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In the last decade, the field of metabolomics has developed tremendously: it is now
possible to routinely measure a wide range of metabolites for many specimens at reduced
costs, opening the door to many exciting experiments. To match these developments,
alternative statistical methods are required. This special issue was commissioned to offer a
source of novel data analysis methods for metabolomics. Developments are reported in the
whole range of the metabolomics pipeline, ranging from data preprocessing, “conventional”
chemometrical analysis, and novel statistical procedures for outlier detection, network
analysis, and fusion of omics data.

The paper by Seo Lin Nam [1] explores different data normalization strategies to
improve urinary metabolomics analysis, and an improved procedure is proposed. Impor-
tantly, they demonstrate the impact of data processing on subsequent analysis. The risks of
using default (normalization) approaches are highlighted.

Traditionally, techniques from chemometrics have been used for analysis of metabolomics
data. Component models are often applied due to their ease of interpretation in score
and loading plots. Importantly, Bevilacqua et al. show for PLS-DA that score plots may
give misleading interpretations [2] and that these can be resolved by using cross-validated
score plots. Yamamoto et al. show how more easily interpretable loadings are obtained in
PCA by orthogonal smoothed PCA (OS-PCA) and propose a t-statistic for showing which
metabolites contribute significantly to the PCA model loading [3]. Tinnevelt et al. focus
on identification of significant metabolites in PLS-DA loadings and show that variable
importance measures such as significance multivariate correlation offer better performance
compared to penalized approaches such as sparse PLS-DA [4].

Component models make use of dimension reduction to deal with high-dimensional
metabolomics data. Nowadays, many other regularization approaches are also employed
in metabolomics for this purpose. In particular, the special issue highlights how shrinkage
can be employed in metabolomics for improved effect size estimation and outlier detection.
Brini et al. discuss the shrinkage of the matrix of the pairwise correlations between
metabolites. They propose a shrinkage-based estimator for the Mahalanobis distance and
demonstrate how this method may be used for outlier detection in one-class modeling [5].
Gillies et al. employ a multi-level Bayesian model for shrinkage of effect sizes while
incorporating the uncertainty of the missing value imputation in the analyses [6]. They
demonstrate by simulation that this approach more accurately estimates the effect sizes of
significant metabolites. In addition, in case of missing data, the Bayesian model results in
accurate imputation of its value.

Another approach to dealing with high-dimensional metabolomics data is to group
related metabolites and test for significance of experimental factors at the group level. Such
pathway analysis is explored by McLuskey et al. using a novel approach, PALS, which is
based on pathway level analysis of gene expression data [7]. As an example, metabolites
are grouped as metabolic pathways and by shared mass spectrometry fragmentation
patterns. It is shown that PALS is more robust to missing features and noise compared to
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alternative methods. Similar to [1], it is highlighted that normalization can have a significant
outcome on the analysis, and suggestions are made how PALS can be used to further
investigate this.

An important group of techniques explores metabolite associations in networks.
Jahagirdar et al. explore the use of correlation and mutual information (MI) to quan-
tify association in 23 publicly available data sets and conclude that there is no significant
benefit to using MI [8]. lacovacci et al. focus in particular on association measures for
short time series and show improved performance for Mahalanobis cosine and the hy-
brid Mahalanobis cosine in comparison to using Pearson’s correlation coefficient [9]. In a
case study they demonstrate how the proposed measures can be used to encode multiple
omics-specific levels of associations.

The topic of multi-omics fusion is also discussed in the review paper of Jendoubi [10].
They classify statistical multi-omics data integration approaches based on five criteria.
Various aspects that lead to a particular choice for study design and data integration
are discussed.

As guest editors we are grateful for the quality and wide range of work that was
contributed to this special issue. All contributions combined, the articles in this special
issue give a unique insight into the many currently ongoing developments of statistical
analysis of metabolomics data. We look forward to the continued advancement of statistical
methodology in the field that builds from the studies presented here.

Funding: This research received no external funding.

