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Abstract: The versatile compound n-butanol is one of the most promising biofuels for use in existing
internal combustion engines, contributing to a smooth transition towards a clean energy society.
Furthermore, n-butanol is a valuable resource to produce more complex molecules such as bioplastics.
Microbial production of n-butanol from waste materials is hampered by the biotoxicity of n-butanol
as it interferes with the proper functioning of lipid membranes. In this study we perform a large-
scale investigation of the complete lipid-related enzyme machinery and its response to exposure
to a sublethal concentration of n-butanol. We profiled, in triplicate, the growth characteristics and
phospholipidomes of 116 different genetic constructs of E. coli, both in the presence and absence
of 0.5% n-butanol (v/v). This led to the identification of 230 lipid species and subsequently to the
reconstruction of the network of metabolites, enzymes and lipid properties driving the homeostasis of
the E. coli lipidome. We were able to identify key lipids and biochemical pathways leading to altered
n-butanol tolerance. The data led to new conceptual insights into the bacterial lipid metabolism
which are discussed.

Keywords: Escherichia coli; butanol; lipidomics; mass-spectrometry; phospholipid

1. Introduction

The biosynthesis of n-butanol has received much attention over the past decades
because of its potential in many different processes, most particular as a biofuel [1–3].
Chemical advantages of n-butanol over other biofuels are the high energy content and
low hygroscopic- and corrosive properties. The lower flashpoint compared to diesel and
ethanol makes n-butanol safer to work with. Additionally, with regard to human- and
environmental health, n-butanol represents strongly reduced hazards and this contributes
further to its interest [4–6]. Except as a biofuel, n-butanol has many other applications in
chemistry such as in the production of paints, resins and plastics [7,8].

Bacterial strains of Clostridium have long been the model organisms for n-butanol
production via acetone-butanol-ethanol fermentation (reviewed in [9]). Unfortunately,
yields have remained rather low despite metabolic re-engineering and applying advanced
co-cultures of micro-organisms [9–11]. This has spiked interest in engineering other model
organisms such as Saccharomyces and Escherichia coli to produce n-butanol because of their
excellent genetic accessibility [12–15].

Recovery of n-butanol from the production environment remains problematic [16].
Distillation is not energy efficient and hence not economically feasible. Adsorption of
dissolved n-butanol with various sorbents has proven to be a very efficient process but
unfortunately, desorption is often an issue, as is recycling of the sorbent [17]. Another
technique that is often used to recover n-butanol, is gas stripping. Although this requires
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only moderate investments in machinery or materials, the excessive amounts of foam that
are produced, have prevented a breakthrough for this method. Finally, also the performance
of filters has been poor due to viscosity of n-butanol as an extractant [18]. Nevertheless, the
efficiency of all methods increases with increasing n-butanol concentrations and achieving
higher tolerance to n-butanol, remains key.

The intrinsic chemical properties of n-butanol present challenges to efficient biopro-
duction. n-butanol is a solvent in which hydrophobic compounds such as membrane
lipids, readily dissolve. It is, therefore, self-evident that optimizing lipid metabolism can
result in increased n-butanol tolerance. The high maximum solubility of n-butanol at room
temperature (73 g/L or 7.7% v/v) makes it an ambitious goal to produce n-butanol at levels
that would result in spontaneous phase separation. However, butanol-tolerant bacteria that
can grow at this concentration have been isolated from the environment, demonstrating
that this goal is realistic [19].

Toxic effects of organic solvents are due to detrimental effects on phospholipid mem-
brane structure. Toxicity and hydrophobicity of primary alcohols are directly related [20,21].
Recent work has unraveled the different mechanisms by which membrane disturbance
occurs [22]. These authors demonstrate how increasing n-butanol concentrations induce
increased lipid disordering, hence increase membrane fluidity and permeability. However,
the work is mainly on artificial membranes of simplified lipid composition, ignoring any
bacterial capacity to adapt to a changing environment.

