QA, and may be a crucial step in the high energy
demands of exercise to improve energy homeostasis [38] explaining the marked shift in the
QA:KYN ratio post-match.

Overall, the intensity and duration of elite rugby union match play cause acute
metabolite perturbations indicative of both oxidative and metabolic stress whilst fulfill-
ing the high energy demands. The reduced salivary purine profiles due to oxidative
stress have been observed post exhaustive exercise in male athletes [39]. The increase in
serum 2-hydroxybutyrate post-match is indicative of the cumulative stress upon energy
systems [40] and may be due to increased catabolism of L-threonine [41] and glutathione
synthesis [42] in response to oxidative stress. Transient increases have also been witnessed
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after HIT exercise [9] and proposed as a marker of dysglycemia [43]. In non-diabetic
populations it is an early biomarker for both insulin resistance and impaired glucose regu-
lation [44]. This is particularly interesting as the changes to the metabolome in recovery
that follow, implicate changes in glucose regulation and gluconeogenesis. The pathways
of glutathione metabolism, and glycine and serine metabolism are ranked highly in re-
covery, with reductions in serum L-threonine indicative of increased demands for hepatic
glutathione production [42] as this oxidative stress continues in the days after match play.

As we have shown previously [6], in training, these athletes are exposed regularly to
the high intensity activities of the sport, but without full collisions. In the days following
match play they are therefore recovering from muscle damage due to unaccustomed activi-
ties and the collisions inherent with tackling, carrying, and contesting the ball which result
in EIMD and IIMD [4], and it is the resulting metabolic perturbations we are examining
herein. Whatever the primary mechanism of ultrastructural damage, the cascade of events
comprising the secondary mechanism is triggered by an acute inflammatory response due
to the action of immune cells such as neutrophils and macrophages [45].

The increased cytokine concentrations of IL-6 [24,25], IL-8 and IL-10 [26] have been
profiled in this population post-match play. The realization of this potential inflammatory
response on the urinary metabolome is in the tryptophan metabolism pathway. Pro-
inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α [46,47] cause
an initial shift in the KYN pathway, but then in recovery as the need for de novo synthesis of
NAD+ abates, QA levels reduce and TRP, KYN, and KA remain elevated above pre match
levels. The continued conversion of KYN to KA can be due to peroxisome proliferator-
activated receptor-γ family of transcriptional coactivators, specifically PGC-1α, whose
expression is induced by exercise and plays a crucial role in skeletal muscle adaptation [48].

The inflammatory activity may also be responsible for the reductions in serum HDL
levels at GD and GD+1, whilst VLDL rises in the GD+2 and GD+3 samples are also
associated with cytokine activity [49]. The increase in VLDL production and secretion is
a result of: increased hepatic fatty acid synthesis, increase in transport of fatty acids to
the liver and a decrease in fatty acid oxidation in the liver [49]. This potential change in
fatty acid oxidation is supported by the large increase in 2-AAA in the urinary metabolome
peaking at GD+1. This product of lysine degradation and predictive marker of type-2
diabetes in normoglycemic individuals [50], is associated with adipogenesis, and it is
proposed that in early insulin resistance it upregulates insulin secretion to maintain normal
glucose homeostasis which can induce abnormal gluconeogenesis [51]. We therefore
propose that fatty acid oxidation is impaired in the recovery period from rugby union
match play due to the inflammatory response to muscle damage.

Examination of the immune response post elite rugby union has revealed significant
increases in total leukocytes, specifically neutrophils and monocytes peaking acutely post-
match play and remaining significantly elevated compared to baseline measures [24,25].
Increases in lymphocytes, specifically significant increases in CD4+ have also been wit-
nessed at the GD+1 timepoint [24]. The increased urinary 3,5-dibromotyrosine observed
herein, peaking at GD+1 is indicative of eosinophil activity and may indicate protein oxida-
tion of injured tissue [52]. Any reducing or blocking of this initial immune cell response
can interfere in regeneration and subsequent adaptive remodeling of muscle tissue [45].
Neutrophils respond to stimuli by enhancing their glucose uptake and increasing expres-
sion of glucose transporters suggesting a functional dependence of glucose in modulating
their function, especially phagocytic events [53]. Activated CD4+ and CD8+ T cells both
display elevated glycolysis in vivo, critical for rapid growth and proliferation [54].

