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Abstract: Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its
screening, serum prostate specific antigen (PSA) test has been largely performed over the past
decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease.
Metabolomics has been widely applied in cancer biomarker discovery due to the well-known
metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have
reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate
tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This
review aims to summarize and discuss the most recent findings from tissue and urine metabolomic
studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered
in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and
citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites
and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in
common between urine and tissue studies. These findings unveil that the impact of PCa development
in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.

Keywords: metabolomics; volatilomics; lipidomics; prostate cancer; urine; tissue; biomarkers;
metabolic pathways

1. Introduction

Cancer diseases are one of the most important health problems worldwide, prostate
cancer (PCa) being one of the most prevalent. Indeed, PCa is globally the second most
frequently diagnosed male malignancy and the fifth leading cause of cancer, with more than
1,000,000 new cases and more than 350,000 deaths, each year [1]. PCa is a heterogeneous
disease [2] with a broad spectrum of aggressiveness, going from indolent PCa, which is a
non-life-threatening cancer, to metastatic PCa with a 5-year survival of 28% [3].

Currently, PCa screening is based in serum prostate specific antigen (PSA) test and
digital rectal examination (DRE) [4], whereas prostate biopsy (PB) is mandatory for a
final diagnosis [5]. High levels of PSA (>4 ng/mL) are considered a sign of PCa [4].
However, this biomarker shows important limitations [6], due to its reduced accuracy
(accu) (62–75%) [7], sensitivity (sens) (20.5%), specificity (spec) (ranging from 51% to
91%) [4,8], and area under the curve (AUC) (varying from 0.53 to 0.83) [7]. These low
performance values can be due to interference from other diseases, like benign prostate
hyperplasia (BPH) or prostatitis, that may also lead to an increase in serum PSA levels [2,6].
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Furthermore, PSA testing is unable to distinguish indolent from aggressive disease, leading
to unnecessary PB [2]. As matter of fact, about 70% of the PB performed due to high levels
of PSA do not detect PCa and could be avoided with a more accurate PCa screening test [6].
PB is an invasive procedure that is associated to several adverse effects, like hemoejaculate,
hematuria, fever, pain, and hematochezia. Although more rare, other complications, like
bleeding, acute urinary retention, local infection, sepsis, vasovagal syncope, and erectile
dysfunction, can also occur as a consequence of PB [9]. Moreover, PB can fail to diagnose
over 30% of clinically significant PCa (non-indolent). On the other hand, PB can also lead
to overdiagnosis and overtreatment of indolent PCa, that will not bring advantages to the
patients′ health and can negatively affect patients′ quality of life [5].

PCa can be curable if diagnosed when the development is still in its early stages [3].
For localized PCa, the gold standard treatment is radical prostatectomy (RP). However,
around 40% of the patients will develop biochemical recurrence (BCR) after RP, which
indicates PCa progression [10]. After RP, levels of PSA decrease until undetectable, and
the resurgence of high PSA levels is the first indication of BCR. The ideal PSA cut-off to
define BCR is still controversial [10], with the American Urological Association and the
European Association of Urology defining BCR for a serum PSA ≥ 0.2 ng/mL [10,11].
For aggressive PCa, one of the most frequently used treatments is androgen deprivation
therapy (castration). However, the treatment can be hampered by the development of
resistance to castration [12].

Considering the limitations of the currently available PCa diagnostic tools, the sci-
entific community has performed massive efforts to discover new biomarkers for PCa
detection. These biomarkers include several derivatives of PSA, like the prostate health
index (PHI) and the 4Kscore tests. PHI test combines the PSA precursor isoform that
circulates uncomplexed [−2]proPSA (p2PSA), free PSA (fPSA) and total PSA, through
the formula PHI = (p2PSA/fPSA) ×

√
(tPSA) [13,14]. Higher levels of PHI are correlated

with PCa [13,14] and this test obtained FDA approval for men with PSA between 2.5 and
10 ng/mL and negative DRE [2]. The 4Kscore test includes total PSA, fPSA, intact PSA
(iPSA), and human glandular kallikrein (hK2), a protein similar to PSA [2]. Despite the
promising results, 4Kscore test did not obtain FDA approval [2].

With the raising of “omics” technologies, other biomarkers for PCa detection have
been proposed, such as prostate cancer antigen 3 (PCA3), which is a biomarker coming from
transcriptomic methodologies. PCA3 gene encodes a noncoding RNA which is specific
of prostate and is increased in urine of PCa patients collected after DRE. Despite the
controversy around the ideal cut-off for the levels of this biomarker, this test obtained FDA
approval for men with high PSA levels and/or positive DRE and/or previous negative
PB [15,16]. Prostarix test, which is also performed in urine after DRE, was developed using
metabolomic approaches and detects four amino acids [17], namely sarcosine, glycine,
alanine, and glutamate [13,16]. This test has not yet obtained FDA approval [13], but it is
commercially available and is recommended for men with persistent PSA increase and
previously negative PB [13,17].

Despite such great efforts to discover new biomarkers for PCa detection and the
promising perspectives, no biomarker has so far been able to replace PSA in clinical
practice for PCa screening, highlighting the need to pursue research in this field. In this
review, we explore the potentialities and challenges of metabolomics for PCa biomarker
discovery. In addition, we update our earlier review [18] by presenting the most recent
metabolomic studies performed in urine and tissues from PCa patients aimed at evaluating
metabolic pathways perturbed in this disease and the altered metabolites as potential
biomarkers for PCa detection. For this, a search was conducted in the PubMed database
for articles published between January of 2015 and December 2020, using the keywords
“metabolomics”, “prostate cancer”, “biomarker”, “urine”, or “tissue”. A total of 25 studies
were included, of which 12 were performed in PCa tissue samples, 12 in PCa urine samples
and one study included both matrices.
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2. Metabolomic Approaches to Biomarker Discovery

Nicholson et al. (1999) defined metabonomics as “the quantitative measurement of
the dynamic multiparametric metabolic response of living systems to pathophysiological
stimuli or genetic modification” [19]. Nowadays, the term metabonomics is often used
interchangeably with the terms metabolic phenotyping, metabolic profiling, or simply
metabolomics in the context of the comprehensive analysis of all metabolites of a biological
sample representative of an organism or cell. Metabolomics is the last “omic” platform
in the “omics” cascade (genomics—transcriptomics—proteomics—metabolomics), and it
focuses on the study of small molecules (<1500 Da) [20] in several complex matrices like
serum, saliva, exhaled air, urine, tissue, among others [21]. When compared with other
omics, metabolomics shows important advantages: (i) the dynamic feature of metabolome,
once it modifies rapidly in response to changes in cell status, allowing a continuous evalu-
ation of the cell state [22]; (ii) minor changes in gene expression or protein synthesis are
translated into major alterations in metabolite levels [23]; (iii) the response of metabolome
to pathophysiological alterations is much more sensitive than gene or protein response [24];
(iv) the alterations in metabolome are closely related with the observed phenotype; (v) the
levels of several metabolites can simultaneously be measured, allowing to establish a
pattern of alterations associated with an specific pathophysiological state [22]; (vi) allows
to define patterns of disease progression [25].

Human metabolome comprises metabolites of low molecular weight from very differ-
ent chemical families, such as amino acids, lipids, nucleotides, carbohydrates, organic acids,
among others. They are present in a wide range of concentrations and have distinct physic-
ochemical characteristics [26]. When a metabolomics study is designed, the selection of the
analytical technique is a critical step, once this choice will restrict the metabolites detected
and consequently the obtained results [27]. This selection needs to take into consideration
the characteristics of the analytical technique like sensitivity, resolution, limits of detection
of the instrumental technique [27], but also the characteristics of the samples and of the
metabolites of interest, e.g., metabolite physicochemical properties and abundance [27,28].

Currently, the majority of the metabolic studies are performed using mass spectrome-
try (MS), frequently coupled with a separation technique like gas or liquid chromatography
(GC–MS or LC–MS), and nuclear magnetic resonance spectroscopy (NMR) [26,29]. MS and
NMR show several differences, including in the detected range of concentrations, namely,
MS allows the detection of metabolites in concentrations ranging from picomolar (pM) to
millimolar (mM) [30] and NMR from micromolar (µM) to millimolar (mM) [31]. Table 1
summarizes the advantages and limitations of the three analytical techniques (GC–MS, LC–
MS and NMR), for metabolomic studies. As depicted in Table 1, none of these methods are
able to cover the entire metabolome. For example, GC–MS is only suitable for the analysis
of thermally stable compounds, such as volatile organic compounds (VOCs) [26]. In turn,
LC–MS is used for profiling of compounds with medium and low polarities (reversed-
phase LC) and polar compounds (hydrophilic-interaction LC), but the datasets generated
are complex, spectrometer dependent, and require additional MS/MS experiments, as well
as spiking with authentic standards, in order to perform metabolite annotation and identi-
fication [26,32,33]. NMR shows a lower sensitivity, which compromise the detection of low
abundance metabolites. Importantly, due to NMR nondestructive nature, the samples can
be recovered after analysis and used in complementary studies (e.g., MS analysis) to obtain
a more comprehensive characterization of the metabolome [34]. Indeed, the combination
of more than one analytical platform is desirable to allow a more comprehensive analysis
of a sample metabolome [26,29].



Metabolites 2021, 11, 181 4 of 28

Table 1. Main advantages and limitations of gas or liquid chromatography coupled with mass spectrometry (GC–MS or
LC–MS), and nuclear magnetic resonance spectroscopy (NMR) in metabolomic studies.

Analytical Platform Advantages Limitations

GC–MS

- Ideal for volatile organic compounds detection [26]
- High sensitivity and resolution [26]
- Available database for metabolite

identification [26]
- High peak capacity to cover a wide range of

concentrations [22]
- Small amounts of sample used [32]
- High dynamic range, selectivity and

throughput [26,29,35]
- Retention times are highly reproducible [22,26]

- Only suitable for thermally stable
compounds [26]

- Derivatization step is required for
nonvolatile compounds [26]

- Formation of new compounds due
the derivatization step [28]

- Destructive nature [32]

LC–MS

- Detects a wide range of metabolites, including
conjugates, of varying molecular weight and
different natures (hydrophilic and hydrophobic
compounds) [22,26]

- Easy sample preparation [26,28]
- Does not require derivatization [22]
- Small amounts of sample used [32]

- Destructive nature [32]
- MS/MS experiments are usually

required for metabolite
identification, which implies
additional experimental time [33]

NMR

- Relatively high throughput and efficiency [22,36]
- High reproducibility and selectivity [34,37]
- Nondestructive nature [22,34]
- Analysis of liquid and solid matrices [34]
- Easy sample preparation [37]
- Provides information about chemical structure,

chemical environment and molecular
interactions [34,36]

- Low sensitivity [34,37]
- High costs [22]
- Not optimal for targeted

analysis [37]
- Peak overlapping which difficult

quantification [34]

Metabolomic studies can follow two distinct approaches, namely the untargeted or
the targeted approach. In the first, the goal is to cover the maximum of the metabolome
detecting as many metabolites as possible in a matrix, and is frequently denominated
as hypothesis generation [23]. In the second, a single metabolite or a group of metabo-
lites (e.g., metabolites from a specific metabolic pathway) are previously selected and
all the study is designed to detect and quantify these metabolites. This approach can be
applied to validate the results obtained through an untargeted approach and is called
hypothesis-driven [23,25].

Regarding PCa metabolomic studies, two main goals are recognized: (i) the discovery
of biomarkers with high sensitivity and specificity for PCa timely detection and (ii) to un-
derstand the metabolic basis of PCa pathogenesis identifying altered metabolic pathways
in consequence of PCa development and progression [25]. Nevertheless, the potential ap-
plication of metabolomic studies is not limited to these two main goals, once metabolomic
studies can also be applied to study the effectiveness of treatments, as well as the mecha-
nism of action of therapeutic drugs and the mechanism of drug resistance or contribute to
achieve the goal of personalized medicine [38].