Increased short-chain alcohol tolerance can be achieved in E. coli by engineering active
transport of these product out of the cell [23]. Intrinsically, genome wide generic stress
responses are involved in improved n-butanol tolerance which include lipid membrane
functions [24–26]. Involvement of lipid metabolism in response to n-butanol induced stress
has been demonstrated in Clostridia [27], but for E. coli similar data is missing.

Here we explore this bacterial potential to adapt the lipidome in response to n-butanol
exposure. We found a 50% inhibition of growth rate at 0.5% n-butanol (v/v) and chose to
explore changes in lipid metabolism at this concentration. To this end, we overexpress all
known lipid-related enzymes individually or, when possible, knock-out these genes. We
thus aim to identify the pivotal genes of control and to identify marker lipids. Simultaneous
recording of growth rates and biomass formation as characteristics of bacterial health
link lipidome to n-butanol tolerance. This work thereby contributes to a rationale for
optimization strategies in bioproduction of n-butanol and other hydrophobic compounds.

2. Results

In E. coli, the phospholipidome is controlled by a relatively modest (known) set of
68 proteins of which only 20 are essential (as defined by the Keio collection [28]). These
proteins are organized in several pathways related to fatty acid synthesis or -breakdown,
glycerol backbone metabolism or are related to phospholipid modifications or -synthesis.
These pathways and corresponding enzymes are visualized in Figure 1, highlighting the
essential enzymes.

Cultures of strains overexpressing each of these genes individually were analyzed
for growth characteristics (maximum growth rate and OD600 at steady state), as were
the individual knock-outs of these genes. This allowed us to investigate lipidomes under
maximum and minimum expression levels of lipid related genes.

2.1. Simplification of the Lipid Extraction Allows for More Detailed Lipidome Analysis

The simplified, one step extraction of lipids from the bacterial membranes resulted
in a more complex lipidome than generally reported with liquid–liquid extraction [30,31]
(Figure 2). This is in part due to the preservation of very polar lipids like CDP-DAG that
normally partition towards the polar liquid phase in liquid–liquid extractions and are
hence lost from the lipid extract. Simultaneously, the wide range of conditions analyzed
here included conditions in which minor lipids became sufficiently abundant to survive
noise filtering of raw data and were included. Forced integration of corresponding mz/rt
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features in samples where these compounds were initially not detected, assured reliable
data for these minor compounds (e.g., aPE, aPG, DLCL) in all samples. In total, 230 distinct
lipid species, distributed over 11 phospholipid classes were included in further analysis.
Each lipid-related gene was individually overexpressed, and three separate cultures of the
construct were extracted and analyzed. Similarly, knock-outs of each non-essential lipid-
related gene were cultured in triplicate and extracted. As controls for the overexpressors
and knock-out constructs, we used the E. coli wild-type strain (BW25113) with or without
an empty overexpression vector, respectively. These controls were included on every
96-well plate used for culturing bacteria and were, therefore, conducted more than three
times. In the very few cases where bacterial growth was insufficient to reach an optical
density (OD600 nm) of 0.2, samples were excluded from further analysis. This resulted in
the acquisition of 730 lipidomes (Table S1).
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Figure 1. Metabolic scheme of lipid related genes and their role in lipid homeostasis. Genes essen-
tial for cell survival and multiplication under generic conditions are shown in bold. Adapted from 