The reduced serum levels of glucogenic amino acids in recovery, coupled with the
pathways identified as highly ranked in saliva and serum lead us to propose that this
requirement for glucose due to the secondary response to muscle damage has not been
met via dietary intake. Similar dietary carbohydrate periodisation has been reported
previously [55] with a mean weekly intake of 3.4 g/kg compared to our 3.2 g/kg here,
within the intakes across the literature for this population [56]. The intake of carbohydrate
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on GD+1 was below the mean for the week at 2.9 g/kg, again like the earlier work in
an elite rugby union population in-season reporting 3.1 g/kg [55]. This earlier work
recorded similar energy intakes to those observed here and reported a predicted balance
of energy utilizing wearable devices to measure TEE [55]. There are limitations to these
measures of TEE, but our findings here suggest that energy availability generally may not
be as crucial for recovery as carbohydrate availability specifically. Revisiting our previous
work we can calculate the significant increase in fasted carbohydrate oxidation at rest to
be from 228 g/day the morning prior to match play, up to 319 g/day at GD+2 [6]. We
propose increasing dietary carbohydrate intake at GD+1 to account for this increased
resting requirement, normal daily activity and any light recovery modalities would result
in a significant increase on the intake observed here and in previous observations of this
population. The hypothesis if this carbohydrate requirement is met, being a reduction in
amino acid degradation and gluconeogenesis activity.

The insight provided here in the recovery period, utilizing fasted samples demon-
strates the potential ramifications of amino acid degradation to provide fuel for this immune
response. 3-Methylhistidine (3-MH) has been purported as a marker of myofibrillar protein
degradation [57] leading to its release, and excretion in urine as it cannot be re-utilized [58].
Salivary 3-MH has been observed after basketball match play [19] and in male soccer
players identified as fatigued after three consecutive days of match exposure [17]. Here
urinary and salivary 3-MH are key discriminatory metabolites with increases at GD+1,
and in saliva at GD+2 also, compared with pre-match values. Elevated urinary levels of
the collagen metabolite hydroxyproline have been recorded after eccentric activities [59]
with the question of whether this is due directly to the unaccustomed exercise or the
ensuing inflammatory response still to be answered. This evidences the potential that the
degradation of amino acids to meet glucose requirements causes a loss to the structural
integrity of connective tissue and muscle protein in the recovery period.

Whilst ergogenic aids and functional foods may provide acute nutritional strategy for
muscle damage [60], recent work from our group demonstrated concentrated polyphenol
rich supplementation provided no enhanced benefit compared to dietary intake of whole
food sources [26]. It would seem most pertinent therefore that to maximize the immune
cell response and allay the inflammation, allowing efficient regeneration and remodeling of
damaged tissue, glucose provision should be the priority. Future work should investigate
interventions prescribing higher carbohydrate intakes at GD+1. Providing athletes with
meals to consume 5–6 g/kg body mass for GD+1. Examination of the gluconeogenesis
metabolic pathways, together with markers of protein degradation and adipogenesis
would provide insight as to whether these intakes higher than previously recorded in this
population, allay potential negative effects upon recovery, reducing muscle protein and
connective tissue degradation. Stratification of player position was also not possible in
this sample size and future targeted metabolite studies that consider positional collision
activities will test the hypotheses presented here further.

