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Abstract: Nutrients and metabolic pathways regulate cell growth and cell fate decisions via epigenetic
modification of DNA and histones. Another key genetic material, RNA, also contains diverse chemical
modifications. Among these, N6-methyladenosine (m6A) is the most prevalent and evolutionarily
conserved RNA modification. It functions in various aspects of developmental and disease states, by
controlling RNA metabolism, such as stability and translation. Similar to other epigenetic processes,
m6A modification is regulated by specific enzymes, including writers (methyltransferases), erasers
(demethylases), and readers (m6A-binding proteins). As this is a reversible enzymatic process,
metabolites can directly influence the flux of this reaction by serving as substrates and/or allosteric
regulators. In this review, we will discuss recent understanding of the regulation of m6A RNA
modification by metabolites, nutrients, and cellular metabolic pathways.

Keywords: N6-methyladenosine; m6A; RNA methylation; RNA chemical modification; RNA epi-
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1. Introduction

RNA plays an essential role in gene expression control. In addition to transferring
genetic information from DNA to protein, RNA controls protein expression by providing
messenger RNA (mRNA) for translation. mRNA is generated by the processing of nascent
RNA, which involves the splicing of introns, 5′cap addition, and 3′ polyadenylation. In
addition to these well-known RNA maturation processes, RNA also undergoes chemical
modification at its bases and ribose rings [1,2]. The N6-adenosine methylation (m6A or
N6-methyladenosine) is the most abundant mRNA internal modification. It was discovered
in the 1970s [3,4] when other RNA processes were discovered, although follow up studies
have lagged. Nearly three decades later, the identification of methyltransferases [5–7]
and demethylases [8,9] proved that m6A modification is not a random event, but rather
an enzyme-mediated selective process. In addition, transcriptome-wide sequencing of
m6A-modified mRNAs revealed that m6A is enriched around the stop codon and deposited
at a consensus motif [10,11]. These seminal studies reignited m6A research, which is now
extended to various RNA species including long noncoding RNA (lncRNA) [12,13], riboso-
mal RNA (rRNA) [14,15], and small nuclear RNA (snRNA) [16,17], opening a new field of
RNA epitranscriptomics. m6A modification alters RNA structure and RNA–protein inter-
actions, which control RNA fates such as splicing [18], stability [19–21], localization [22],
and translation efficiency [23,24], ultimately affecting protein expression. m6A-dependent
gene expression plays crucial roles in normal development including embryogenesis, stem
cell maintenance [25,26], and neurogenesis [27,28] and its dysregulation causes diseases
such as cancer [29–31] and diabetes [32,33]. There are several comprehensive reviews about
molecular biological and pathophysiological functions of m6A [34–37]. In this review, we
discuss m6A RNA modification from a metabolic perspective.
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2. Enzymes Involved in m6A RNA Modification