Over the years, several independent subareas emerged from metabolomics, like
volatilomics, lipidomics, among others. Volatilomics is based on the analysis of VOCs,
like aldehydes, ketones, alcohols, hydrocarbons, or aromatic compounds [39], that are pro-
duced by human body and released into breath, blood, sweat, urine, feces, or saliva [39,40].
All VOCs share some physicochemical characteristics, such as low molecular weight and
low boiling point and/or elevate vapor pressure in normal conditions [41]. The interest to
investigate VOCs as potential cancer biomarkers gained strength after the observation that
dogs were able to “smell” urine or skin samples of cancer patients with high sensitivity
and specificity, indicating that the composition of VOCs is different in cancer individu-
als [42–44]. VOCs are end products of human biological activity and their composition in
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biological samples can reflect pathological processes [40], alterations in normal biochemical
pathways and/or a response to a damage or disease. Indeed, cancer development and
progression can lead to the production of new VOCs and/or to change their concentra-
tion [41], making them suitable candidates to cancer biomarkers [39]. One of the greatest
advantages of VOCs as biomarkers is the possibility to easily, inexpensively and quickly
detect them in clinical point of care through the most recent technological developments in
biological sensors (e.g., electronic noses (e-nose)) [39].

Lipidomics is the subarea of metabolomics focused on the qualitative and quantitative
profile of the lipid species in biological samples [45]. The knowledge of lipid metabolism is
crucial to understand cancer development and progression for several reasons: (i) de novo
synthesis provide phospholipids for cancer cell proliferation, (ii) fatty acid β-oxidation
is important in energetics and redox homeostasis, (iii) lipids play an important role in
signaling pathways [46] and, finally, (iv) lipids are extremely dynamic and can reflect phys-
iological, pathological, and environmental alterations [47]. For these reasons, the interest
to study the lipid profile of cancer cells has increased in the last years. It is estimated
that mammalian cells comprise around 10,000 individual lipid species [48]. These lipids
can be classified into different classes: (i) fatty acids, (ii) glycerophospholipids (GPLs),
(iii) glycerolipids (e.g., triglycerides (TG)), (iv) saccharolipids, (v) sphingolipids (SL), and
(vi) sterols. Each class of lipids show different biological functions. For instance, TG are
important for energy storage, while sterols are key elements in cellular membrane and
have also hormonal functions [49]. GPLs and SL are important components of cellular
membranes and lysophospholipids (LPLs) (a subclass of GPLs) are important molecules
for cellular signaling. These three classes (GPLs, SL and LPLs) are the most frequently
studied in cancer lipidomic studies. GPLs can still be divided into phosphatidylcholine,
phosphatidylethanolamine (major components of human cellular membranes), phospha-
tidic acid, phosphatidylglycerol, phosphatidylinositol and phosphatidylserine, considering
the molecular structure of these molecules. SLs can also be divided into several subclasses
like ceramides, sphingomyelins, among others [45]. This summary reflects the importance
and the complexity of the lipidome and justify that lipidomics comprises an independent
subarea of metabolomics. Furthermore, several studies revealed that cancer cells show
alterations in lipidome fingerprint demonstrating the potential of lipids as biomarkers
and/or therapeutic targets [46,49].

3. The Metabolic Phenotype of Prostate Cancer

It is well established that cancer cells suffer profound metabolic alterations that are
indispensable for cancer development and progression [50]. One of the most well described
metabolic alterations of cancer cells is the Warburg effect, which is characterized by a
change in the preferential pathway to produce energy. Indeed, cancer cells preferentially
produce ATP via aerobic glycolysis, even in the presence of oxygen, while normal cells
produce ATP through oxidative phosphorylation [50,51]. This shift leads to an increase
in glucose uptake and in lactate secretion [50,52]. The increase in lactate levels seems to
play an important role in cancer development and progression [50]. Lactate can be utilized
as fuel for oxidative metabolism, metabolized into alanine and glutamine and can also
intervene in cancer cell mobility, immune escape and angiogenesis [50].

To comprehend how the Warburg effect impacts PCa cell metabolism, it is important
to revisit the peculiar metabolic phenotype of normal prostate cells. Contrarily to other
human cells, prostate cells favor citrate accumulation instead of citrate oxidation for energy
production through tricarboxylic (TCA) cycle, also known as Krebs cycle or citric acid
cycle [53]. Prostate cells have an increase in the zinc transporter ZIP1 and, consequently,
zinc accumulates in prostate tissue [52]. The high levels of zinc are responsible for the
inhibition of m-aconitase, which is the enzyme responsible for citrate oxidation in TCA
cycle [53]. However, one of the first metabolic alterations associated with PCa development
is the loss of cell ability to accumulate zinc and subsequent reduction of citrate levels in
PCa cells [53]. Indeed, there is an increment of citrate oxidation in TCA cycle to produce
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energy in PCa cells [52,53]. For this reason, the Warburg effect and consequent increase in
aerobic glycolysis is described mainly in advanced stages of PCa, where the increase in
glycolytic pathway is associated with metastases formation and thereafter to a poor progno-
sis [52,54]. Furthermore, citrate can also be used in PCa cells to produce acetyl-coenzyme A
(acetyl-CoA) (important for fatty acids and cholesterol synthesis) and oxaloacetate (amino
acid precursor) [55] (Figure 1). Beyond citrate accumulation, normal prostate cells can
also accumulate polyamines, such as spermine and spermidine once they are important
components of prostatic secretions [56]. Polyamine levels also decrease, similarly to citrate,
during cancer development and progression (Figure 1). Indeed, this reduction in polyamine
levels may promote PCa cell survival by preventing apoptosis [55,56].

Metabolites 2021, 11, 181 7 of 31 
 

 

or choline derivative metabolites, have a very important role in cancer cells proliferation 

[53,54]. Furthermore, lipids are also essential as energy resource, for energy storage and 

for intracellular signaling [54]. Therefore, increase in de novo fatty acids synthesis is an 

initial event in PCa development, which is stimulated by androgen signaling [52], as well 

as the increase in fatty acids oxidation to produce energy [52,54]. The importance of lipo-

genesis in PCa is patent in the increase of the expression of lipogenic and lipid-modifying 

enzymes, occurring in PCa [52,54] and by the accumulation of triglycerides, cholesterol 

esters and phospholipids (phosphatidylcholine), mainly in aggressive PCa [53]. Further-

more, metastatic PCa cells also show an upregulation of acetyl-CoA synthetase 2, allowing 

PCa cells to produce acetyl-CoA (essential for fatty acids synthesis) from acetate, while 

normal cells produce acetyl-CoA essentially from glucose and glutamine [54] (Figure 1). 

Moreover, PCa cells show the ability to take up exogenous lipids and to synthetize and 

mobilize lipids storage in other cells, like adipocytes [54].  

From this brief explanation, it is reasonable to infer that the study of the metabolic 

signature of cancer cells has an enormous potential in the discovery of new biomarkers, 

as well as to elucidate cancer pathophysiological mechanisms, which can be used to define 

new therapeutic strategies. 

. 

Figure 1. Schematic representation of the metabolic phenotype of prostate cancer cells. Red indicates increase in either 

metabolites or metabolic pathway flux and green indicates decrease in either metabolites or metabolic pathway flux. Un-

derline indicates changes especially important in advanced PCa. The dashed lines represent multiple steps reactions. (α-

KG, alpha-ketoglutarate; Ac-CoA, acetyl-coenzyme A; Chol, choline; G6P, glucose-6-phosphate; GNMT, glycine N-me-

thyltransferase; Isocit, isocitrate; Met, methionine; NO, nitric oxide; OAA, oxaloacetate; PCs, phosphatidylcholines; PEs, 

phosphatidylethanolamines; PPP, pentose phosphate pathway; R5P, ribose-5-phosphate; SAH, S-adenosylhomocysteine; 

SAM, S-adenosylmethionine; SARDH, sarcosine dehydrogenase; TCA cycle, tricarboxylic acid cycle). 

  

Figure 1. Schematic representation of the metabolic phenotype of prostate cancer cells. Red indicates increase in either
metabolites or metabolic pathway flux and green indicates decrease in either metabolites or metabolic pathway flux.
Underline indicates changes especially important in advanced PCa. The dashed lines represent multiple steps reactions.
(α-KG, alpha-ketoglutarate; Ac-CoA, acetyl-coenzyme A; Chol, choline; G6P, glucose-6-phosphate; GNMT, glycine N-
methyltransferase; Isocit, isocitrate; Met, methionine; NO, nitric oxide; OAA, oxaloacetate; PCs, phosphatidylcholines; PEs,
phosphatidylethanolamines; PPP, pentose phosphate pathway; R5P, ribose-5-phosphate; SAH, S-adenosylhomocysteine;
SAM, S-adenosylmethionine; SARDH, sarcosine dehydrogenase; TCA cycle, tricarboxylic acid cycle).

Pentose phosphate pathway (PPP) is also altered in PCa cells, once the levels of
glucose-6-phosphate dehydrogenase (a key enzyme in PPP) are increased through androgen
receptor (AR) signaling [54], which is essential for PCa progression. AR signaling also
promotes glycolysis and anabolism [55]. As previously referred, one of the most frequently
used treatments for aggressive PCa is androgen deprivation therapy, which is associated
to the development of castration-resistant state and consequently alterations in the lipid
profile, and to a worse prognosis [55,57]. Furthermore, PCa cells show the ability to
synthesize sterols, highlighting the importance of androgen signaling in PCa [57] (Figure 1).

Alterations in different amino acids, such as glutamine, have been associated with
PCa and other cancers [50,52]. Glutamine is one of the most abundant amino acids in
human plasma and has important roles in human metabolism [54], as it can be converted
in glutamate, and subsequently be transformed in α-ketoglutarate, an intermediate in TCA
cycle [50,52]. This amino acid can also be used by cancer cells for acetyl-CoA produc-
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tion [54], for fatty acid synthesis [52] and as a nitrogen and carbon donor for nucleotide,
lipids and protein synthesis [50,54]. The glutamate resulting from glutamine is an essential
substrate for glutathione synthesis, and therefore important for the protection of the cells
against oxidative damage [50] (Figure 1). Arginine is an important amino acid involved
in PCa metabolism. Arginine is converted by PCa cells in glutamine and/or proline [52].
The increase in proline levels is needed to the maintenance of the levels of pyridine nu-
cleotides [54]. Arginine has also an important role in nitric oxide (NO) production [52]
(Figure 1).

Sreekumar et al. (2009), reported higher levels of sarcosine in urine of PCa patients,
which was a milestone in PCa metabolomics [58], but its importance as potential PCa
biomarker was refuted in the following years [59–61]. Sarcosine is synthesized from other
amino acids, glycine, and vice versa. This reaction can be linked to methionine cycle,
and the produced methionine can be up-taken to folate cycle. The combination of these
two cycles is referred frequently as one-carbon metabolism. One-carbon metabolism
fuels building blocks for purines and thymidylates synthesis, which are essential for
DNA synthesis and repair [62,63]. Methionine cycle also plays a role in polyamines and
glutathione synthesis [54,63] (Figure 1).

Another prominent characteristic of a cancer cell is its ability to proliferate constantly.
Lipids are major components of cellular membranes, so alterations in lipids, and in choline
or choline derivative metabolites, have a very important role in cancer cells prolifera-
tion [53,54]. Furthermore, lipids are also essential as energy resource, for energy storage
and for intracellular signaling [54]. Therefore, increase in de novo fatty acids synthesis is an
initial event in PCa development, which is stimulated by androgen signaling [52], as well
as the increase in fatty acids oxidation to produce energy [52,54]. The importance of lipoge-
nesis in PCa is patent in the increase of the expression of lipogenic and lipid-modifying
enzymes, occurring in PCa [52,54] and by the accumulation of triglycerides, cholesterol
esters and phospholipids (phosphatidylcholine), mainly in aggressive PCa [53]. Further-
more, metastatic PCa cells also show an upregulation of acetyl-CoA synthetase 2, allowing
PCa cells to produce acetyl-CoA (essential for fatty acids synthesis) from acetate, while
normal cells produce acetyl-CoA essentially from glucose and glutamine [54] (Figure 1).
Moreover, PCa cells show the ability to take up exogenous lipids and to synthetize and
mobilize lipids storage in other cells, like adipocytes [54].

From this brief explanation, it is reasonable to infer that the study of the metabolic
signature of cancer cells has an enormous potential in the discovery of new biomarkers, as
well as to elucidate cancer pathophysiological mechanisms, which can be used to define
new therapeutic strategies.

4. Tissue Metabolomic Studies

The collection of tissue samples is very invasive, hampering their use for PCa scree-
ning. However, the study of the tissue metabolome has important advantages, once this is
the ideal matrix to establish which metabolic alterations are specific to PCa development
and progression. Furthermore, tissue studies have been performed using matched tumoral
and nontumoral samples from the same individual, thus minimizing the contribution of
confounding factors (e.g., age, comorbidities, lifestyle).