In conclusion, novel insight is provided into how energy systems cope with demand
acutely around rugby match play, but also in the recovery days prior to training recom-
mencing. Rather than the availability of energy being the priority, a potential reduction in
the ability to oxidize fatty acids, coupled with glucogenic amino acid degradation with
upregulated gluconeogenesis leads us to propose that the effective recovery from muscle
damaging collisions during elite rugby union match play, is dependent upon the availabil-
ity of glucose. If sufficient glucose from dietary carbohydrate can be provided in the day
after match play this may facilitate the regeneration and remodeling of damaged muscle
tissue optimally and prevent the oxidation of amino acids which may also be crucial for
the retention of muscle mass and connective tissue integrity. This would translate into the
periodisation of carbohydrate throughout the competitive microcycle in contact sports to
be re-evaluated to prioritize carbohydrate in recovery whilst balancing energy intake to
maintain optimal body composition and performance throughout a season. Should we
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expand the ‘Fuel for the work required’ paradigm in collision-based team sports to include
‘Fuel for the damage induced’?

4. Materials and Methods
4.1. Participants and Research Design

Following ethical approval and informed consent, seven healthy elite rugby union
players were recruited for this study, all members of an English Premiership squad (mean
± SD, age; 22.0 ± 2.7 years, body mass; 102.5 ± 13.7 kg). All participants gave full written
consent prior to commencing the study. Ethical approval (19/SPS/039) was granted by the
university research ethics committee at Liverpool John Moore’s University (Liverpool, UK).

Venous blood, urine, and saliva samples were collected throughout a competitive
match week during the early part of the competitive season. Time points throughout the
study are described relative to game day (GD) using +/−symbols for the days preceding
(−) and days after (+) GD. Due to the timing of selection defining when recruitment
could occur, the first measurement was taken at GD−2. Figure 1 shows the study design
and workflow.

4.2. Training and Match Demands

Internal loads for each training day and the game day were assessed by the session
rating of perceived exertion (sRPE) using a modified Borg scale [61]. This RPE of the
training session was multiplied by the training duration to calculate a player load in
arbitrary units (sRPE [61]. External demands of all rugby training sessions and match play
were recorded using micro-technological units worn by players containing GPS (10 Hz)
and accelerometer (100 Hz) (Catapult Innovations, Melbourne, Australia). Data were
downloaded and analyzed using Catapult Sprint software (Catapult Innovations,). The
total distance covered, number of high-speed efforts (>60% positional average) and the
number of very high-speed efforts (>80% individual average) were recorded [62,63]. The
GPS sampling frequency of 10 Hz is the most reliable in team sports measuring high-
speed running activities [64]. Internal and external loads were recorded for both training
and match play throughout the week. Tables 3 and 4 detail the physical content of the
match week.

4.3. Dietary Intake

Dietary intake was recorded using the participants mobile phone device incorporating
the ‘Snap’n’Send’ method [65]. The athletes were educated in their nutrition requirements.
A wide range of meals and snacks designed by the team nutritionist were provided at the
training facility. Their choices and portions in the club dining facility and whilst away from
there were self-selected. The dietary analysis software Nutritics (Nutritics Ltd., Dublin,
Ireland) was used by a registered sports and exercise nutritionist (SENr) to analyze food
intake over the match week. Analyzing dietary intake has also allowed us to account for
metabolites associated with the ingestion of foods and any dietary supplements in our
conclusions [66].

4.4. Biofluid Sample Collection

Biofluid samples were collected every morning apart from the GD time point when
the samples were collected within 30 min of the final whistle post-match play. Post-waking,
participants reported to the training ground in a fasted state and provided a venous blood,
urine, and saliva sample. A fasted sample was not taken on the morning of the match as
this would likely reduce the number of players willing to participate and be perceived as
too much disturbance to their routine. It should be noted authors have also refrained from
this due to concerns around metabolite changes caused by the stress of venipuncture and
have used the day prior as the baseline measure [32].

Whole blood samples (10 mL) were drawn from a superficial vein located in the
antecubital fossa of the forearm using standard venipuncture techniques. Samples were col-
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lected using serum tubes (Vacutainer Systems, Becton Dickinson, Franklin Lakes, NJ, USA)
which did not contain clotting gels or additives as these may interfere with metabolomics
analysis [67]. Samples clotted at room temperature (18–22 ◦C) for 40 min prior to centrifu-
gation at 1600× g for 15 min. Urine was collected and centrifuged at 1600× g for 15 min
in 15 mL urine centrifuge tubes (Sarstedt, Leicester, UK) which contained no citrate or
other stabilizers. Saliva samples were collected using the previously validated Salivette
swabs (Salivette Sarstedt, Nubrecht, Germany) without additives, centrifuged at 1500× g
for 15 min [15].