The primary m6A writer complex is composed of methyltransferase-like 3 (METTL3),
METTL14, and an adaptor protein, Wilms’ tumor 1-associating protein (WTAP) [7] (Figure 1A).
Additional components of this complex are VIRMA/KIAA1429 [38], zinc finger CCCH-
type containing 13 (ZC3H13) [39], and RNA binding motif protein 15 (RBM15) [13]. The
writer complex methylates specific adenosine residues on mRNA and non-coding RNAs in
RRA*CH consensus motif (R represents A or G; H represents A, C or U; A* is the methylated
adenosine) [10,11].
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Figure 1. N6-methyladenosine (m6A) methylation process and its biological functions. (A) m6A writers (methyltransferase)
methylate RNA in the adenine nucleobase of amino group at N6 position. The consensus motif of methyltransferase-like 3
(METTL3) is RRA*CH (R = A/G; A* = methylated A; H = A/C/U). Once m6A is deposited on RNA, m6A reader proteins
are recruited and determine RNA fates, such as splicing, stability, and translation efficiency, which ultimately affect gene
expression. m6A is removed from RNA through demethylation by eraser proteins. (B) METTL16 methylates stem-loop
structure in 3’ untranslated region (UTR) of S-adenosyl methionine (SAM) synthase, methionine adenosyltransferase 2A
(MAT2A). In SAM-repleted conditions, MAT2A is methylated and degraded. Oppositely, in SAM-depleted conditions,
METTL16 induces splicing and expression of MAT2A. (C) Methylation of A4220 in 28S ribosomal RNA (rRNA) by zinc finger
CCHC domain-containing protein 4 (ZCCHC4) promotes ribosome assembly and translation. (D) Domain composition of
m6A enzymes. (Top, writers) m6A writers contain methyltransferase (MTase) domains. METTL3 contains Cys-Cys-Cys-His
(CCCH) zinc finger motifs. METTL16 has two vertebrate conserved region (VCR) domains in C-terminus. ZCCHC4
possesses several zinc finger motifs, including Gly-Arg-Phe (GRF), Cys2-His2 (C2H2), and Cys-Cys-His-Cys (CCHC)
domains. (Bottom, erasers) Fat mass and obesity-associated protein (FTO) and alkb homolog 5 (ALKBH5) contain αKG-
Fe(II)-dependent dioxygenase domains conserved in dioxygenase family enzymes. WTAP, Wilms’ tumor 1-associated
protein; eIF3, eukaryotic initiation factor 3; YTHDF, YTH domain family; YTHDC, YTH domain-containing protein; IGF2BP,
insulin-like growth factor 2 mRNA-binding protein; HNRNP, heterogeneous nuclear ribonucleoproteins; FTO-CTD, FTO
C-terminal domain.

In addition to the METTL3–METTL14 complex, there are several other classes of m6A
RNA methyltransferases. METTL16 is primarily responsible for the methylation of snRNA
and some mRNAs [40]. METTL16 targets a distinct consensus motif, UACA*GAGAA, in
the RNA stem-loop structure [41,42] (Figure 1B). Different from the METTL3–METTL14
heterodimer complex, METTL16 functions as a homodimer [42].

18S and 28S rRNA methylations are catalyzed by METTL5-tRNA methyltransferase
112 (TRMT112) complex [14] and zinc finger CCHC domain-containing protein 4 (ZC-
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CHC4) [15], respectively (Figure 1C). These proteins localize in the nucleolus where ribo-
some synthesis and maturation occur. In contrast to other methyltransferases, ZCCHC4
contains an autoinhibitory loop in the RNA-binding surface, which is opened upon 28S
rRNA binding [43]. This sort of mechanism may determine substrate RNA specificity
among various m6A methyltransferases.

Once adenosine is methylated, a variety of m6A binding proteins (readers) are re-
cruited (Figure 1A). These include YT521-B homology domain family proteins (YTHDF and
YTHDC) [44], heterogeneous nuclear ribonucleoproteins (HNRNP) [45], and insulin-like
growth factor 2 mRNA-binding protein (IGF2BP) families [20]. These proteins control the
fate of target RNAs, such as folding into secondary structures [45], splicing [18], nuclear
export [22], liquid–liquid phase separation [46], stability [20,21], and translation [23,24].

On the other hand, demethylase enzymes (erasers) are responsible for removing
m6A (Figure 1A). Potential m6A erasers are alkB homolog 5 (ALKBH5) and fat mass and
obesity-associated (FTO, also known as ALKBH9) proteins, which belong to ALKB family
of dioxygenases [8,9]. The discovery of these specific m6A processing proteins (i.e., writers,
erasers and readers), provided evidence that m6A modification is a highly regulated,
reversible cellular process.

3. Regulation of m6A Writers by SAM and SAH

Similar to other typical enzymatic reactions, m6A writer-mediated methylation is
dynamically regulated by substrates and products. S-adenosyl methionine (SAM/AdoMet)
is a universal methyl donor for the cellular methylation processes (Figure 2A). Indeed,
METTL3 was originally identified as a SAM-binding protein [5]. In cells, METTL3 forms a
stable heterodimeric complex with METTL14. Even though both METTL3 and METTL14
contain methyltransferase domains (Figure 1D), the catalytic site of METTL14 lacks the
SAM binding motif and only METTL3 contains enzymatic activity. Rather, METTL14
maintains METTL3–METTL14 complex stability and recruits RNA substrates for efficient
m6A writing [47–49].