Thirteen metabolomic studies performed in PCa tissue samples were published in
the last 5 years, including two lipidomic studies. Table 2 summarizes the study design
and main outcomes obtained in those studies. Overall, a total of 98 different metabolites
were associated with PCa, indicating that PCa is related with dysregulations in 32 different
metabolic pathways (Table 2). Interestingly, 18 metabolites were found to be common
among the included studies (Figure 2). It is important to note that these studies were per-
formed under different analytical conditions, with different sample selection criteria and
using different statistical approaches, foreseeing difficulties to compare results across stud-
ies. The fact that these metabolites were found common in the various studies, highlights
their importance in PCa metabolism and their potential as specific PCa biomarkers.
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Table 2. Metabolomic studies performed in tissue samples from PCa patients in the last 5 years (2015–2020).

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 31 n = 14 (benign
adjacent tissue)

HR-MALDI-
IMS
MS/MS

Univariate and
Multivariate Cox
Regression
Analyses

1. LPC (16:0) (−)
2. SM [(d18:1/16:0)] (−)
Predictor of biochemical
recurrence:
1. LPC (16:0) (−)

1. FAs de novo synthesis
and remodeling pathway
(Lands′ pathway)
2. Arachidonic acid
metabolism

LPC (16:0) [64]

n = 25
Validation set 1:
n = 19
Validation set 2:
n = 12

n = 25 (normal
adjacent tissue)
Validation set 1:
n = 17 (normal
adjacent tissue)
Validation set 2:
n = 12 (normal
adjacent tissue)

LC–MS

PCA
OPLS-DA
Model performance:
Sens: 85%
Spec: 83–91%
AUC: 0.90

1. Adenosine monophosphate
(−)
2. Spermidine (+)
3. Uracil (+)

1. Purine metabolism
2. Polyamines synthesis
3. Pyrimidine metabolism

Adenosine
monophosphate
(AUC: 0.82)
Spermidine (AUC:
0.85)
Uracil (AUC: 0.91)

[65]

n = 25
Validation set:
n = 51

n = 25 (normal
adjacent tissue)
Validation set:
n = 19 (BPH)

LC–MS

PCA
PLS-DA
Model performance:
AUC: 0.90–0.94
External validation:
AUC: 0.84–0.91

1. PCs (alkyl/acyl-PCs, PC-O)
(−); PEs (alkenyl/acyl-PEs,
plasmalogens, PE-P) (−); Free
saturated FAs (−); Diacyl-PC
(+); Diacyl-PE (+); Free mono-
and poly-unsaturated FAs (+)
2. CEs (+); Cholesteryl
oleate (+)

1. Lipogenesis, lipid uptake
and phospholipids
remodeling
2. Cholesterol metabolism

Cholesteryl
oleate (AUC:
0.91(PCa vs. normal
adjacent tissue) and
AUC: 0.96 (PCa vs.
BPH))

[66]
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Table 2. Cont.

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 25
Validation set:
n = 51

n = 25 (normal
adjacent tissue)
Validation set:
n = 51 (benign
adjacent tissue) +
n = 16 (BPH)

LC–MS PCA
PLS-DA

1. Choline (+); Citicoline (+)
Nicotinamide adenine
dinucleotide (+);
S-Adenosylhomoserine (+); 5-
Methylthioadensine (+);
S-Adenosylmethionine (+);
Nicotinamide mononucleotide
(+); Nicotinamide adenine
dinucleotide phosphate (+);
Adenosine (−); Uric acid (−)
2. D-Glucosamine 6-phosphate
(+); N-Acetyl-D-glucosamine
(+); N-Acetyl-D-glucosamine
6-phosphate (+);
UDP-Acetyl-glucosamine (+)
3. 2-Aminoadipic acid (+);
Saccharopine (+);
Trimethyllysine (+); Carnitine
C4-OH (+); Carnitine C14:2
4. Sphingosine (+)
5. Pantothenic acid (+)
6. Dehydroepiandrosterone
sulfate (−); Etiocholanolone
sulfate (−)
7. Phenylacetylglutamine (−)

1. Cysteine and methionine
metabolism; NAD
metabolism; phospholipid
membrane metabolism
2. Hexosamine biosynthesis
3. Lysine degradation;
β-oxidation of FAs
4. Sphingolipid metabolism
5. CoA homeostasis
6. Dihydro-testosterone
synthesis
7. Unavailable

Sphingosine (AUC:
0.81–0.87) [67]

n = 34 (ERGhigh
PCa)

n = 30 (ERGlow
PCa)

HR-MAS
1H-NMR

PCA
PLS-DA
Model performance:
Sens: 79%
Spec: 74%
Accu: 77%

ERGhigh PCa vs. ERGlow PCa
1. Citrate (−)
2. Spermine (−)

1. TCA cycle
2. Polyamines synthesis

Citrate and
spermine
ERGhigh for
stratification

[68]
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Table 2. Cont.

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 6 (patients
treated with
Degarelix) + n = 7
(untreated)

n = 10 (benign
from untreated
patients)

HR-MAS
1H-NMR

PCA
OPLS-DA

Untreated patients:
1. Lactate (+); Alanine (+)
2. Total choline (+)
Patients treated with Degarelix:
1. Lactate (−)
2. Total choline (−)

1. Energetic metabolism
2. Choline metabolism;
Phospholipid membrane
metabolism

Lactate
Total choline [69]

n = 50 (patients
that developed
recurrence after
prostatectomy)

n = 60 (patients
that did not
develop
recurrence after
prostatectomy)

HR-MAS
1H-NMR

PLS-DA
Model performance:
Sens: 92%
Spec: 92%
Accu: 92%

Increased risk of recurrence
1. (Total choline +
creatine)/spermine (+); (Total
choline + creatine)/citrate (+)
2. Spermine (−)
3. Citrate (−)

1. Choline metabolism;
Phospholipid membrane
metabolism
2. Polyamines synthesis
3. TCA cycle

Spermine
Total choline +
creatine/spermine

[70]

n = 21
Validation set:
n = 50

n = 21 (benign
adjacent tissue)
Validation set:
n = 50

GC–MS OSC-PLS-DA

1. Fumarate (+); Malate (+);
Succinate (+); 2-
Hydroxyglutaric acid (+);
Alanine (+);
Glycerol-3-phosphate (+)
2. 11-Eicosenoic acid (+);
Docosanoic acid (+); Eicosanoic
acid (+)
3. Glycerolipids (+);
Myo-inositol (+)
4. Uracil (+)
5. Proline (+)

1. Energetic metabolism
(TCA cycle)
2. FAs metabolism
3. Membrane metabolism
4. Pyrimidine
metabolism
5. Amino acid metabolism

- [71]

n = 199
Validation set
n = 166

n = 179 (benign
adjacent tissue)
n = 15 (BPH) +
n = 14
(cancer-free
patients)
Validation set
n = 159 (benign
adjacent tissue)

HR-MAS
1H-NMR

Linear
Regressions

1. Myo-inositol (+);
Phosphocholine (+);
Glycerophosphocholine (+)
2. Lactate (+); Taurine (−)
3. Histidine (+)
4. Phenylalanine (−);
Glutamate (+)

1. Membrane metabolism
2. Energetic metabolism
3. Histidine metabolism
4. Amino acid metabolism

Myo-inositol [72]
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Table 2. Cont.

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 13 (American
African
population) + n =
13 (Caucasian
American
population)

n = 12 (American
African
population) + n
= 9 (Caucasian
American
population)
(benign adjacent
tissue)

GC-FID
ESI–MS

Generalized linear
model

Saturated total FAs (+);
Arachidic acid (+); Myristic acid
(+)
Monounsaturated total FAs (+);
Polyunsaturated FAs (+); n-6
Total FAs (+); n-3 Free FAs (+)

Lipid metabolism

Arachidic acid (sens:
78%; spec: 75%;
accu: 80%)
(American African
population)
Myristic acid (sens:
85%; spec: 89%;
accu: 98%)
(Caucasian
American
population)

[73]

n = 13 n = 13 (benign
adjacent tissue)

LC–MS
CE–MS OPLS-DA

1. Cysteine (+); Lysine (+);
Methionine (+); Phenylalanine
(+); Tyrosine (+);
Branched-chain amino
acids (leucine, isoleucine, and
valine) (+); Fumarate (+)
2. Glycerophospholipids (+)
3. Fructose 6-phosphate (−);
Fructose 1,2-biphosphate (−);
Pyruvate (−); Citrate (−);
cis-Aconitate (−); Isocitrate (−)
4. N-Acetylglucosamine (+);
N-Acetylglucosamine
1-phosphate (+),
N-acetylglucosamine
6-phosphate (+); Galacturonate
1-phosphate (+)
5. Aspartate (+);
Argininosuccinate (+); Arginine
(+); Proline (+); Fumarate (+)

1. Amino acid metabolism
2. Lipid metabolism
3. TCA cycle
4. Hexosamine pathway
5. Urea cycle

Fumarate
Citrate
Isocitrate

[74]

n = 58 n = 18 (BPH) 1H-NMR
PCA
PLS-DA

1. Creatine (−); Creatinine (−);
Glutamate (+); Glutamine (+);
Formate (+); Tyrosine (+);
Uridine (+)
2. Citrate (−)
3. Trimethylamine (+)

1. Amino acid metabolism
2. TCA cycle
3. Membrane metabolism

Citrate
Glutamine [75]
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Table 2. Cont.

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 70
43 GS (3 + 3)
16 GS (3 + 4)
10 GS (4 + 3)
1 GS (4 + 4)

n = 59 (benign
adjacent tissue)

1H HR MAS
NMR
1H/31P NMR
LC–MS

PCA
OPLS-DA

PCa vs. Benign
1. Citrate (−); Succinate/
malate (+); Fumarate (+)
2. Putrescine (−); Spermidine
(−); Spermine (−)
3. Glutamate (+)
4. Uracil (+)
5. Hypoxanthine (+); Inosine (+)
6. α-Glucose (−)
7. SM (−)
8. NAD+ (−)
9. Phosphocholine (+); PE (+);
LPC (−);
10. Arginine (+);
11. Docosapentanoic acid (22:5)
(+); Oleic acid (18:1) (+);
Linoleic acid (+);
Docosahexaenoic acid (22:6) (+);
Maleic acid (+);
GS ≥7 vs. GS 6
3. Glutamate (+)
5. Hypoxanthine (+)
6. α-Glucose (−)
7. Sphingosine (+)
9. Glycerophosphorylcholine
(+); Phosphocholine (+)
10. Arginine (+)
11. Hexanoylcarnitine (+)

1. TCA cycle
2. Polyamines synthesis
3. Glutamate metabolism
4. Pyrimidine metabolism
5. Purine metabolism
6. Glycolysis
7. Sphingolipid metabolism
8. Nicotinate and
nicotinamide metabolism
9. Glycerophosphocholine
metabolism; Phospholipid
membrane metabolism
10. Urea cycle
11. Free FAs oxidation
12. Branched-chain amino
acid meta-bolism
13. Inositol metabolism
14. Propanoate metabolism
15. Aminoacyl-tRNA
biosynthesis

Phosphocholine
Glutamate
Hypoxanthine
Arginine
α-Glucose

[76]
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Table 2. Cont.

PCa Group Control Group Analytical
Platform Statistical Methods Altered Metabolites

(Direction of Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

12. Tyrosine (+); Valine (+);
Phenylalanine (+)
13. Ascorbate (+)
14. 2-Hydroxybutyrate (+)
15. Lysine (+); Threonine (+)

Notes: (+) indicates increased levels in PCa, (−) indicates decreased levels in PCa; the numbering of the column Altered Metabolites is related with the numbering of the column Dysregulated metabolic
pathways. Abbreviations: 1H-NMR, proton nuclear magnetic resonance spectroscopy; 31P NMR, phosphorus-31 nuclear magnetic resonance spectroscopy; accu, accuracy; AUC, area under the curve; BPH,
benign prostatic hyperplasia; CE–MS, capillary electrophoresis–mass spectrometry; CEs, cholesteryl esters; PCs, ether-linked phosphatidylcholines; ESI–MS, electrospray ionization–mass spectrometry;
ERG, ETS-related gene; FAs, fatty acids; GC-FID, gas chromatography-flame ionization detector; GC–MS, gas chromatography–mass spectrometry; GS, Gleason score; HR-MALDI-IMS, high-resolution
matrix-assisted laser desorption/ionization imaging mass spectrometry; HR-MAS 1H-NMR, high resolution magic angle spinning proton nuclear magnetic resonance; LC–MS, liquid chromatography–mass
spectrometry; LPC, lysophosphatidylcholine; OPLS-DA, orthogonal projections to latent structures discriminant analysis; OSC-PLS-DA, orthogonal signal corrected partial least squares-discriminant analysis;
PCA, principal component analysis; PEs, phosphatidylethanolamines; PLS-DA, partial least squares-discriminant analysis; sens, sensitivity; spec, specificity; SM, sphingomyelin; TCA, tricarboxylic acid cycle.
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The most frequent alteration reported among the studies conducted in the last 5 years
is the significant decrease in citrate levels in PCa tissue [68,74–76] (Table 2 and Figure 2).
This result is not unexpected as the loss of capability to accumulate citrate is one of the
first metabolic alterations observed in prostate cells during malignant transformation. This
loss of capability to accumulate citrate translates in a profound alteration in energetic
metabolism of PCa cells, once PCa cells start to use citrate in TCA cycle more efficiently
than normal prostate cells [51,52]. Furthermore, Braadland et al. (2017) compared PCa
tissue from men that suffered PCa recurrence after prostatectomy with tissue from men
that, until the date of the study, did not show signals of recurrence, unveiling that lower
levels of citrate in PCa tissue were associated with shorter time of recurrence [70]. Addi-
tionally, lower levels of citrate were also associated with more aggressive PCa [77]. Beyond
citrate, two other metabolites involved in energetic metabolism, namely alanine [69,71]
and lactate [69,72] showed significant alteration in PCa tissue.