Figure 1. Metabolic scheme of lipid related genes and their role in lipid homeostasis. Genes essential
for cell survival and multiplication under generic conditions are shown in bold. Adapted from [29].
Lipid abbreviations: aPE: N-acyl-phosphatidylethanolamine; aPG: O-acyl phosphatidylglycerol
(headgroup acylated PG); CDP-DAG: cytidine diphosphate diacylglycerol; CL: cardiolipin; DAG:
diacylglycerol; DLCL: di-lyso cardiolipin; PA: phosphatidic acid; PE: phosphatidylethanolamine; PG:
phosphatidylglycerol; PGP: phosphatidylglycerolphosphate; PS: phosphatidylserine.
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Figure 2. Base peak chromatogram of HILIC-based LC-MS analysis of wild type E. coli lipid extract.
Lipid species are depicted, and color coded according to the Z-score of culturing in the presence
of 0.5% n-butanol (green corresponding to higher abundance at n-butanol exposure). Dot size
corresponds to abundance in WT n-butanol-free cultures. The two most abundant species of each
lipid class are labeled. All lipid ions corresponded to deprotonated molecules. Examples of structures
for each class of lipid ions are given in Supplementary Figure S1.
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2.2. Random Forest Analysis Identifies Key Lipids and Lipid Genes

Breiman’s random forest analysis was applied to identify the key features [32]. Here,
we applied random forest analysis to find lipid species that could classify the genetic status
(gene ID and KO or OV) and n-butanol exposure (Yes/No) of cultured bacteria. Random
Forest Analysis produced a top-10 panel of lipid species that collectively were able to
perform accurate classification of all samples (Table 1).

Table 1. Most informative lipid species for the classification of genetic composition and n-butanol
exposure (yes/no) as identified by random forest analysis. Percentages are given as contributions to
the total mass spectrometry signal.

Lipid Species Average (%) Max. (%) Min. (%) Genes 1 (Extremes)

PE 34:1 7.67 17.41 0.72 glpD (OV); fabH (OV)
PE 32:1 5.75 24.82 0.72 cfa (KO); cfa (OV)
PE 36:2 4.20 12.09 0.84 fabH (KO); fabH (OV)

PG 35:0c1 2.60 10.47 0.20 glpR (KO); aas (OV)
PG 31:0c1 0.35 1.21 0.05 fabH (OV); fabH (KO)
aPG 50:2 0.26 2.94 0.03 fadL (OV); fabF (OV)

aPE 49:0c1 0.15 0.91 0.01 aas (OV); cfa (KO)
aPG 49:1c1 0.10 1.00 0.01 pldA (OV); fabH (KO)
PBut 33:0c1 0.07 2.99 0.00 clsB (OV); fadD (KO)

aPE 50:1 0.07 1.34 0.00 aas (OV); clsA (OV)
1 The genes of which altered expression resulted in highest or lowest abundance are given.

Within the dataset, these lipids contribute only 21.2% of the total lipid related MS signal
of wild-type bacteria. The top-4 species in Table 1 are within the 12 most abundant species in
the total lipidome (Table S1). Notably, the other six species in Table 1 (PG 31:0c1 through aPE
50:1) are quantitatively minor compounds and consist nearly exclusively of phospholipid
classes that are thus far mostly ignored in E. coli lipidomic papers, and their identification
as marker lipid species was unexpected. The phospholipid class phosphatidylbutanol
(PBut) is not a common class and its presence under standard growth conditions has not
been reported. Formation of this lipid class is dependent on the presence of n-butanol
in the medium. n-butanol is not a common constituent of growth medium nor is it a
metabolite in the common metabolism of E. coli. However, we have previously shown
that the cardiolipin synthase ClsB functions as a promiscuous phospholipase D, capable
of exchanging phospholipid headgroups with primary alcohols [33]. In this light, it is
not surprising to find highest levels of the PBut marker lipid in the ClsB overexpressing
strain (Table 1).