Acknowledgments: We would like to acknowledge all authors for their contribution to the special
issue on “Development and Application of Statistical Methods for Analyzing Metabolomics Data”.
The reviewers are thanked for their efforts to critically assess all submissions, allowing us to select
the most interesting manuscripts. The editorial office is thanked for their assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Nam, S.L.; de la Mata, A.P.; Dias, R.P; Harynuk, ]J.J. Towards Standardization of Data Normalization Strategies to Improve
Urinary Metabolomics Studies by GC x GC-TOFMS. Metabolites 2020, 10, 376. [CrossRef] [PubMed]

2. Bevilacqua, M.; Bro, R. Can We Trust Score Plots? Metabolites 2020, 10, 278. [CrossRef] [PubMed]

3. Yamamoto, H.; Nakayama, Y.; Tsugawa, H. OS-PCA: Orthogonal Smoothed Principal Component Analysis Applied to
Metabolome Data. Metabolites 2021, 11, 149. [CrossRef] [PubMed]

4. Tinnevelt, G.H.; Engelke, U.FH.; Wevers, R.A.; Veenhuis, S.; Willemsen, M.A.; Coene, K.L.M.; Kulkarni, P; Jansen, ].J. Variable
Selection in Untargeted Metabolomics and the Danger of Sparsity. Metabolites 2020, 10, 470. [CrossRef] [PubMed]

5. Brini, A.; Avagyan, V.; de Vos, R.C.H.; Vossen, ].H.; van den Heuvel, E.R.; Engel, J. Improved One-Class Modeling of High-
Dimensional Metabolomics Data via Eigenvalue-Shrinkage. Metabolites 2021, 11, 237. [CrossRef] [PubMed]

6. Gillies, C.E,; Jennaro, T.S.; Puskarich, M.A.; Sharma, R.; Ward, K.R.; Fan, X,; Jones, A.E.; Stringer, K.A. A Multilevel Bayesian
Approach to Improve Effect Size Estimation in Regression Modeling of Metabolomics Data Utilizing Imputation with Uncertainty.
Metabolites 2020, 10, 319. [CrossRef]

7. McLuskey, K.; Wandy, J.; Vincent, I.; van der Hooft, ].].].; Rogers, S.; Burgess, K.; Daly, R. Ranking Metabolite Sets by Their
Activity Levels. Metabolites 2021, 11, 103. [CrossRef]

8.  Jahagirdar, S.; Saccenti, E. On the Use of Correlation and MI as a Measure of Metabolite—Metabolite Association for Network
Differential Connectivity Analysis. Metabolites 2020, 10, 171. [CrossRef] [PubMed]

9.  Tacovacci, J.; Peluso, A.; Ebbels, T.; Ralser, M.; Glen, R.C. Extraction and Integration of Genetic Networks from Short-Profile Omic
Data Sets. Metabolites 2020, 10, 435. [CrossRef] [PubMed]

10. Jendoubi, T. Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer. Metabolites 2021, 11, 184. [CrossRef]

[PubMed]


http://doi.org/10.3390/metabo10090376
http://www.ncbi.nlm.nih.gov/pubmed/32961779
http://doi.org/10.3390/metabo10070278
http://www.ncbi.nlm.nih.gov/pubmed/32650451
http://doi.org/10.3390/metabo11030149
http://www.ncbi.nlm.nih.gov/pubmed/33807892
http://doi.org/10.3390/metabo10110470
http://www.ncbi.nlm.nih.gov/pubmed/33213095
http://doi.org/10.3390/metabo11040237
http://www.ncbi.nlm.nih.gov/pubmed/33924479
http://doi.org/10.3390/metabo10080319
http://doi.org/10.3390/metabo11020103
http://doi.org/10.3390/metabo10040171
http://www.ncbi.nlm.nih.gov/pubmed/32344593
http://doi.org/10.3390/metabo10110435
http://www.ncbi.nlm.nih.gov/pubmed/33137869
http://doi.org/10.3390/metabo11030184
http://www.ncbi.nlm.nih.gov/pubmed/33801081

	References