The increased levels of other key metabolites of TCA cycle have also been frequently
cited in the reviewed studies, namely succinate [71,76], malate [71,76] and fumarate [71,74,76]
(Table 2, Figure 2). The increase in malate and fumarate levels was also correlated with
Gleason score [71,78] and tumor stage [71]. Notably, both succinate and fumarate were
previously considered oncometabolites [49], once their accumulation leads to cancer pro-
gression [79]. The increased levels of succinate and fumarate have been asso-ciated in
other cancer types (e.g., paraganglioma, pheochromocytoma or kidney cancers [78]) with
mutation in the enzymes succinate dehydrogenase (SDH) and fumarate hydratase (FH),
respectively [49,80]. However, these results were not observed in PCa studies performed
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by Shao et al. (2018), which suggested the involvement of other mechanisms that could also
be related with the increase of the levels of these metabolites in PCa [71]. Once fumarate
is also linked with urea cycle [74,76], this metabolic pathway could be res-ponsible for
keeping the high levels of fumarate in PCa tissue [74,79]. As previously referred, the
accumulation of fumarate leads to cancer progression, this could involve the activation of
hypoxia-inducible factor 1-subunit alfa (HIF1α) and NFκB pathways [74]. HIF1α plays
an important oncogenic role in PCa once this pathway is responsible for many essential
mechanisms to guarantee PCa cell survival, like antiapoptosis, angioge-nesis and increased
glycolytic metabolism. Furthermore, HIF1α protects PCa cells against oxidative stress and
against the cytotoxicity caused by androgen deprivation therapy, chemotherapy, or radia-
tion [81]. Similarly, NFκB pathways support PCa cell survival, proliferation, and invasion,
playing an important role in the development of resistance to castration therapy [82].

The increase in uracil levels is another alteration consistently reported in PCa tissue (Table 2,
Figure 2), suggesting that PCa cells have alterations in pyrimidine metabolism [65,71,76]. Pyrim-
idine metabolism is a complex biochemical pathway that comprises diffe-rent reactions,
namely de novo nucleotide synthesis, nucleoside salvage, and pyrimidines degradation [83].
Pyrimidines, like uracil [84], are essential in cells metabolism once they are constituents
of nucleotides, nucleic acids, vitamins, proteins, and folates [85]. Furthermore, they are
key intermediates in RNA and DNA synthesis, protein and lipids glycosylation, synthesis
of phospholipid precursors [84,85], and in reactions of glucuronidation [84]. Cancer cells
are dependent on de novo nucleotide synthesis for cell proliferation and consequently for
cancer development and progression [83,84]. Importantly, the inhibition of this metabolic
pathway is a strategy adopted in the treatment of several cancers (e.g., colorectal cancer
and pancreatic cancer) [84,86,87].

One of the main functions of normal prostate is to synthesize polyamines like spermine
but apparently this function is impaired with PCa development and progression [70]
leading to a decrease in the levels of spermine [68,76]. Indeed, the reduction of spermine
levels was proposed as a biomarker able to predict BCR [70]. Interestingly, levels of
spermidine, a spermine precursor, were also reported as significantly altered in PCa tissue
samples; however, the obtained results were contradictory. Huan et al. (2016) found a
significant increase in the levels of spermidine [65], whereas Dudka et al. (2020) showed a
significant decrease in the levels of this metabolite in PCa tissue samples [76].

As previously referred, lipid metabolism can be an important source of PCa biomark-
ers, emphasizing the relevance of lipidomic studies. The major reported lipidic alterations
occurring in PCa cells involved phospholipids from cellular membrane [64,66,67,69,71–73,76]
which was expected taking into consideration that cancer cells show a high proliferative
phenotype. Notably, the significant decrease in the levels of LPC (16:0) was able to predict
BCR [64]. This observation is supported by a transcriptomic study, that evaluates the
expression of the enzyme LPC transferase 1 (LPCAT1). The increase in the expression of
this enzyme was able to discriminate PCa from benign tissue, as well as to differentiate PCa
with different GS and to predict BCR and/or metastasis development [88]. Furthermore,
phosphocholine also revealed to be able to discriminate PCa tissue with different GS [76].

Finally, alterations in amino acid metabolism have also been widely reported in PCa,
mainly in the increase levels of glutamate [72,75,76], tyrosine [74,75], arginine [74,76], and
proline [71,74]. Importantly, the significant alteration in the levels of the first three amino
acids was associated with GS and consequently PCa aggressiveness [76], making these
metabolites potential diagnosis and prognosis biomarkers.

5. Urine Metabolomic Studies

Urine is the ideal matrix to be used in a screening test, due to its noninvasive nature,
along with ease of collection and handling, high volume which allow repeated analysis, and
lower complexity when compared with other biofluids (e.g., serum or plasma) [20,37,89].
Furthermore, urinary metabolites are concentrated by the kidneys, which are anatomically
close to the prostate [89,90]. However, urine composition can vary due to several external
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factors, like diet, smoking habits, genetic factors, microbiota, diurnal cycles diabetes, and
other diseases which can affect urine metabolome [91].

From 2015 to 2020, 13 studies performed in PCa urine samples were published, includ-
ing four volatilomics studies. Table 3 summarizes these studies, highlighting study design,
altered metabolites, metabolic pathways, as well as candidate biomarkers, whenever avail-
able. Overall, 179 different metabolites were associated with PCa, indicating that PCa is
correlated with dysregulations in 48 different metabolic pathways. In this section, the
metabolites that hold greatest potential as PCa biomarkers will be highlighted, considering
different selection criteria: (i) consistency among different urinary studies, (ii) AUC greater
than PSA and (iii) translatability between tissue and urine studies.

Despite the great differences (e.g., different analytical platform, samples preparation
or different inclusion/exclusion criteria) among the study designs, 15 metabolites have
been consistently reported with the same variation among different urinary studies, as
represented in Figure 3. Importantly, four metabolites out of the 15 have also been reported
with the same alteration in PCa tissue, namely decreased levels of citrate [68,74–76,92,100],
increased levels of leucine [74,97,102], increased levels of valine [74,97,102], and increased
levels of taurine [96,100,104], suggesting that these alterations may be specific of PCa
tumors and suggesting their translatability between tissue and urine samples (Figure 3).
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Table 3. Metabolomic studies performed in urine samples from PCa patients in the last 5 years (2015–2020).

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 32 n = 32 LC–MS
GC–MS

PCA
PLS-DA

1. Glycine (−); Serine (−); Threonine
(−); Alanine (−)
2. Glutamine (−); Isocitrate/Citrate
(−); Aconitate (−); Succinate (−)
3. Sucrose (−); Sorbose (−);
Arabinose (−); Arabitol (−); Inositol
(−); Galactarate (−); Acetate (−);
Propanoic acid (−); Propenoic acid
(−); Butanoic acid (−)
4. Carnitines (−)
5. Sphingolipids (+)

1. Amino acid metabolism
2. Energetic metabolism
3. Carbohydrates
metabolism
4. Long-chain FAs
metabolism
5. Sphingolipid metabolism

- [92]

n = 59 n = 43 GC–MS RF
LDA

1. 2,6-Dimethyl-7-octen-2-ol (−);
3-Octanone (−); 2-Octanone (−)
2. Pentanal (+)

1. Increased energy
consumption
2. Inflammatory conditions
via the excessive production
of reactive oxygen species,
known to induce lipid
peroxidation

4-Biomarker panel:
2,6-Dimethyl-7-
octen-2-ol
3-Octanone
2-Octanone
Pentanal
(accu: 63–65%)

[93]

n = 66
n = 88 (BPH)
+ n = 11
(cancer-free)

UPLC-MS/MS ROC
Student′s t-test Spermine (−) Polyamines synthesis Spermine (AUC:

0.83) [94]

n = 62 n = 42 LC-QTOF
PLS-DA
Model Performance: Sens:
88%; Spec: 93%

1. Dimethyllysine (−);
5-Acetamidovalerate (−);
Acetyllysine (−); Trimethyllysine (−)
2. Imidazole lactate (−); Histidine
(−); Methylhistidine (−);
Acetylhistidine (−)
3. Urea (−); Acetylarginine (−);
Acetylcitrulline (−);
Acetylputrescine (−);
Dimethylarginine (−);
Citrulline (−)
4. Tyrosine (−)

1. Lysine degradation
2. Histidine degradation
3. Arginine metabolism
4. Tyrosine metabolism
5. Tryptophan metabolism
6. Taurine metabolism
7. Alanine, aspartate and
glutamate metabolism
8. Glutamine and glutamate
metabolism
9. Purine and pyrimidine
metabolism

- [95]
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Table 3. Cont.

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

5. 8-Methoxykynurenate (−);
Kynurenic acid (−); Xanthurenic
acid (−)
6. Sulfoacetate (−); Isethionate (−);
Acetyltaurine (−)
7. Acetylaspartylglutamic acid (−);
Acetylaspartate (−);
2-Oxoglutaramate (−)
8. 2-Pyrrolidone-5-carboxylate (−)
9. 5-Methyldeoxycytidine-5′-
phosphate (−); 7-Methylguanosine
(−); 7-Methylguanine (+)

n = 30
Validation set
n = 19

n = 25
Validation set
n = 15

LC-ESI-
MS/MS

PLS-DA
Model performance:
Sens: 90%
Spec: 73%

1. Taurine (+)
2. Ethanolamine (−);
Phosphoethanolamine (−)
3. Arginine (−); Homocitrulline (−);
Citrulline (−)
4. Isoleucine (−); Leucine (−);
Phenylalanine (−); Serine (−);
Tyrosine (−); Tryptophan (−);
Asparagine (−); Glutamate (−);
Ornithine (−); Glutamine (−)
5. Lysine (−); δ-Hydroxylysine (−)
6. 1-Methylhistidine (−);
3-Methylhistidine (−); Histidine (−)
7. α-Aminoadipic acid (−);
γ-Amino-n-butyric acid (−)
8. Cystathionine (−); Cystine (−);
Methionine (−)

1. Energetic metabolism
2. Phospholipid metabolism
3. Arginine metabolism
4. Amino acid metabolism
5. Lysine degradation
6. Histidine degradation
7. FAs metabolism
8. Methionine metabolism

γ-Amino-n-butyric
acid (AUC: 0.93)
Phosphoethanolamine
(AUC: 0.88)
Ethanolamine
(AUC: 0.86)
Homocitrulline
(AUC: 0.84)
Arginine (AUC:
0.83)
δ-Hydroxylysine
(AUC: 0.80)
Asparagine (AUC:
0.77)

[96]
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Table 3. Cont.