A less obvious but noteworthy characteristic of the lipid markers in Table 1 is the fact
that every species has a distinct fatty acyl composition. It was reported previously that lipid
species from distinct lipid classes but with the same acyl composition, displayed similar
responses to genetic- and environmental challenges [29]. The presence of only distinct
acyl compositions in the set of marker lipid species may thus reflect the random forest
analysis algorithm eliminating information redundancy. Although it is apparent that the
genes involved in achieving the extremes (Table 1) is not a random cross-section of all lipid
related genes, care must be taken when interpreting this list. Particularly when looking
at low lipid abundances, the gene expression modification leading to the lowest values,
did often not differ significantly from the second or third lowest values. For instance,
the knock-out of Cfa (the enzyme synthesizing the cyclopropane moiety) led to very low
abundances of all marker lipid species containing a cyclopropane ring (indicated by the
subscript ‘c1′ in the lipid name). To create a visual impression of the genes with highest
impact on the marker lipids, we constructed a tag cloud from the 100 gene tags of the top-
and bottom five genes in the 10 marker lipids (Figure 3). From the tag cloud it became
evident that Cfa indeed has a large impact on the abundance of the marker lipid species.
Other notable enzymes include FabH (involved in the initiation of fatty acid synthesis),
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ClsA (the dominant cardiolipin synthase), GlpD (glycerol backbone synthesis) and Aas
(headgroup acylation).
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2.3. The Lipidome Is Organized in Clusters of Closely Connected Lipid Species

Next, we investigated the underlying concepts that defined these ten lipids as in-
formative markers. We hypothesized that these markers were representatives of clusters
of lipid species defining functional domains in lipid membranes, or at least of clusters
of lipid species whose abundances in the membrane are closely related. Therefore, we
constructed a heatmap of lipid–lipid correlations and organized lipids by hierarchical
clustering (Figure 4). Indeed, clusters of lipids with strongly correlating abundances (dark
blue or -red) were visible, correlating lipids within one cluster (on the diagonal) or between
different clusters (off-diagonal). Notably, the marker lipids from Table 1 were scattered
over these clusters. Within clusters, only a single marker lipid was present. As an exception,
the second most abundant lipid species in E. coli, PE 32:1 and part of the identified marker
lipids, appeared not to be part of any lipid cluster (bottom right corner). The horizontal
color bars on top of the heatmap, visualize lipid class, degree of unsaturation and presence
of cyclopropane rings of the individual lipids within the clusters. Although we detected
clusters of lipids from the same lipid class (particularly for the headgroup acylated lipid
classes aPE and aPG), all major lipid classes were divided over several clusters. Similarly,
lipid unsaturation or the presence of cyclopropane moieties were not driving forces of the
lipid clusters formation. Hence, the formation of lipid clusters in the correlation heatmap
was a result of a complex interplay of multiple processes.
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2.4. Validation of Metabolic Pivot Points

We observed large differences between minimum and maximum contributions of
the marker lipids to the lipidome (Table 1). Even the abundance of major compounds
can be manipulated to fall below 1% without loss of viability. PE 32:1 the observed range
in abundancies was particularly wide (0.75–24.82%). Notably, these extremes are both
obtained by alteration of the expression level of the cfa gene. Although PE 32:1 itself does
not contain a cyclopropane ring, our data point towards an important role for PE 32:1 as a
substrate for the Cfa enzyme. Lack of this enzyme leads to extensive accumulation of this
lipid species, whereas overexpression resulted in nearly complete depletion. Concomitantly,
the abundance of PE 33:0c1 (the Cfa product of PE 32:1) fell under these conditions from
25.9 ± 0.5% (Cfa overexpression) to 1.5 ± 0.2% (Cfa knock-out; Table S1). The lipid species
PE 34:1, which also contains one single unsaturation that may be targeted by Cfa, was
much less affected by Cfa overexpression than PE 32:1. This further illustrates the complex
control of the phospholipidome.