One-carbon metabolism, composed of folate and methionine cycles, is the metabolic
pathway responsible for SAM production (Figure 2B). Two amino acids, serine and methio-
nine, play key roles in providing carbons to this pathway. Serine provides a one-carbon
unit to the tetrahydrofolate (THF) cofactor, generating methyl-THF. Then, another car-
bon acceptor, homocysteine, receives one-carbon from methyl-THF. On the other hand,
methionine adenosyl transferase (MAT) produces SAM using methionine and adenosine
5′-triphosphate (ATP) as substrates. Finally, SAM provides a methyl group to adenosine on
RNAs and becomes S-adenosyl homocysteine (SAH/AdoHcy). As is often the case with
metabolic enzymes, the product of this methylation reaction, SAH, is a strong allosteric
inhibitor of METTL3 methyltransferase activity [50] (Figure 2A).

It has been shown that the perturbation of cellular SAM levels affects DNA and
histone methylation [51]. Interestingly, the Km (substrate concentration at half maximum
reaction rate) of SAM for METTL3 is much lower (~100 nM) than cellular SAM levels
(>10 µM) [50,52], suggesting that METTL3 is constitutively active regardless of fluctuations
in cellular SAM levels. Ironically, intracellular SAH levels (~5 µM) are higher than the IC50
(half maximal inhibitory concentration) of SAH for METTL3 (~1 µM) [50,52,53], suggesting
that METTL3 can also be constitutively inhibited by high SAH levels. However, it is
possible that the subcellular, local concentrations of SAM and SAH are likely different from
their concentrations in total cell lysates. In addition, other binding proteins of SAM or SAH
can change the levels of free SAM and SAH available for METTL3. The metabolic balance
of SAM and SAH in local subcellular environments and their control of METTL3 activity
merits further investigation.
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complex, wherein low lysosomal pH causes release of free iron ions into the cytoplasm. Pentose phosphate pathway 
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Figure 2. Potential interplay of m6A methylation with cellular metabolic pathways. (A) List of metabolites affecting activities
of m6A writers and erasers. Grey, activators; white, inhibitors. (B) Schematic of metabolic pathways that can influence m6A
methylation and demethylation processes. One-carbon metabolism produces SAM, a methyl donor of m6A modification.
S-adenosyl homocysteine (SAH), the by-product of methylation, inhibits writer activity. On the other hand, the oxidative
demethylation of m6A by erasers needs α-ketoglutarate (αKG), oxygen (O2), and iron [Fe(II)] as cofactors. Tricarboxylic
acid (TCA) cycle produces co-factors that activate (αKG) or inhibit (fumarate and succinate) demethylase activity. Iron is
delivered to cells as transferrin–iron complex, wherein low lysosomal pH causes release of free iron ions into the cytoplasm.
Pentose phosphate pathway converts nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH, another cofactor
for demethylases. R-2HG, R-2-hydroxyglutrate; Met, methionine; THF, tetrahydrofolate; Hcy, homocysteine.

SAM binding affinity of m6A methyltransferase can also be regulated by substrate
RNA availability. In ZCCHC4, the autoinhibitory loop interacts with the SAM-binding
loop in the catalytic site, creating a closed conformation of the SAM-binding pocket [43].
This interaction is released upon 28S rRNA binding. Disruption of this intramolecular
interaction by a point mutation of the autoinhibitory loop increases SAM binding affinity
by four-fold, from Kd (dissociation constant) 6.7 to 1.6 µM [43]. Considering that rRNA
synthesis is promoted by growth factor and nutrient-activated signaling pathways [54–56],
it is possible that in growth-promoting conditions, increased substrate (rRNA) and methyl
donor (SAM) levels cooperate for maximal rRNA methylation.