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 64 n = 51 (BPH) 1H-NMR OPLS-DA

1. Branched-chain amino acids (+);
Glutamate (+); Glycine (−);
Dimethylglycine (−)
2. 4-Imidazole-acetate (−)
3. Fumarate (−)
4. Pseudouridine (+)

1. Amino acid metabolism
2. Histidine metabolism
3. TCA cycle
4. RNA synthesis

- [97]

n = 29 n = 21 (BPH) HS-SPME-GC-
MS

Shapiro–Wilks test,
Levene′s test, ANOVA,
Kruskal–Wallis test,
Pearson test

Before prostate massage:
1. 3,5-Dimethylbenzaldehyde (−)
2. 2,6-Dimethyl-7-octen-2-ol (−);
2-Ethylhexanol (−)
3. Santolin triene (−)
4. Furan (+)
After prostate massage:
2. 3-Methylphenol (+); Phenol (+)
4. Furan (+)
5. 2-Butanone (+)
6. p-Xylene (+)

1. Alcohols and FAs
metabolism
2. Lipid metabolism
3. Energetic metabolism
4. FAs oxidation
5. FAs and carbohydrate
metabolism
6. Unavailable

Furan
p-Xylene
(correlation with
GS)

[98]

n = 40
Validation set
n = 18

n = 42
Validation set
n = 18

GC–MS

PCA
PLS-DA
Model performance:
Sens: 78%
Spec: 94–100%
Accu: 86–89%
AUC: 0.90–094

1. Methylglyoxal (−)
2. Hexanal (−)
3. 3-Phenylpropionaldehyde (+);
Decanal (−)
4. 4-Methylhexan-3-one (−);
Hexan-2-one (−);
2-Methylcyclopentan-1-one (−);
5-Methylheptan-2-one (−);
4,6-Dimethylheptan-2-one
(−);2-Hydroxy-2-methyl-1-
phenylpropan-1-one (−);
Pentan-2-one (+); Cyclohexanone (+)
5. 2.5-Dimethylbenzaldehyde (+)
6. 2,6-Dimethyl-6-hepten-2-ol
(−);1-Methyl-4-propan-2-
ylcyclohex-2-en-1-ol (−); Linalool
(−); Terpinen-4-ol (−); 3- Carene (−);
Isoterpinolene (−); Menthyl acetate
(−);

1. Pyruvate metabolism;
Glycine, serine and
threonine metabolism
2. Steroid hormone
biosynthesis
3. Alcohols and FAs
metabolism; Amino
acids and carbohydrate
catabolism
4. FAs metabolism
5. Alcohols and FAs
metabolism
6. Lipid metabolism
7. Steroid metabolism
8. Energetic metabolism;
metabolites related to cell
signaling and membrane
stabilization

6-Biomarker-panel:
Hexanal
2,5-Dimethyl-
benzaldehyde
4-Methylhexan-3-one
Dihydroedulan IA
Methylglyoxal
3- Phenylpropional-
dehyde
(AUC: 0.90; sens:
89%; spec: 83%;
accu: 86%)

[99]
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Table 3. Cont.

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

7. Theaspirane (−)
8. Glyoxal (−)
9. 2-Butenal (−)
10. Phenylacetaldehyde (+)
11. Butan-2-one (+)
12. Dihydroedulan IA (−);
3,4-Dimethylcyclohex-3-ene-1-
carbaldehyde (−);
4-Methyldec-1-ene (−); Hexadecane (+)

9. Metabolites linked to lipid
peroxidation
10. Phenylalanine
metabolism
11. FAs and carbohydrate
metabolism
12. Unavailable

n = 10 n = 30 GC–MS
LC–MS

PCA
OPLS-DA

1. Pseudouridine/Uridine (+);
Dihydro-uridine (+)
2. Citrate (−) Pyruvate (+); Lactate
(+); Hexose (−); Pentose (+)
3. Hippuric acid (−); Aminohippuric
acid (+); Phenylpyruvic acid (−);
Tyrosine (−)
4. Sphinganine (−); Sphingosine (−);
Serine (+)
5. Succinate (−); Glucosamine
phosphate (+)
6. Xanthosine (+); Hypoxanthine (+);
Xanthine (+)
7. Hydroxytryptophan (+)
8. N-linoleoyl taurine (−); Taurine (+)
9. Creatinine (+)
10. Sialyl-N-acetyllactosamine (+);
Suberic acid (+); Dihydrocaffeic acid
sulfate (+); Hydroxyethanesulfonate
(+); Hydroxyglutaric acid (+);
Acetylaminoadipic acid (+);Adipic
acid (+); Hydantoinpropionate (+);
Nicotine glucuronide (−); Benzoic
acid (−); Oxo-heptanoic acid (+);
Glucoheptanic acid (−);
Aminohexadecanoic acid (−);
Glucocaffeic acid (−);
Trimethyluric acid (+);
3,7-Dimethyluric acid (−);
3′ Sialyllactose (+)

1. Pyrimidine metabolism
2. Energetic metabolism
(gluconeogenesis;
pyruvate metabolism
pathways; glycolysis;
pentose phosphate pathway)
3. Phenylalanine
metabolism
4. Sphingolipid metabolism
5. Alanine, aspartate and
glutamate metabolism
6. Purine metabolism
7. Tryptophan metabolism
8. Taurine metabolism
9. Amino acid metabolism
10. Unavailable

- [100]
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Table 3. Cont.

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 43 n = 48 (BPH) GC–MS

PLS-DA
PARAFAC2
Model performance:
Sens: 93%
Spec: 89%

1. Androsterone (+); 16-
Hydroxydehydroisoandrosterone
(+); 5β-Pregnanediol (−); Enterodiol
(−); Pregnanetriol (−)
2. 5-Hydroxyindoleacetic acid (+)
3. Vanillyl alcohol (+)

1. Steroidal biosynthesis
2. Tryptophan metabolism
3. Unavailable

- [101]

n = 41
Validation set
n = 18

n = 42
Validation set
n = 18

GC–MS
1H-NMR

PCA
PLS-DA
Model performance:
GC–MS
Sens: 89% Spec: 83%, Accu:
86%
AUC: 0.96
1H NMR
Sens:67% Spec: 89%
Accu:78%
AUC: 0.82

1. Pyruvate (+); Leucine (+); Valine
(+)
2. Gluconic acid (−); D-Glucose (−);
D-Mannitol (−); D-Threitol (+);
L-Fucitol (−); L-Threose (+)
3. Sarcosine (+); Hydroxyacetone (+);
2-Furoylglycine (−)
4. L-Arabitol (−); Ribitol (−)
5. Propylene glycol (+)
6. Acetone (+)
7. Trigonelline (−)
8. Oxalate (+)
9. Myo-inositol (−)
10. 2-Hydroxyisobutyrate (+);
2-Hydroxyvalerate (+)

1. Valine, leucine and
isoleucine biosynthesis and
degradation
2. Energetic metabolism
(Pentose phosphate
pathway; Glycolysis
or gluconeogenesis)
3. Glycine, serine and
threonine metabolism
4. Pentose and glucuronate
interconversions
5. Pyruvate metabolism
6. Propanoate metabolism;
Synthesis and degradation
of
ketone bodies
7. Nicotinate and
nicotinamide metabolism
8. Glyoxylate and
dicarboxylate metabolism
9. Galactose metabolism;
Ascorbate and aldarate
metabolism; Membrane
metabolism
10. Unavailable

2-Hydroxyvalerate
(sens: 86%; spec:
61%; AUC 0.76)
2-Furoylglycine
(sens: 85%; spec:
62%; AUC 0.74)
D-Glucose (sens:
70%; spec: 69%;
AUC 0.69)
D-Mannitol (sens:
78%; spec: 60%;
AUC 0.69)

[102]
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Table 3. Cont.

PCa Group Control
Group

Analytical
Platform Statistical Methods Altered Metabolites (Direction of

Variation)
Dysregulated Metabolic

Pathways
Candidate

Biomarkers Ref.

n = 20

n = 20
(cancer-free)
n = 20
(bladder
cancer)
n = 20 (renal
cancer)

GC–MS PCA
PLS-DA

1. Methylglyoxal (−)
2. Hexanal (−)
3. 3-Phenylpropionaldehyde (+)
4. 4-Methylhexan-3-one (−)
5. 2.5-Dimethylbenzaldehyde (+)
6. Dihydroedulan IA (−)
7. Ethylbenzene (+)
8. Heptan-2-one (+); Heptan-3-one
(+); 4-(2-Methylpropoxy)
butan-2-one (+)
9. Methyl benzoate (+)
10. 3-Methylbenzaldehyde (+)

1. Pyruvate metabolism;
Glycine, serine and
threonine metabolism
2. Steroid hormone
biosynthesis
3. Alcohols and FAs
metabolism; amino
acid and carbohydrate
catabolism
4. FAs metabolism
5. Alcohols and FAs
metabolism
7. Metabolites linked to
oxidative stress
8. Protein metabolism;
Ketogenic pathway
9. Lipid hydrolysis
10. Metabolites linked to
lipid peroxidation

10-biomarker panel
Methylglyoxal
Hexanal
3-
Phenylpropionaldehyde
4-Methylhexan-3-
one
2.5-
Dimethylbenzaldehyde
Dihydroedulan IA
Ethylbenzene
Heptan-2-one
Heptan-3-one
4-(2-Methyl-
propoxy)butan-2-
one
Methyl benzoate
3-Methyl-
benzaldehyde
Discrimination of
PCa from control,
bladder cancer and
renal cancer
(AUC. 0.90; sens:
76%, spec: 90%,
accu: 92%)

[103]

n = 58 n = 18 (BPH) 1H-NMR
PCA
PLS-DA

1. Glutamate (−); Glutamine (−);
Glycine (−)
2. Citrate (−); Taurine (−)
3. Trimethylamine (+)
4. Choline (−)

1. Amino acid metabolism
2. Energetic metabolism
3. Membrane metabolism
4. Choline metabolism;
phospholipid membrane
metabolism

Citrate
Glutamine [75]

Notes: (+) indicates increased levels in PCa, (-) indicates decreased levels in PCa; the numbering of the column Altered Metabolites is related with the numbering of the column Dysregulated
metabolic pathways. Abbreviations: 1H-NMR, proton nuclear magnetic resonance spectroscopy; accu, accuracy; AUC, area under the curve; BPH, benign prostatic hyperplasia; FAs, fatty
acids; GC–MS, gas chromatography–mass spectrometry; GS, Gleason score; HS-SPME, headspace solid-phase microextraction; LC-ESI-MS/MS, liquid chromatography electrospray
ionization tandem mass spectrometry; LC–MS, liquid chromatography–mass spectrometry; LC-QTOF, liquid chromatography quadrupole time of flight; LDA, linear discriminant analysis;
OPLS-DA, orthogonal projections to latent structures discriminant analysis; PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; RF, random forest;
ROC, receiver operating characteristics curve; sens, sensitivity; spec, specificity; TCA, tricarboxylic acid cycle; UPLC-MS/MS, ultra-performance liquid chromatography-tandem mass
spectrometry.
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In addition, 12 metabolites stood out once they unveiled similar or even better per-
formance than PSA (AUC ranging from 0.53 to 0.83) for PCa detection [7], namely γ-
amino-n-butyric acid (AUC: 0.93), phosphoethanolamine (AUC: 0.88), ethanolamine (AUC:
0.86), homocitrulline (AUC: 0.84), asparagine (AUC: 0.773), arginine (AUC: 0.83) [96],
spermine (AUC: 0.83) [94], δ-hydroxylysine (AUC: 0.80) [96], 2-hydroxyvalerate (AUC:
0.76), 2-furoylglycine (AUC: 0.74), mannitol (AUC: 0.69), and glucose (AUC 0.69) [102].
From these 12 metabolites, the alterations observed in the levels of three metabolites were
previously reported in PCa tissues, namely spermine [68,76], ethanolamine [105] and glu-
cose [76]. Importantly, the decrease in glucose levels was also correlated with GS [76].
The significant alterations observed in the other nine metabolites, to the best of our knowl-
edge, were not previously reported in PCa tissue. It is important to highlight that even if it
is not possible to prove translatability of a metabolite from tissue to urine, this does not
invalidate its potential as PCa biomarker once its alteration can for example be driven from
a systemic response to PCa development and progression.

The volatilomic studies have been more focused in the definition of biomarker pan-
els for possible detection through biosensors rather than proposing individual biomark-
ers [93,99,103]. The smallest biomarker panel reported included four metabolites (2,6-
dimethyl-7-octen-2-ol, 3-octanone, 2-octanone and pentanal) [93], which unveiled accura-
cies at least equal to PSA (accu. of 62–75% for PSA vs. accu. of 63–65% for the 4-biomarker
panel [7,93]. Remarkably, a 6-biomarker panel (hexanal, 2,5-dimethylbenzaldehyde, 4-
methylhexan-3-one, dihydroedulan IA, methylglyoxal, 3-phenylpropionaldehyde) [99] and
an improved 10-biomarker panel (methylglyoxal, hexanal, 3-phenylpropionaldehyde, 4-
methylhexan-3-one, 2.5-dimethylbenzaldehyde, dihydroedulan IA, ethylbenzene, heptan-2-
one, heptan-3-one, 4-(2-methylpropoxy)butan-2-one, methyl benzoate, 3-methyl-
benzaldehyde) [103] were recently proposed that outperformed PSA in all performance
parameters (PSA: acc = 62–75%, sens = 20.5%, spec = 51–91% [4,7,8]; 6-biomarker panel:
acc = 86%, sens = 89%, spec = 83% [99]; 10-biomarker panel: acc = 92%, sens = 76%,
spec = 90% [103]). Notably, the 10-biomarker panel proved to be able to differentiate
PCa from cancer-free individuals as well as from other urological cancers (renal and
bladder cancers) [103].