The high impact FabH has on the marker lipids (Figure 3), was investigated in more
detail. FabH is involved in the initiation of fatty acid synthesis by coupling acetyl-CoA to
malonyl-ACP, generating an oxoacyl-ACP and recycling free coenzyme-A. After a series of
reductions by other Fab-proteins, the newly synthesized C4-fatty acyl-ACP is elongated
using a new molecule of acetyl-CoA and this process typically continues until a chainlength
of C14 or longer is achieved. Increasing expression of FabH (KO < (WT or EV) < OV)
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resulted in a decrease of average fatty acyl chainlength from 17.5 to 16.0 carbon atoms
(Figure 5, top row). This means that bilayer thickness may be expected to decrease by 10%
upon FabH overexpression. The presence of n-butanol in the culture medium did not affect
this trend, although it should be mentioned that in the knock-out, the decrease in average
chainlength from 17.5 (CTR) to 17.3 (+butanol) was statistically significant (p < 0.01). It is,
however, unlikely to influence biophysical properties of the membrane.
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Figure 5. Boxplots demonstrating the effect of alteration of FabH levels on key properties of mem-
brane lipids. KO and OV represent gene knock-out and overexpression, respectively. EV represents
the wild-type (WT) transformed with an empty overexpression vector. Panels on the right (+buoh)
were obtained from cells grown under identical conditions as the control (CTR) but in the presence
of 0.5% (v/v) n-butanol. It should be noted that acyl properties were calculated from the data in
supplementary Table S1 and that the values at y-axis should not be treated as absolute. A discrepancy
may result from the fact that differences in ionization efficiency can exist between molecular species.
Differences between the two control conditions (wild type WT and empty vector EV) were non-
significant in all experiments shown. Statistical significances (based on uncorrected p-values) of KO
and OV are shown with respect to their controls (WT and EV, respectively). **: p < 0.01; ***: p < 0.001.

The degree of unsaturation of lipid acyl chains was affected in a similar way as the
chainlength. The average number of unsaturations per fatty acyl chain dropped from 0.41
in the KO to 0.27 in the combined WT and EV samples (p < 5 × 10−5), and again signifi-
cantly further to 0.13 in the OV samples (p < 2× 10−16). Hence, the FabH overexpressor has
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only 31% of the unsaturations the knock-out has and this may be expected to reduce mem-
brane fluidity. Cyclopropane moieties are synthesized from unsaturated fatty acids and
abundance of these characteristics are overall negatively correlated. However, the amount
of cyclopropane containing fatty acids was not nearly affected to the extend observed
for chainlength and unsaturation, but culturing in the presence of n-butanol consistently
reduced the presence of cyclopropane containing fatty acids (Figure 5, bottom row).

2.5. Linking Lipid Related Genes to n-Butanol Tolerance

The toxic properties of n-butanol lead to an approximate 50% decrease in growth rate
for WT E. coli. We investigated the effect of gene expression alterations on both the specific
growth rate as well as on the OD600 achieved in steady state, the latter being a measure for
biomass. Bacterial strains with higher metabolic efficiency are able to use more nutrients
for cell growth and division but this not necessarily corresponds to higher growth rates.

When grown in the presence of n-butanol, 42 out of the 116 genetic constructs had
maximum specific growth rates distinct from controls (Figure 6 and Supplementary Table
S3 for all growth data). Notably, in ten of these the growth rate was higher, suggesting that
the extreme genetic conditions in our OV/KO strains cannot functionally be achieved in
the wild-type strain by regulation of gene expression, translation and/or enzyme activity.
Looking at these extremes, it stands out that alterations in glycerol metabolism have very
pronounced effects. Highest growth rates were achieved by overexpressing the (glycerol)
kinase GlpK or knocking-out the Glp repressor GlpR. Lowest growth rates on the other
hand, were achieved by either knocking-out or overexpressing GlpD, the only aerobic
variant of the four glycerol-3-phosphate dehydrogenases [34]. Fatty acid characteristics for
gene constructs involving GlpD and GlpK are summarized in Supplementary Figure S2.
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The optical density (i.e., biomass) achieved at steady state was more variable between
growth conditions than the growth rate (Figure 6, bottom panel). Most conditions did
have a biomass production that was different from control conditions. Interestingly, GlpK
overexpression stimulated growth rate as well as biomass production, whereas GlpD
knockout on the other hand, impaired both growth rate and biomass production. Both
enzymes are involved in both lipid metabolism and central carbon metabolism but from
these data it is impossible to determine which of these metabolic pathways is responsible
for the altered growth characteristics.