All samples were aliquoted into 2 mL cryovials (Fisherbrand, Loughborough, UK)
and immediately frozen at −24 ◦C. Upon completion of the research study all samples
were transferred to −80 ◦C for longer term storage, prior to metabolomics processing and
spectral analysis. The samples were used within the nine month guide for storage best
practice [68]. The time taken to process the samples each day was recorded and rigorously
replicated to ensure reduced between-sample variability as a result of sampling and the
highest possible sample quality [69].

4.5. NMR Spectroscopy

NMR spectroscopy was preferred here due to its ability to attenuate the signals of
higher molecular weight metabolites [70], confidently identify and examine the more abun-
dant compounds of all three biological fluids [71] whilst being non-destructive and highly
reproducible [72], despite being less sensitive than mass spectrometry techniques [70].

4.6. NMR Sample Preparation

Aliquots were thawed and 500 µL of serum was diluted to a final volume contain-
ing 50% (v/v) serum, 40% (v/v) dd 1H2O (18.2 MΩ), 10% (v/v) 1 M PO4

3− pH 7.4 buffer
(Na2HPO4, VWR International Ltd., Radnor, PA, USA and NaH2PO4, Sigma-Aldrich,
Gillingham, UK) in deuterium oxide (2H2O, Sigma-Aldrich) and 1.2 mM sodium azide
(NaN3, Sigma-Aldrich). Samples were vortexed for 1 min, centrifuged at 13,000× g at
4 ◦C for 2 min and 600 µL transferred into 5 mm outer diameter NMR tubes (Bruker,
Coventry, UK).

Urine & saliva samples were thawed at room temperature before addition of 500 µL
to 500 µL of 1 M phosphate buffer (Na2HPO4 and NaH2PO4) at pH7.4 with 20% 2H2O,
200 µM TSP and 2.4 mM sodium azide. The samples were vortexed for 30 s prior to
5 min centrifugation at 21,500× g and 4 ◦C before transferring 600 µL of sample to Bruker
SampleJet 5 mm (outer diameter) NMR tubes. The final concentration in the NMR tube
was 50% urine or saliva, 10% 2H2O, 1.2 mM sodium azide and 100 µM TSP.

4.7. NMR Acquisition

All spectra were acquired using a 700 MHz Bruker Advance IIIHD spectrometer
equipped with a TCI cryoprobe and chilled Sample-Jet autosampler. Blood serum and saliva
samples were analyzed via 1D 1H NMR standard experiment for selective observation of
low molecular weight components with optimal water suppression was acquired, pulse
sequence is vendor supplied Carr-Purcell-Meiboom-Gill (CPMG) sequence (cpmgpr1d,
Bruker). CPMG spectra were acquired with 32 transients a 30 ppm spectral width, 64 k
points, 9.6 ms echo time and a 3.1 s acquisition time and a 4 s interscan delay. Blood serum
spectra were acquired at 37 ◦C in accordance with best practice [69].

Urine and saliva 1D 1H-NMR spectra were acquired at 25 ◦C to facilitate analysis
via Chenomx Standard library. Urine spectra were analyzed via 1D 1H-NMR standard
pre-saturation experiment for optimal water suppression (vendor supplied noesypr1d).
NOE spectra were acquired with 32 transients a 25 ppm spectral width, 96 k points, 2.7 s
acquisition time and a 4 s interscan delay.