Overall, findings from the reviewed studies showed that PCa development and pro-
gression is mainly associated with alterations in amino acid metabolism, energy metabolism,
especially in TCA cycle, and membrane metabolism (Tables 2 and 3).

6. Current Challenges and Future Perspectives

There are no doubts that the scientific community has made enormous efforts to
define the impact of PCa in human metabolome with dozens of studies focused on this
topic, not only using tissue and urine matrices but also other biological samples as serum,
plasma, seminal fluid, prostatic fluid, and even cell lines [18]. However, some biological
and technical challenges should be addressed before we can translate all the potentialities
of metabolomics into clinical practice.

The traditional paradigm is to find a single biomarker for PCa screening. However,
during the last years, the idea of using a panel of biomarkers instead of a single biomarker
has gained strength, especially in volatilomic studies. The use of a biomarker panel
has important advantages, once a multi-biomarker panel may be able to capture more
deeply the various metabolic dysregulations occurring during cancer development and
progression than a single biomarker [106]. Hence, a multi-biomarker panel allows the
definition of a more robust signature of PCa providing a better evaluation of cancer
progression. Furthermore, the use of a biomarker panel avoids that an arbitrary change in
a single metabolite leads to a false result [22].

As referred in the previous section, the comparison of the findings from different stud-
ies is compromised by the lack of standardized procedures in metabolomic studies, espe-
cially in study design which consequently increases interlaboratory variability [107]. Many
efforts have been made to accomplish the goal of standardized procedures in metabolomics
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studies in the last years [107,108]. There is still a long way to go until the desired standard-
ization, but the first steps have already been taken [108].

Other crucial technical challenge is metabolite identification. This is particularly true
in volatilomics studies. Additionally, the interpretation of the urinary volatilome signature
of PCa is particularly challenging once there is no clear understanding of the biological
origin of VOCs [39]. In addition, the volatilome of PCa tissue has not been explored so
far, to our knowledge, hindering the elucidation of a potential translatability of VOCs
from tissues to urine samples. In future, this issue can be addressed through volatilomics
studies of PCa tissue and fluxomic studies. Fluxomic studies allow the understanding of
the metabolic origin of endogenous VOCs by labeling and tracking metabolic precursors
(e.g., glucose), throughout the metabolic pathways [109].

Perhaps the greatest limitation to biomarker discovery relies on the fact that several
metabolomic studies are essentially descriptive and skip the validation step. Indeed, the
vast majority of the papers just list which metabolites are statistically different between the
groups in study, not proposing candidate biomarkers and/or clearly state the performance
of the proposed metabolites/biomarkers (e.g., AUC, sensitivity, specificity and/or accu-
racy), thus impairing the discussion of which would be the most promising biomar-kers for
PCa. Hence, future studies should be less descriptive and more assertive, propo-sing and
evaluating potential biomarkers. Furthermore, it is also important to include external sets
for model/results validation to improve the robustness of candidate biomarkers and to
include unambiguous biochemical and biological interpretation of PCa metabolic dysregu-
lations. Remarkably, some of the studies included in this revision are already fo-llowing
this direction. In addition, it is well known that especially urinary metabolic profile can
be affected by several factors (e.g., diet, lifestyle, microbiota, race, among others) [107],
so it is also crucial to perform studies in large and more heterogeneous populations (e.g.,
American, African, Caucasian), to ensure that the proposed biomarkers can be applied
among different countries and different lifestyles.

To conclude, metabolomics is a powerful tool to uncover the metabolic signature
of PCa development and progression. The results obtained so far in tissue and urine
metabolomic studies unveiled potential to define new screening/diagnosis biomarkers.

Author Contributions: A.R.L. was responsible for data collection and writing the manuscript. F.A.
assisted with the manuscript writing. J.P., M.C. and P.G.d.P. contributed to the design of the review
protocol. J.P., M.C., M.d.L.B. and P.G.d.P. provided scientific feedback on the report. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Applied Molecular Biosciences Unit—UCIBIO which is
financed by national funds from FCT (UIDP/04378/2020 and UIDB/04378/2020), by FEDER—Fundo
Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Programme
for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT in
the framework of the project POCI-01-0145-FEDER-030388—PTDC/SAU-SER/30388/2017. A.R.L.
thanks FCT for her PhD fellowship (SFRH/BD/123012/2016).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Filella, X.; Foj, L. Novel Biomarkers for Prostate Cancer Detection and Prognosis. Adv. Exp. Med. Biol 2018, 1095, 15–39. [CrossRef]
3. Rigau, M.; Olivan, M.; Garcia, M.; Sequeiros, T.; Montes, M.; Colas, E.; Llaurado, M.; Planas, J.; Torres, I.; Morote, J.; et al.

The present and future of prostate cancer urine biomarkers. Int. J. Mol. Sci. 2013, 14, 12620–12649. [CrossRef]
4. Wolf, A.M.; Wender, R.C.; Etzioni, R.B.; Thompson, I.M.; D’Amico, A.V.; Volk, R.J.; Brooks, D.D.; Dash, C.; Guessous, I.;

Andrews, K.; et al. American Cancer Society guideline for the early detection of prostate cancer: Update 2010. CA Cancer J. Clin.
2010, 60, 70–98. [CrossRef]

5. Hubner, N.; Shariat, S.; Remzi, M. Prostate biopsy: Guidelines and evidence. Curr. Opin. Urol. 2018, 28, 354–359. [CrossRef]
6. Eskra, J.N.; Rabizadeh, D.; Pavlovich, C.P.; Catalona, W.J.; Luo, J. Approaches to urinary detection of prostate cancer. Prostate

Cancer Prostatic Dis. 2019, 22, 362–381. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1007/978-3-319-95693-0_2
http://doi.org/10.3390/ijms140612620
http://doi.org/10.3322/caac.20066
http://doi.org/10.1097/MOU.0000000000000510
http://doi.org/10.1038/s41391-019-0127-4
http://www.ncbi.nlm.nih.gov/pubmed/30655600


Metabolites 2021, 11, 181 25 of 28

7. Louie, K.S.; Seigneurin, A.; Cathcart, P.; Sasieni, P. Do prostate cancer risk models improve the predictive accuracy of PSA
screening? A meta-analysis. Ann. Oncol. 2015, 26, 848–864. [CrossRef] [PubMed]

8. Kearns, J.T.; Lin, D.W. Improving the Specificity of PSA Screening with Serum and Urine Markers. Curr. Urol. Rep. 2018, 19, 80.
[CrossRef]

9. Das, C.J.; Razik, A.; Sharma, S.; Verma, S. Prostate biopsy: When and how to perform. Clin. Radiol. 2019, 74, 853–864. [CrossRef]
[PubMed]

10. Tourinho-Barbosa, R.; Srougi, V.; Nunes-Silva, I.; Baghdadi, M.; Rembeyo, G.; Eiffel, S.S.; Barret, E.; Rozet, F.; Galiano, M.;
Cathelineau, X.; et al. Biochemical recurrence after radical prostatectomy: What does it mean? Int. Braz. J. Urol. 2018, 44, 14–21.
[CrossRef]

11. Fakhrejahani, F.; Madan, R.A.; Dahut, W.L. Management Options for Biochemically Recurrent Prostate Cancer. Curr. Treat Options
Oncol. 2017, 18, 26. [CrossRef]

12. Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Ann. Rev. Med. 2019, 70, 479–499. [CrossRef]
[PubMed]

13. Narayan, V.M.; Konety, B.R.; Warlick, C. Novel biomarkers for prostate cancer: An evidence-based review for use in clinical
practice. Int. J. Urol. 2017, 24, 352–360. [CrossRef] [PubMed]

14. Park, H.; Lee, S.W.; Song, G.; Kang, T.W.; Jung, J.H.; Chung, H.C.; Kim, S.J.; Park, C.-H.; Park, J.Y.; Shin, T.Y.; et al. Diagnostic
Performance of %[-2]proPSA and Prostate Health Index for Prostate Cancer: Prospective, Multi-institutional Study. J. Korean Med.
Sci. 2018, 33, e94. [CrossRef] [PubMed]

15. Sartori, D.A.; Chan, D.W. Biomarkers in prostate cancer: What’s new? Curr. Opin. Oncol. 2014, 26, 259–264. [CrossRef]
16. Chistiakov, D.A.; Myasoedova, V.A.; Grechko, A.V.; Melnichenko, A.A.; Orekhov, A.N. New biomarkers for diagnosis and

prognosis of localized prostate cancer. Semin. Cancer Biol. 2018, 52, 9–16. [CrossRef]
17. Murphy, L.; Prencipe, M.; Gallagher, W.M.; Watson, R.W. Commercialized biomarkers: New horizons in prostate cancer

diagnostics. Expert Rev. Mol. Diagn. 2015, 15, 491–503. [CrossRef] [PubMed]
18. Lima, A.R.; Bastos Mde, L.; Carvalho, M.; Guedes de Pinho, P. Biomarker Discovery in Human Prostate Cancer: An Update in

Metabolomics Studies. Transl. Oncol. 2016, 9, 357–370. [CrossRef]
19. Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to patho-

physiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189.
[CrossRef] [PubMed]

20. Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal.
2015, 113, 108–120. [CrossRef]

21. Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed.
Anal. 2014, 87, 1–11. [CrossRef] [PubMed]

22. Marchand, C.R.; Farshidfar, F.; Rattner, J.; Bathe, O.F. A Framework for Development of Useful Metabolomic Biomarkers and
Their Effective Knowledge Translation. Metabolites 2018, 8, 59. [CrossRef]

23. Lopez-Lopez, A.; Lopez-Gonzalvez, A.; Barker-Tejeda, T.C.; Barbas, C. A review of validated biomarkers obtained through
metabolomics. Expert Rev. Mol. Diagn. 2018, 18, 557–575. [CrossRef]

24. Nagrath, D.; Caneba, C.; Karedath, T.; Bellance, N. Metabolomics for mitochondrial and cancer studies. Biochim. Biophys. Acta
2011, 1807, 650–663. [CrossRef]

25. Nagana Gowda, G.A.; Raftery, D. Biomarker Discovery and Translation in Metabolomics. Curr. Metab. 2013, 1, 227–240. [CrossRef]
[PubMed]

26. Ren, J.-L.; Zhang, A.-H.; Kong, L.; Wang, X.-J. Advances in mass spectrometry-based metabolomics for investigation of metabolites.
RSC Adv. 2018, 8, 22335–22350. [CrossRef]

27. Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for
metabolomics. Prog. Nucl. Magn. Reason. Spectrosc. 2017, 100, 1–16. [CrossRef] [PubMed]

28. Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y.V.; Eeckhaut, A.V. Analytical techniques for metabolomic studies: A review.
Bioanalysis 2019, 11, 2297–2318. [CrossRef]

29. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev. 2007, 26, 51–78.
[CrossRef]

30. Han, J.; Datla, R.; Chan, S.; Borchers, C.H. Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis
2009, 1, 1665–1684. [CrossRef] [PubMed]

31. Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020,
25, 5128. [CrossRef]

32. Lindon, J.C.; Nicholson, J.K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics.
Ann. Rev. Anal. Chem. 2008, 1, 45–69. [CrossRef] [PubMed]

33. Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Anal. Chem.
2012, 32, 1–14. [CrossRef] [PubMed]