3. Discussion

As a powerful machine learning algorithm, if applied to properly generated data
sets, Breiman’s random forest analysis can generate robust results that are applicable to
previously unseen data. It is essential that the data sets are created in a steady fashion
with reliable normalization standards [35]. The current setup, where bacteria were grown
in multiwell plates and lipid extractions was simplified to a one-step procedure, enabled
us to generate such a large training set. Since a lipidome can be analyzed within five
minutes (Figure 2), the collective samples could be processed within only three days of
LC-MS analysis. The resulting set of ten marker lipids not only could be used to identify
the genetic status and n-butanol exposure of all samples but also helped in identifying
clusters of functionally related lipids. The exact nature of how lipids within these lipid
clusters are related is not yet fully understood but clearly this exceeds just lipid class or acyl
composition. Particularly abundant or sparse lipid clusters can be correlated to specific
genetic conditions, and this can provide further leads for investigation.

It should be noted that distinct cultures of the same genetic construct of E. coli, pro-
duced highly consistent lipidome compositions. Therefore, statistical significance was
easily obtained between different strains or conditions, even when changes were too small
to be expected to alter biophysical properties of the membranes. Put differently: statistical
significance should not be confused with biological relevance and we have tried to high-
light relevant processes rather than to report as many differences as possible. Readers are
encouraged to query the dataset for changes in processes of their own interests.

Because of the experimental setup in which half of the samples were cultured in
the presence of n-butanol, it can be expected that many of the phenomena we observed
were related to coping with induced membrane stress. We expect this to be reflected in
the composition of the ten marker lipids. Indeed, most of the marker lipids will have
high impact on lipid packing in the membrane. This is particularly the case for the
headgroup acylated lipid species aPE and aPG, where the additional acyl chain will fold
back into the hydrophobic region of the bilayer, thus profoundly changing the shape of
the phospholipid and increasing the inter- and intra-molecular hydrophobic interactions.
In fact, membrane splaying as a driving force for membrane collapse (i.e., disturbing
lipid–lipid interactions by accumulation of n-butanol at the phospholipid headgroups [22]),
may be effectively counteracted. In this respect, it is important to acknowledge that
these headgroup acylates have mostly been ignored in E. coli lipidomic papers due to low
abundance and/or unfamiliarity of scientists with this lipid class. It can be very worthwhile
to reassess results of these papers given these new insights and to consider re-analyzing
crucial experiments. Our rapid and labor-extensive lipid extraction and short analysis time
will aid in making such goals achievable.

Although the HILIC-based lipidomic workflow enabled us to note and identify un-
usual lipid classes, we were only able to identify lipids at the species level, i.e., data lack
information about acyl composition and -position. When a more detailed level of informa-
tion is essential, modern very fast MS/MS instruments may allow profiling at the fatty acyl
(position) level. Alternatively, researchers may opt for reverse-phase approaches where
separation is primarily dictated by the acyl composition. However, better species resolution
comes at the cost of longer analysis times [36].
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Cyclopropane moieties are synthesized by the enzyme Cfa from an unsaturation in
an acyl chain. The measure of unsaturated acyl chains in a biomembrane is typically
considered to be the key property when assessing fluidity of membranes. Since there exists
no ‘saturase’ that will remove a double bond from a fatty acyl, converting a double bond to
a rigid cyclopropane moiety will be an effective way to counteract the increased membrane
fluidity induced by n-butanol partitioning [37]. Indeed, the role of cyclopropane fatty
acids in organic solvent tolerance was demonstrate in Pseudomonas putida [38] and also in
other bacteria including E. coli, a role in coping with environmental stress has firmly been
established [39–41]. In a recent paper, we have shown that, even compared to any other
lipid-related gene, both deletion and overexpression of Cfa has very profound effects on
the overall lipidome of E. coli [29]. It is, therefore, not surprising that Cfa was among the
most relevant genes in Figure 3. However, the cfa knockout did not have a reduced growth
rate. Additionally, biomass increase during growth was only marginally lower than WT,
indicating that Cfa has limited importance in dealing with butanol stress.