In contrast to ZCCHC4, the activity of METTL16 inversely correlates with substrate
RNA binding affinity [57,58]. It has long been observed that the stability of MAT2A mRNA,
which encodes SAM synthase, is increased by methionine depletion, while decreased in
methionine-repleted conditions [59,60]. Pendleton et al. [57] and Shima et al. [58] defined
a mechanism for methionine and the SAM-dependent regulation of MAT2A expression.
When intracellular SAM levels are high, METTL16 actively methylates MAT2A mRNA and
dissociates from its substrate. The m6A-modified MAT2A, which contains retained introns,
is then degraded. When SAM levels are low, METTL16 tightly binds to MAT2A (without
methylation) which leads to the efficient splicing of MAT2A. The spliced MAT2A mRNA is
then translated into MAT2A protein, which synthesizes SAM [57,58] (Figure 1B). Therefore,
SAM levels dictate METLL16 activity to exert the negative feedback regulation of de novo
SAM synthesis, achieving a fine tuning of intracellular SAM levels. Whether other similar
crosstalk exist between m6A enzymes and one-carbon metabolites remains unknown.

4. Metabolites Affecting m6A Erasers
4.1. TCA Cycle Metabolites

The demethylation of histones and DNA is dynamically regulated by various intra-
cellular metabolites [51,61,62]. Likewise, metabolites also influence FTO and ALKBH5-
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mediated m6A RNA demethylation (Figure 2A). One example is 2-oxoglutarate (2OG, also
known as alpha-ketoglutarate or αKG), the key metabolite in the citric acid cycle (tricar-
boxylic acid cycle, or TCA cycle) (Figure 2B). The αKG-dependent dioxygenase family
proteins, which FTO and ALKBH5 belong to, require αKG, Fe(II) (non-heme iron), and O2
(molecular oxygen) for their full enzymatic activity [63,64]. Indeed, when αKG and iron
binding sites in the αKG-Fe(II) oxygenase domain are mutated (Figure 1D), demethylation
activities of FTO and ALKBH5 are lost [65,66].

In addition to αKG, the TCA cycle produces other metabolites that affect m6A
demethylase activity (Figure 2B). αKG is oxidized and decarboxylated to produce succi-
nate, which is further converted into fumarate. The molecular structures of succinate and
fumarate are quite similar to αKG, which makes these metabolites binding competitors
of αKG and thus inhibitors of m6A demethylases. However, only high concentrations of
succinate and fumarate can inhibit αKG binding. In vitro, Km of αKG for ALKBH5 and
FTO are 2~3 µM [50,67], whereas the IC50 of succinate and fumarate are ~30 µM (ALKBH5)
and ~150 µM (FTO), respectively [65,68]. Interestingly, another key TCA cycle metabolite,
citrate, was found to occupy an αKG-binding site in ALKBH5 [65]. Citrate can also be
located in the αKG-binding pocket of FTO and inhibits FTO activity with IC50 ~300 µM [68].

While TCA cycle metabolites are highly compartmentalized in the mitochondria,
ALKBH5 and FTO are predominantly localized in the nucleus [69,70], which may hinder
TCA cycle metabolite’s influence on the m6A demethylation process. However, there is
direct evidence that TCA cycle metabolites affect FTO activity in cells. R-2-hydroxyglutarate
(R-2HG) is an oncometabolite produced by cancer-associated isocitrate dehydrogenase
(IDH) mutants [71]. Wild type IDH catalyzes the oxidative decarboxylation of isocitrate to
αKG. In contrast, mutant IDH enzymes convert αKG to R-2HG. R-2HG has been shown
to structurally mimic αKG and competitively inhibit αKG-dependent dioxygenases [72].
The IC50 of R-2HG for in vitro FTO activity is ~130 µM [73]. Cellular levels of R-2HG in
IDH wild-type cancer cells are less than 100 µM [74], while IDH mutants increase R-2HG
levels up to ~1000 fold in cell lines and patients [75–77]. The treatment of R-2HG (~300 µM)
or ectopic expression of IDH mutants increased cellular m6A levels [73,75]. Surprisingly,
R-2HG suppressed the growth of tumors expressing high FTO levels. Specifically, the R-
2HG-induced m6A modification of cMyc and CEBPA mRNAs destabilized these transcripts.
Therefore, by decreasing the growth-promoting cMyc and CEBP signaling activities, R-2HG
suppresses tumor progression [73]. This anti-tumor activity of R-2HG was unexpected
and the opposite of its oncometabolite, tumor-initiating function. This example reflects the
complex nature of metabolite-mediated regulation of cellular processes and emphasizes the
importance of elucidating context-dependent metabolite effects, including the unexplored
area of m6A modifications.