34. Lima, A.R.; Pinto, J.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. NMR-based metabolomics studies of human prostate cancer
tissue. Metabolomics 2018, 14, 88. [CrossRef]

http://doi.org/10.1093/annonc/mdu525
http://www.ncbi.nlm.nih.gov/pubmed/25403590
http://doi.org/10.1007/s11934-018-0828-6
http://doi.org/10.1016/j.crad.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/31079953
http://doi.org/10.1590/s1677-5538.ibju.2016.0656
http://doi.org/10.1007/s11864-017-0462-4
http://doi.org/10.1146/annurev-med-051517-011947
http://www.ncbi.nlm.nih.gov/pubmed/30691365
http://doi.org/10.1111/iju.13326
http://www.ncbi.nlm.nih.gov/pubmed/28345187
http://doi.org/10.3346/jkms.2018.33.e94
http://www.ncbi.nlm.nih.gov/pubmed/29495138
http://doi.org/10.1097/CCO.0000000000000065
http://doi.org/10.1016/j.semcancer.2018.01.012
http://doi.org/10.1586/14737159.2015.1011622
http://www.ncbi.nlm.nih.gov/pubmed/25711191
http://doi.org/10.1016/j.tranon.2016.05.004
http://doi.org/10.1080/004982599238047
http://www.ncbi.nlm.nih.gov/pubmed/10598751
http://doi.org/10.1016/j.jpba.2014.12.017
http://doi.org/10.1016/j.jpba.2013.08.041
http://www.ncbi.nlm.nih.gov/pubmed/24091079
http://doi.org/10.3390/metabo8040059
http://doi.org/10.1080/14737159.2018.1481391
http://doi.org/10.1016/j.bbabio.2011.03.006
http://doi.org/10.2174/2213235X113019990005
http://www.ncbi.nlm.nih.gov/pubmed/27134822
http://doi.org/10.1039/C8RA01574K
http://doi.org/10.1016/j.pnmrs.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28552170
http://doi.org/10.4155/bio-2019-0014
http://doi.org/10.1002/mas.20108
http://doi.org/10.4155/bio.09.158
http://www.ncbi.nlm.nih.gov/pubmed/21083110
http://doi.org/10.3390/molecules25215128
http://doi.org/10.1146/annurev.anchem.1.031207.113026
http://www.ncbi.nlm.nih.gov/pubmed/20636074
http://doi.org/10.1016/j.trac.2011.08.009
http://www.ncbi.nlm.nih.gov/pubmed/22345829
http://doi.org/10.1007/s11306-018-1384-2


Metabolites 2021, 11, 181 26 of 28

35. Zou, W.; She, J.; Tolstikov, V.V. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer
metabolic biomarker discovery using human plasma and urine. Metabolites 2013, 3, 787–819. [CrossRef]

36. Fan, T.W.; Lane, A.N. Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reason. Spectrosc. 2016,
92, 18–53. [CrossRef] [PubMed]

37. Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in
identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [CrossRef]

38. Armitage, E.G.; Ciborowski, M. Applications of Metabolomics in Cancer Studies. Adv. Exp. Med. Biol. 2017, 965, 209–234.
[CrossRef] [PubMed]

39. Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging deeper into volatile organic compounds associated with cancer.
Biol. Methods Protoc. 2019, 4, bpz014. [CrossRef]

40. Gao, Q.; Lee, W.Y. Urinary metabolites for urological cancer detection: A review on the application of volatile organic compounds
for cancers. Am. J. Clin. Exp. Urol. 2019, 7, 232–248.

41. Lubes, G.; Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as
biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322. [CrossRef] [PubMed]

42. Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine:
A step forward in early diagnosis. Eur. Urol. 2011, 59, 197–201. [CrossRef] [PubMed]

43. Taverna, G.; Tidu, L.; Grizzi, F.; Torri, V.; Mandressi, A.; Sardella, P.; La Torre, G.; Cocciolone, G.; Seveso, M.; Giusti, G.; et al.
Olfactory system of highly trained dogs detects prostate cancer in urine samples. J. Urol. 2015, 193, 1382–1387. [CrossRef]

44. Pirrone, F.; Albertini, M. Olfactory detection of cancer by trained sniffer dogs: A systematic review of the literature. J. Vet. Behav.
2017, 19, 105–117. [CrossRef]

45. Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in Lipidomics for Cancer
Biomarkers Discovery. Int. J. Mol. Sci. 2016, 17, 1992. [CrossRef]

46. Park, J.K.; Coffey, N.J.; Limoges, A.; Le, A. The Heterogeneity of Lipid Metabolism in Cancer. Adv. Exp. Med. Biol. 2018,
1063, 33–55. [CrossRef] [PubMed]

47. Yang, K.; Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016,
41, 954–969. [CrossRef] [PubMed]

48. Tumanov, S.; Kamphorst, J.J. Recent advances in expanding the coverage of the lipidome. Curr. Opin. Biotechnol. 2017, 43, 127–133.
[CrossRef]

49. Islam, S.R.; Manna, S.K. Lipidomic Analysis of Cancer Cell and Tumor Tissues. Methods Mol. Biol. 2019, 1928, 175–204. [CrossRef]
50. Kwon, H.; Oh, S.; Jin, X.; An, Y.J.; Park, S. Cancer metabolomics in basic science perspective. Arch. Pharm. Res. 2015, 38, 372–380.

[CrossRef]
51. Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [CrossRef]
52. Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131.

[CrossRef] [PubMed]
53. Andersen, M.K.; Giskeødegård, G.F.; Tessem, M.-B. Metabolic alterations in tissues and biofluids of patients with prostate cancer.

Curr. Opin. Endocr. Metab. Res. 2020, 10, 23–28. [CrossRef]
54. Zadra, G.; Loda, M. Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb.

Perspect. Med. 2018, 8, a030569. [CrossRef] [PubMed]
55. Lloyd, S.M.; Arnold, J.; Sreekumar, A. Metabolomic profiling of hormone-dependent cancers: A bird’s eye view. Trends Endocr. Metab.

2015, 26, 477–485. [CrossRef]
56. Schipper, R.G.; Romijn, J.C.; Cuijpers, V.M.; Verhofstad, A.A. Polyamines and prostatic cancer. Biochem. Soc. Trans. 2003,

31, 375–380. [CrossRef]
57. Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452.

[CrossRef]
58. Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al.

Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [CrossRef]
59. Wu, H.; Liu, T.; Ma, C.; Xue, R.; Deng, C.; Zeng, H.; Shen, X. GC/MS-based metabolomic approach to validate the role of urinary

sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 2011,
401, 635–646. [CrossRef]

60. Jentzmik, F.; Stephan, C.; Lein, M.; Miller, K.; Kamlage, B.; Bethan, B.; Kristiansen, G.; Jung, K. Sarcosine in prostate cancer
tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 2011, 185, 706–711.
[CrossRef]

61. Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after
digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours; Discussion 20-1.
Eur. Urol. 2010, 58, 12–18. [CrossRef]

62. Green, T.; Chen, X.; Ryan, S.; Asch, A.S.; Ruiz-Echevarria, M.J. TMEFF2 and SARDH cooperate to modulate one-carbon
metabolism and invasion of prostate cancer cells. Prostate 2013, 73, 1561–1575. [CrossRef]

63. Donkena, K.V.; Yuan, H.; Young, C.Y. Vitamin Bs, one carbon metabolism and prostate cancer. Mini Rev. Med. Chem. 2010,
10, 1385–1392. [CrossRef] [PubMed]

http://doi.org/10.3390/metabo3030787
http://doi.org/10.1016/j.pnmrs.2016.01.005
http://www.ncbi.nlm.nih.gov/pubmed/26952191
http://doi.org/10.1016/j.jaci.2017.04.021
http://doi.org/10.1007/978-3-319-47656-8_9
http://www.ncbi.nlm.nih.gov/pubmed/28132182
http://doi.org/10.1093/biomethods/bpz014
http://doi.org/10.1016/j.jpba.2017.07.013
http://www.ncbi.nlm.nih.gov/pubmed/28750734
http://doi.org/10.1016/j.eururo.2010.10.006
http://www.ncbi.nlm.nih.gov/pubmed/20970246
http://doi.org/10.1016/j.juro.2014.09.099
http://doi.org/10.1016/j.jveb.2017.03.004
http://doi.org/10.3390/ijms17121992
http://doi.org/10.1007/978-3-319-77736-8_3
http://www.ncbi.nlm.nih.gov/pubmed/29946774
http://doi.org/10.1016/j.tibs.2016.08.010
http://www.ncbi.nlm.nih.gov/pubmed/27663237
http://doi.org/10.1016/j.copbio.2016.11.008
http://doi.org/10.1007/978-1-4939-9027-6_11
http://doi.org/10.1007/s12272-015-0552-4
http://doi.org/10.1126/science.123.3191.309
http://doi.org/10.3389/fonc.2017.00131
http://www.ncbi.nlm.nih.gov/pubmed/28674679
http://doi.org/10.1016/j.coemr.2020.02.003
http://doi.org/10.1101/cshperspect.a030569
http://www.ncbi.nlm.nih.gov/pubmed/29229664
http://doi.org/10.1016/j.tem.2015.07.001
http://doi.org/10.1042/bst0310375
http://doi.org/10.1101/cshperspect.a030452
http://doi.org/10.1038/nature07762
http://doi.org/10.1007/s00216-011-5098-9
http://doi.org/10.1016/j.juro.2010.09.077
http://doi.org/10.1016/j.eururo.2010.01.035
http://doi.org/10.1002/pros.22706
http://doi.org/10.2174/138955710793564106
http://www.ncbi.nlm.nih.gov/pubmed/20937030


Metabolites 2021, 11, 181 27 of 28

64. Goto, T.; Terada, N.; Inoue, T.; Kobayashi, T.; Nakayama, K.; Okada, Y.; Yoshikawa, T.; Miyazaki, Y.; Uegaki, M.;
Utsunomiya, N.; et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrom-
etry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate 2015, 75, 1821–1830.
[CrossRef]

65. Huan, T.; Troyer, D.A.; Li, L. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling
and Metabolic Classification Prostate Cancer. Sci. Rep. 2016, 6, 32272. [CrossRef]

66. Li, J.; Ren, S.; Piao, H.L.; Wang, F.; Yin, P.; Xu, C.; Lu, X.; Ye, G.; Shao, Y.; Yan, M.; et al. Integration of lipidomics and
transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer.
Sci. Rep. 2016, 6, 20984. [CrossRef] [PubMed]

67. Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; et al. Integration of Metabolomics and
Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Mol. Cell. Proteom.
2016, 15, 154–163. [CrossRef]

68. Hansen, A.F.; Sandsmark, E.; Rye, M.B.; Wright, A.J.; Bertilsson, H.; Richardsen, E.; Viset, T.; Bofin, A.M.; Angelsen, A.; Selnaes,
K.M.; et al. Presence of TMPRSS2-ERG is associated with alterations of the metabolic profile in human prostate cancer. Oncotarget
2016, 7, 42071–42085. [CrossRef]

69. Madhu, B.; Shaw, G.L.; Warren, A.Y.; Neal, D.E.; Griffiths, J.R. Response of Degarelix treatment in human prostate cancer
monitored by HR-MAS 1H NMR spectroscopy. Metabolomics 2016, 12, 120. [CrossRef]

70. Braadland, P.R.; Giskeodegard, G.; Sandsmark, E.; Bertilsson, H.; Euceda, L.R.; Hansen, A.F.; Guldvik, I.J.; Selnaes, K.M.;
Grytli, H.H.; Katz, B.; et al. Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence
following radical prostatectomy. Br. J. Cancer 2017, 117, 1656–1664. [CrossRef] [PubMed]

71. Shao, Y.; Ye, G.; Ren, S.; Piao, H.L.; Zhao, X.; Lu, X.; Wang, F.; Ma, W.; Li, J.; Yin, P.; et al. Metabolomics and transcriptomics
profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Int. J. Cancer 2018,
143, 396–407. [CrossRef] [PubMed]

72. Vandergrift, L.A.; Decelle, E.A.; Kurth, J.; Wu, S.; Fuss, T.L.; DeFeo, E.M.; Halpern, E.F.; Taupitz, M.; McDougal, W.S.;
Olumi, A.F.; et al. Metabolomic Prediction of Human Prostate Cancer Aggressiveness: Magnetic Resonance Spectroscopy
of Histologically Benign Tissue. Sci. Rep. 2018, 8, 4997. [CrossRef]

73. Zhou, X.; Mei, H.; Agee, J.; Brown, T.; Mao, J. Racial differences in distribution of fatty acids in prostate cancer and benign
prostatic tissues. Lipids Health Dis. 2019, 18, 189. [CrossRef]

74. Franko, A.; Shao, Y.; Heni, M.; Hennenlotter, J.; Hoene, M.; Hu, C.; Liu, X.; Zhao, X.; Wang, Q.; Birkenfeld, A.L.; et al. Human
Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers 2020, 12, 1814. [CrossRef] [PubMed]

75. Zheng, H.; Dong, B.; Ning, J.; Shao, X.; Zhao, L.; Jiang, Q.; Ji, H.; Cai, A.; Xue, W.; Gao, H. NMR-based metabolomics analysis
identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer. Clin. Chim. Acta
2020, 501, 241–251. [CrossRef]