Growth data pointed towards a crucial role for glycerol metabolism rather than fatty
acid- or phospholipid metabolism in n-butanol tolerance. Overexpression of GlpK led
to the highest growth rate as well as a large increase in biomass. GlpK is a known point
of (allosteric) regulation of carbon metabolism [42,43] and has been linked to cell stress
response [44]. Furthermore, substrate specificity is not particularly high, which makes
GlpK active in several metabolic pathways [45]. The effect of GlpK overexpression may
therefore reflect its involvement in responses unrelated to lipid metabolism. The lack of a
clearly aberrant lipidome in this construct supports this idea.

Manipulation of GlpD levels on the other hand, had strong negative effects on both
growth rate and biomass. GlpD is a key enzyme in glycerol metabolism as it was shown that
growth on glycerol strictly depends on the presence of GlpD [46]. Hence, the availability of
physiological levels of the phospholipid precursor glycerol-3P appears to be an important
prerequisite for a healthy lipid homeostasis.

Taken together, this large-scale MS-based lipidomic approach has revealed the pres-
ence of clusters of lipids whose abundance is related. It was also demonstrated that the
116 different genetic constructs and growth conditions can be classified by ten marker
lipids. The abundance of these marker lipids was shown to be highly variable. Furthermore,
these data show a strong link between lipid related genes and n-butanol tolerance. This
opens new perspectives for targeted membrane engineering in achieving higher membrane
resistance to organic solvents.

4. Materials and Methods
4.1. Chemicals

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was obtained from Melford (Suffolk, UK).
NaCl, n-butanol, and formic acid and were purchased from Merck Chemicals (Darmstad,
Germany). Chloramphenicol was obtained from Boehringer Mannheim (Mannheim, Ger-
many). Chemicals were of the highest purity available. Trypton, agar, and kanamycin were
purchased from Sigma (St. Louis, MO, USA). Yeast extract was obtained from MP Biomedicals
(Strasbourg, France). Methanol, acetonitrile (ACN), acetone and ammonium formate were
purchased from BioSolve (Valkenswaard, The Netherlands), chloroform was obtained from
Roth (Karlsruhe, Germany) and were all HPLC/MS grade.

4.2. Bacterial Strains, Growth Conditions and Plasmids

The bacterial strains and plasmids used in the study are listed in Supplementary
Materials and Methods (Supplementary Table S2). E. coli strain BW25113 and its derivates
are part of the Keio collection [28], obtained from NBRP (NIG, Mishima, Japan). E. coli
strains were routinously grown at 37 ◦C in Luria Bertani (LB) broth or on LB agar plates.
Plasmids overexpressing lipid genes present in E. coli strain AG1(ME5305) (part of the
ASKA(-) collection [47] obtained from NBRP (NIG, Mishima, Japan) were transferred
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to E. coli strain BW25113. When appropriate, growth media were supplemented with
chloramphenicol (34 µg/mL) or kanamycin (50 µg/mL).

Protein expression was induced with a final concentration of 10 µM IPTG for the
ASKA(-) clones since the ORF on the pCA24N plasmid are under control of IPTG-inducible
promoter, PT5-lac. For phospholipid analysis, cultures (150 µL) were grown in 96 wells
plates, in a Versamax microtiter plate reader (Molecular Devices, Sunnyvale, CA, USA), in
the absence or presence of 0.5% (v/v) n-butanol. To this end, pre-cultures that had research
stationary phase in 9 h growth, were diluted 1:100 and growth was followed. The plate
was covered using a clear film to reduce evaporation. Absorbance at 600 nm was measured
every 5 min. These data were used to calculate maximum specific growth rates as defined
by the slope of a linear fit to log transformed OD values.