4.2. Iron

The activation of oxygen by iron is essential for the oxidative demethylation reac-
tion by αKG-Fe(II)-dependent dioxygenases [63,64] (Figure 2A). Indeed, iron depletion in
mice and cells by diet alternation and iron chelation led to decreased histone demethylase
activity [78,79]. The Km of Fe(II) for ALKBH5 is ~1 µM [50]. This is within the range of
free cellular Fe(II) (1~3 µM) [80], indicating that perturbations in cellular iron levels may
affect m6A modification. Major organelles regulating iron metabolism are the lysosome
and mitochondria [81] (Figure 2B). In mammals, the main means of iron uptake is via
the transferrin–iron complex. The internalized transferrin–iron complex is delivered to
the lysosome through endocytosis pathways where iron is then liberated from transferrin
by low lysosomal pH and released into the cytoplasm. Therefore, the dysregulation of
lysosomal acidification can potentially decrease m6A demethylase activity. Although there
is no such direct study, iron-dependent ribosome recycling has been shown to decrease
the expression of m6A-containing mRNAs [82]. Once released into the cytoplasm, free
iron is transported into mitochondria through mitoferrin transporters [81]. Mitochondria
consumes lots of iron in the production of iron–sulfur clusters and reactive oxygen species,
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and thus their dysfunction impairs iron homeostasis. Future investigations about how lyso-
somal and mitochondrial iron metabolism influences m6A RNA modification will provide
insights not only for m6A metabolism but also for iron deficiency-induced human diseases.

4.3. NADP(H)

In a recent study, Wang et al. found that nicotinamide adenine dinucleotide (NAD)
and nicotinamide adenine dinucleotide phosphate (NADP) increase FTO activity [83]
(Figure 2A). Using the florescence quenching assay of FTO, they screened metabolites that
directly bind to FTO. From the screen, NADH and NADPH were identified, along with
vitamin C (ascorbate), a previously known cofactor of dioxygenases. Although the NAD
derivatives (NAD+, NADH, NADP+ and NADPH) are structurally similar, NADPH was
the strongest binding partner and activator of FTO, followed by NADH. This indicates that
the reducing potential of NADPH and NADH may be used for demethylation reactions.
Nonetheless, NADPH was not consumed by FTO, and the concentration remained constant
during demethylation. Interestingly, the induction of m6A demethylase activity by NADPH
occurred less in ALKBH5 (~30% induction in ALKBH5 vs. ~90% induction in FTO). Further
mechanistic studies will be required to better understand the underlying mechanisms of
NADPH-dependent activation of m6A demethylases.

The pentose phosphate pathway (PPP) is the major source of NADPH [84] (Figure 2B).
Branched from glycolysis, PPP uses glucose-6-phosphate (G6P) as a primary substrate. G6P
dehydrogenase (G6PD), the rate limiting enzyme in PPP, oxidizes G6P into 6-
phosphogluconolactone while reducing NADP+ to NADPH. NADPH is a key reducing
agent for cellular biosynthetic processes, such as fat synthesis. The knockdown of NAD
kinase (NADK) and G6PD increased cellular m6A levels, which was decreased by NADPH
supplementation. Conversely, the induction of NADPH levels by high-fat diet or glucose
injection, decreased m6A levels [83], indicating that FTO-dependent m6A demethylation
may be involved in the biological processes regulated by NADPH.