76. Dudka, I.; Thysell, E.; Lundquist, K.; Antti, H.; Iglesias-Gato, D.; Flores-Morales, A.; Bergh, A.; Wikstrom, P.; Grobner, G.
Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion
status. BMC Cancer 2020, 20, 437. [CrossRef]

77. Bertilsson, H.; Tessem, M.-B.; Flatberg, A.; Viset, T.; Gribbestad, I.; Angelsen, A.; Halgunset, J. Changes in Gene Transcription Un-
derlying the Aberrant Citrate and Choline Metabolism in Human Prostate Cancer Samples. Clin. Cancer Res. 2012, 18, 3261–3269.
[CrossRef]

78. Pollard, P.J.; Briere, J.J.; Alam, N.A.; Barwell, J.; Barclay, E.; Wortham, N.C.; Hunt, T.; Mitchell, M.; Olpin, S.; Moat, S.J.; et al.
Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and
SDH mutations. Hum. Mol. Genet. 2005, 14, 2231–2239. [CrossRef]

79. Yang, M.; Soga, T.; Pollard, P.J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Investig. 2013, 123, 3652–3658.
[CrossRef] [PubMed]

80. King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and
cancer. Oncogene 2006, 25, 4675–4682. [CrossRef]

81. Ranasinghe, W.K.; Baldwin, G.S.; Bolton, D.; Shulkes, A.; Ischia, J.; Patel, O. HIF1alpha expression under normoxia in prostate
cancer–which pathways to target? J. Urol. 2015, 193, 763–770. [CrossRef]

82. Staal, J.; Beyaert, R. Inflammation and NF-kappaB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells
2018, 7, 122. [CrossRef] [PubMed]

83. Siddiqui, A.; Ceppi, P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab. 2020, 35, 100962. [CrossRef]
84. Loffler, M.; Fairbanks, L.D.; Zameitat, E.; Marinaki, A.M.; Simmonds, H.A. Pyrimidine pathways in health and disease.

Trends Mol. Med. 2005, 11, 430–437. [CrossRef] [PubMed]
85. Garavito, M.F.; Narvaez-Ortiz, H.Y.; Zimmermann, B.H. Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens

and Cellular Development. J. Genet. Genom. 2015, 42, 195–205. [CrossRef]
86. Konno, M.; Asai, A.; Kawamoto, K.; Nishida, N.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H. The one-carbon metabolism pathway

highlights therapeutic targets for gastrointestinal cancer (Review). Int. J. Oncol. 2017, 50, 1057–1063. [CrossRef]
87. Vasan, K.; Werner, M.; Chandel, N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020, 32, 341–352.

[CrossRef]

http://doi.org/10.1002/pros.23088
http://doi.org/10.1038/srep32272
http://doi.org/10.1038/srep20984
http://www.ncbi.nlm.nih.gov/pubmed/26865432
http://doi.org/10.1074/mcp.M115.052381
http://doi.org/10.18632/oncotarget.9817
http://doi.org/10.1007/s11306-016-1055-0
http://doi.org/10.1038/bjc.2017.346
http://www.ncbi.nlm.nih.gov/pubmed/28972967
http://doi.org/10.1002/ijc.31313
http://www.ncbi.nlm.nih.gov/pubmed/29441565
http://doi.org/10.1038/s41598-018-23177-w
http://doi.org/10.1186/s12944-019-1130-4
http://doi.org/10.3390/cancers12071814
http://www.ncbi.nlm.nih.gov/pubmed/32640711
http://doi.org/10.1016/j.cca.2019.10.046
http://doi.org/10.1186/s12885-020-06908-z
http://doi.org/10.1158/1078-0432.CCR-11-2929
http://doi.org/10.1093/hmg/ddi227
http://doi.org/10.1172/JCI67228
http://www.ncbi.nlm.nih.gov/pubmed/23999438
http://doi.org/10.1038/sj.onc.1209594
http://doi.org/10.1016/j.juro.2014.10.085
http://doi.org/10.3390/cells7090122
http://www.ncbi.nlm.nih.gov/pubmed/30158439
http://doi.org/10.1016/j.molmet.2020.02.005
http://doi.org/10.1016/j.molmed.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16098809
http://doi.org/10.1016/j.jgg.2015.04.004
http://doi.org/10.3892/ijo.2017.3885
http://doi.org/10.1016/j.cmet.2020.06.019


Metabolites 2021, 11, 181 28 of 28

88. Zhou, X.; Lawrence, T.J.; He, Z.; Pound, C.R.; Mao, J.; Bigler, S.A. The expression level of lysophosphatidylcholine acyltransferase
1 (LPCAT1) correlates to the progression of prostate cancer. Exp. Mol. Pathol. 2012, 92, 105–110. [CrossRef]

89. Gomez-Cebrian, N.; Rojas-Benedicto, A.; Albors-Vaquer, A.; Lopez-Guerrero, J.A.; Pineda-Lucena, A.; Puchades-Carrasco, L.
Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers. Metabolites 2019, 9, 48. [CrossRef]

90. Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer.
J. Biomark. 2015, 2015, 981458. [CrossRef]

91. Walsh, M.C.; Brennan, L.; Malthouse, J.P.; Roche, H.M.; Gibney, M.J. Effect of acute dietary standardization on the urinary, plasma,
and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr. 2006, 84, 531–539. [CrossRef] [PubMed]

92. Struck-Lewicka, W.; Kordalewska, M.; Bujak, R.; Yumba Mpanga, A.; Markuszewski, M.; Jacyna, J.; Matuszewski, M.; Kaliszan, R.;
Markuszewski, M.J. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer:
A pilot study. J. Pharm. Biomed. Anal. 2015, 111, 351–361. [CrossRef]

93. Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile
Organic Compounds for the Detection of Prostate Cancer. PLoS ONE 2015, 10, e0143283. [CrossRef]

94. Tsoi, T.H.; Chan, C.F.; Chan, W.L.; Chiu, K.F.; Wong, W.T.; Ng, C.F.; Wong, K.L. Urinary Polyamines: A Pilot Study on Their Roles
as Prostate Cancer Detection Biomarkers. PLoS ONE 2016, 11, e0162217. [CrossRef] [PubMed]

95. Fernandez-Peralbo, M.A.; Gomez-Gomez, E.; Calderon-Santiago, M.; Carrasco-Valiente, J.; Ruiz-Garcia, J.; Requena-Tapia, M.J.;
Luque de Castro, M.D.; Priego-Capote, F. Prostate Cancer Patients-Negative Biopsy Controls Discrimination by Untargeted
Metabolomics Analysis of Urine by LC-QTOF: Upstream Information on Other Omics. Sci. Rep. 2016, 6, 38243. [CrossRef]
[PubMed]

96. Derezinski, P.; Klupczynska, A.; Sawicki, W.; Palka, J.A.; Kokot, Z.J. Amino Acid Profiles of Serum and Urine in Search for
Prostate Cancer Biomarkers: A Pilot Study. Int. J. Med. Sci. 2017, 14, 1–12. [CrossRef] [PubMed]

97. Perez-Rambla, C.; Puchades-Carrasco, L.; Garcia-Flores, M.; Rubio-Briones, J.; Lopez-Guerrero, J.A.; Pineda-Lucena, A. Non-
invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 2017, 13, 52.
[CrossRef] [PubMed]

98. Jimenez-Pacheco, A.; Salinero-Bachiller, M.; Iribar, M.C.; Lopez-Luque, A.; Mijan-Ortiz, J.L.; Peinado, J.M. Furan and p-xylene as
candidate biomarkers for prostate cancer. Urol. Oncol. 2018, 36, 243.e21–243.e27. [CrossRef]

99. Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jeronimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.;
Carvalho, M. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of
urine. Br. J. Cancer 2019, 121, 857–868. [CrossRef]

100. Arlette, Y.-M.; Wiktoria, S.-L.; Renata, W.; Marcin, M.; Marek, R.; Roman, K.; Michał Jan, M. Metabolomic Heterogeneity
of Urogenital Tract Cancers Analyzed by Complementary Chromatographic Techniques Coupled with Mass Spectrometry.
Curr. Med. Chem. 2019, 26, 216–231. [CrossRef]

101. Amante, E.; Salomone, A.; Alladio, E.; Vincenti, M.; Porpiglia, F.; Bro, R. Untargeted Metabolomic Profile for the Detection of
Prostate Carcinoma-Preliminary Results from PARAFAC2 and PLS-DA Models. Molecules 2019, 24, 3063. [CrossRef]

102. Lima, A.R.; Pinto, J.; Barros-Silva, D.; Jeronimo, C.; Henrique, R.; Bastos, M.L.; Carvalho, M.; Guedes Pinho, P. New findings on
urinary prostate cancer metabolome through combined GC-MS and (1)H NMR analytical platforms. Metabolomics 2020, 16, 70.
[CrossRef]

103. Lima, A.R.; Pinto, J.; Carvalho-Maia, C.; Jeronimo, C.; Henrique, R.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. A Panel of
Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers. Cancers 2020, 12, 2017.
[CrossRef]

104. Swanson, M.G.; Vigneron, D.B.; Tabatabai, Z.L.; Males, R.G.; Schmitt, L.; Carroll, P.R.; James, J.K.; Hurd, R.E.; Kurhanewicz,
J. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues.
Magn. Reason. Med. 2003, 50, 944–954. [CrossRef] [PubMed]

105. Swanson, M.G.; Keshari, K.R.; Tabatabai, Z.L.; Simko, J.P.; Shinohara, K.; Carroll, P.R.; Zektzer, A.S.; Kurhanewicz, J. Quantification
of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy.
Magn. Reason. Med. 2008, 60, 33–40. [CrossRef]

106. Tripathi, P.; Somashekar, B.S.; Ponnusamy, M.; Gursky, A.; Dailey, S.; Kunju, P.; Lee, C.T.; Chinnaiyan, A.M.; Rajendiran, T.M.;
Ramamoorthy, A. HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer
from benign disease. J. Proteome Res. 2013, 12, 3519–3528. [CrossRef] [PubMed]

107. Emwas, A.H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.;
Zeri, A.C.; et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a par-
ticular focus on diagnostic studies: A review. Metabolomics 2015, 11, 872–894. [CrossRef]

108. Spicer, R.A.; Salek, R.; Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 2017,
4, 170138. [CrossRef]

109. Lee, D.K.; Na, E.; Park, S.; Park, J.H.; Lim, J.; Kwon, S.W. In Vitro Tracking of Intracellular Metabolism-Derived Cancer Volatiles
via Isotope Labeling. ACS Cent. Sci. 2018, 4, 1037–1044. [CrossRef] [PubMed]

http://doi.org/10.1016/j.yexmp.2011.11.001
http://doi.org/10.3390/metabo9030048
http://doi.org/10.1155/2015/981458
http://doi.org/10.1093/ajcn/84.3.531
http://www.ncbi.nlm.nih.gov/pubmed/16960166
http://doi.org/10.1016/j.jpba.2014.12.026
http://doi.org/10.1371/journal.pone.0143283
http://doi.org/10.1371/journal.pone.0162217
http://www.ncbi.nlm.nih.gov/pubmed/27598335
http://doi.org/10.1038/srep38243
http://www.ncbi.nlm.nih.gov/pubmed/27910903
http://doi.org/10.7150/ijms.15783
http://www.ncbi.nlm.nih.gov/pubmed/28138303
http://doi.org/10.1007/s11306-017-1194-y
http://www.ncbi.nlm.nih.gov/pubmed/28804274
http://doi.org/10.1016/j.urolonc.2017.12.026
http://doi.org/10.1038/s41416-019-0585-4
http://doi.org/10.2174/0929867324666171006150326
http://doi.org/10.3390/molecules24173063
http://doi.org/10.1007/s11306-020-01691-1
http://doi.org/10.3390/cancers12082017
http://doi.org/10.1002/mrm.10614
http://www.ncbi.nlm.nih.gov/pubmed/14587005
http://doi.org/10.1002/mrm.21647
http://doi.org/10.1021/pr4004135
http://www.ncbi.nlm.nih.gov/pubmed/23731241
http://doi.org/10.1007/s11306-014-0746-7
http://doi.org/10.1038/sdata.2017.138
http://doi.org/10.1021/acscentsci.8b00296
http://www.ncbi.nlm.nih.gov/pubmed/30159401

	Introduction 
	Metabolomic Approaches to Biomarker Discovery 
	The Metabolic Phenotype of Prostate Cancer 
	Tissue Metabolomic Studies 
	Urine Metabolomic Studies 
	Current Challenges and Future Perspectives 
	References