4.3. Lipid Extraction

Lipids were extracted as described before [29]. In brief, bacterial cultures were trans-
ferred to glass coated plates, centrifuged (1800× g, 20 min, 4 ◦C) and the medium was
completely removed by aspiration. Pellets were resuspended without further washing in
150 µL chloroform/methanol (1:1 v/v), extracted for 1 h at 4 ◦C, followed by centrifugation
(1800× g, 20 min, 4 ◦C). The extracts were transferred to a new glass coated 96 well plate
that was covered by a thin sheet of aluminum foil and placed in the autosampler. WT
strain, empty vector, and cell free incubations were included with every plate. Cell free
incubations did not produce meaningful lipid signals and these samples were excluded
from further analysis.

4.4. Liquid Chromatography Mass Spectrometry of Lipids

LC-MS of phospholipids was performed as described before [29,48]. In brief, 10 µL
of the supernatant was injected onto a hydrophilic interaction liquid chromatography
(HILIC) column (2.6 µm HILIC 100 Å, 50 × 4.6 mm, Phenomenex, Torrance, CA, USA), and
eluted with a gradient from ACN/Acetone (9:1, v/v) to ACN/H2O (7:3, v/v) with 10 mM
ammonium formate, and both with 0.1% formic acid at a flow rate of 1 mL/min. Gradient
development was as follows (time in min, %B): (0, 0), (1, 50), (3, 50), (3.1, 100), (4, 100).
Regeneration time between subsequent runs was 55 s, which was identical to our autosam-
pler injection time and therefore not listed separately. The column outlet of the LC was
connected to a heated electrospray ionization (HESI) source of a LTQ XL mass spectrometer
(ThermoFisher Scientific, Waltham, MA, USA). Full scan spectra were collected in negative
ionization mode in the range from 350–1750 amu at a scan speed of 3 scans/s. Source- and
capillary temperatures were set to 450 and 400 ◦C, respectively, and the ionization voltage
to −2.5 kV. Calibration curves with constructed using authentic standards of PE, PG and
CL to ensure linear responses for the lipid concentrations used in the experiments. Due to
the lack of standard for all lipid classes (e.g., phosphatidylbutanol, head group acylated
PG), we have refrained from conversion of lipid data to absolute quantities.

4.5. Data Analysis

LC-MS data were converted to mz(X)ML format using MSconvert and analyzed
using XCMS version 1.52.0 using R version 3.4.4 (15 March 2018) [49–51]. Phospholipid
(sub-)classes were identified based on retention time and mz/rt features were matched
against an in-silico generated lipid database. Lipid de-isotoping was conducted using
a natural abundance of 13C of 1.1%. Lipids were reported on the lipid species level
rather than lipid class level mass based on the well documented absence of ether lipids in
E. coli [52]. A normalization was performed such that the sum of all species is 100% in every
sample. An overall cross-comparison on lipidomes was performed by using the CyberT
tool package [53]. BayesAnova tests were applied on all possible lipidome combinations
(parameters: sliding window size 101, Bayes confidence estimate value 5, and PPDE post
processing treatment). Comparison resulted with an adjusted p-value lower than 0.05
were considered significant. Breiman’s random forest analysis (500 trees and 100 iteration)
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was applied to the normalized data set by using Weka 3.9 [54]. For significant feature
selection, sequential backward selection was used with the 34OOB error minimization
option. During the analysis, 10-fold cross-validation was applied. The feature importance
evaluations were sorted by eliminating the least important features.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050286/s1, Table S1: Normalized lipidomic analysis of bacterial constructs. Table S2:
bacterial strains and plasmids. Figure S1: Lipid class structures. Figure S2: lipid characteristics for
GlpD and GlpK.
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