Full spectrum parameter sets are available with the data deposited at MetaboLights
public repository ID number MTBLS2967 [73].
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4.8. Spectral Processing and Annotation

All spectra were analyzed to ensure conformity with the recommended minimum
reporting standards set out by the Metabolites Standard Initiative (MSI) [74,75]. Serum
spectra were aligned to glucose anomeric peak at 5.24 ppm whereas urine and saliva spectra
were aligned to the TSP peak at 0 ppm. spectra underwent automated data processing,
Fourier transformation and phasing carried out in Topspin v3.6 software using standard
Bruker routines (apk0.noe).

Serum and saliva spectral peaks were annotated using a combination of Chenomx
standard spectra and in house metabolite libraries with pattern files produced for both
biofluids to enable spectral binning. Serum spectra were integrated into 160 bins with
104 (65%) annotated corresponding to 38 metabolites and 56 unknown metabolite bins.
Saliva spectra were integrated into 251 bins with 134 (53%) annotated corresponding to
82 metabolites and 117 unknown metabolite bins. Spectra were binned or bucketed per
peak into a matrix of metabolite peak intensities using tameNMR. Bin annotation and
binned data is available with the dataset in Metabolights (MTBLS2967).

Chenomx v8.2 software was used to perform metabolite annotation on the individual
urine spectra using automated fit all metabolites routine. Of the 251 metabolites annotated
in Chenomx for the 117-sample set 46% (13,696 values) were missing. To provide a missing
value estimation for this dataset metabolites with too many missing values <50% were
removed—this reduced the number of annotated metabolites to 131. The remaining missing
values were replaced by an estimate of the limit of detection corresponding to 0.2 of the
minimum positive value of each variable. Manual confirmation of identities where possible
to in-house standards for metabolite peaks found to be significantly variable.

4.9. Data Analysis

Univariate and multivariate analyses was performed using R (Version 3.6.1, The R
foundation for statistical computing). The scripts used were provided by the Computational
Biology facility at the University of Liverpool (UK). Prior to univariate analysis, PQN
normalization was performed as this is reported to be the most robust method in the
analysis of complex biofluids [76,77]. Further to this, data were scaled and mean-centered
prior to multivariate analysis. Pareto scaling with mean centering was performed as the
preferred method to ensure the ability to identify small biologically significant variations in
metabolites [78]. Univariate analysis was performed on the PQN normalized spectra across
the week using a one-way ANOVA using a Benjamini-Hochberg (FDR) method of multiple
correction at a significance level of p < 0.05. A post-hoc Tukey analysis provided pairwise
comparisons of specific time points. Partial least squares discriminant analysis (PLS-
DA) was used for multivariate analysis, specifically identifying differences in metabolites
between time points. Models generated via PLS-DA were evaluated using a random 30%
of the data held back to test the model and produce receiver operator characteristic (ROC)
scores. Specific metabolites within each model were only used for further analysis if the
Variable Importance in Projection (VIP) scores were above 1.00 and ROC scores ≥0.75.

Pathway analysis was performed using MetaboAnalyst (Enrichment analysis, version
4.0, metaboanalyst.ca) [79]. Ranked p values are reported here where p < 0.05 without
adjustment. Only specific metabolites identified using PLS-DA between time-points were
entered into the enrichment analysis. Heatmaps were generated incorporating metabolites
identified from univariate and multivariate analysis. The fold change is reported relative
to GD-1 and then natural log is displayed.

Statistical analysis of the physical loads and dietary intake were performed using
SPSS (Version 26 for Windows, SPSS Inc., Chicago, IL, USA) and GraphPad Prism (Version
8.4.3 for Windows, GraphPad Software, San Diego, CA, USA). All data are presented as
mean (±SD), and a one-way repeated measures ANOVA was used to compare all measures
across the week. The test of within subjects’ effects provided values for Mauchly’s test
for sphericity. If this was violated, then a Greenhouse-Geisser correction was used. The
difference between means was tested at a significance level of p < 0.05. A Tukey correction
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post hoc was used to compare specific time points when the ANOVA revealed a significant
difference between measures over the week.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080544/s1, Table S1: Macronutrient intake for each day of the match week displayed
relative to body mass (g/kg) and overall energy intake as total kilocalories (kcal).
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