Indeed, the inhibition of FTO increased the m6A modification of the genes involved in
adipocyte differentiation and blocked NADPH-induced adipogenesis [83]. Fto knockout
mice are resistant to high-fat diet-induced obesity, while the overexpression of Fto results
in obesity [83,85–87]. Given that FTO polymorphism is associated with various human
metabolic diseases, including obesity, diabetes, and cardiovascular disease [88,89], it will
be interesting to study how FTO and NADPH-dependent m6A demethylation contributes
to metabolic processes in normal and pathological conditions.

5. Conclusions Remarks and Future Directions

Emerging evidence has implied the involvement of metabolites and metabolic path-
ways in m6A RNA modification. To better understand this important interplay in physio-
logical and pathological contexts, more investigations are needed at the organismal level.
For example, methionine is the key amino acid for SAM production. It will be interest-
ing if a low methionine diet, which increases life span and enhances cancer treatment
responses [90,91], works by decreasing the activity of specific m6A RNA methyltrans-
ferases. Additionally, it has been shown that m6A levels are different in various tissues. In
mice, the brain, liver, and kidney contain more m6A than heart and lung. However, the
expression levels of m6A writers and erasers only partially correlate with tissue-specific
m6A levels [10,92]. It is possible that the metabolic activities of each organ determine the
actual enzyme activities by limiting substrate and cofactor levels.

In addition to directly responding to nutrient levels, the activity of metabolic pathways
is also governed by signal transduction pathways. As a master regulator of cell growth,
the mechanistic target of rapamycin (mTORC1) controls the expression and activity of
numerous enzymes in the metabolic pathways discussed in this review [93–95]. The great
strides in cancer metabolism research over the past few decades have also elucidated a
direct and close connection between metabolic enzymes and nutrient signaling pathways,
including phosphoinositide 3-kinase (PI3K)-Akt, Ras-ERK, and AMPK [96–99]. It will be
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exciting to explore how these nutrient-signaling networks regulate m6A RNA methylation.
Given that several small molecule inhibitors for m6A enzymes have been developed for
oncological applications [100], the combined targeting of cancer metabolism and signaling
with m6A modification enzymes could provide a new strategy for cancer therapeutics.

Another unexplored area is the metabolic regulation of m6A readers. The m6A writer,
METTL3, possesses m6A reader function [101]. While it writes m6A in the nucleus, in
the cytoplasm it binds to m6A-modified mRNA and increases target mRNA’s translation
efficiency. Whether SAM or SAH, the metabolites that affect METTL3′s m6A writer function,
can also influence METTL3′s reader function is not known. Intriguingly, some m6A reader
proteins, specifically the YTHDF family, form liquid droplets through phase separation [46],
which is also often formed by metabolic enzymes [102,103]. This implicates a potential
interaction between metabolic enzymes and m6A readers by physical proximity. Protein
interactome analysis of m6A readers, as well as protein–metabolite interaction screens, such
as cellular thermal shift assay (CETSA) [104] and drug affinity responsive target stability
(DARTS) [105], will provide useful information to identify new competitive and allosteric
regulators of m6A readers. Since readers are actual effector proteins that determine the
fates of m6A-modified RNAs, m6A reader proteins can be a way of controlling specific
genes using metabolites.

In addition to m6A, RNA contains more than 100 different types of chemical modifica-
tions, including di- and tri-methylations, acetylation, deamination, thiolation (sulfuration),
oxidation, and even glycosylation [106], which should be tightly regulated under dynamic
environmental changes and cell status. Comprehensive understanding of how nutrients
and metabolic pathways orchestrate the diverse array of RNA chemical modifications
will provide new insights in the field of RNA epitranscriptomics, nutrient signaling, and
metabolism.
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