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Abstract: Sandhoff disease (SD) is a lysosomal disease caused by mutations in the gene coding for
the β subunit of β-hexosaminidase, leading to deficiency in the enzymes β-hexosaminidase (HEX)
A and B. SD is characterised by an accumulation of gangliosides and related glycolipids, mainly in
the central nervous system, and progressive neurodegeneration. The underlying cellular mechanisms
leading to neurodegeneration and the contribution of inflammation in SD remain undefined. The aim
of the present study was to measure global changes in metabolism over time that might reveal novel
molecular pathways of disease. We used liquid chromatography-mass spectrometry and 1H Nuclear
Magnetic Resonance spectroscopy to profile intact lipids and aqueous metabolites, respectively.
We examined spinal cord and cerebrum from healthy and Hexb−/− mice, a mouse model of SD, at ages
one, two, three and four months. We report decreased concentrations in lipids typical of the myelin
sheath, galactosylceramides and plasmalogen-phosphatidylethanolamines, suggesting that reduced
synthesis of myelin lipids is an early event in the development of disease pathology. Reduction in
neuronal density is progressive, as demonstrated by decreased concentrations of N-acetylaspartate
and amino acid neurotransmitters. Finally, microglial activation, indicated by increased amounts of
myo-inositol correlates closely with the late symptomatic phases of the disease.

Keywords: lipidomics; metabolomics; lysosomal disorders; β-hexosaminidase; galactosylceramides;
bis(monoacylglycero)phosphates; plasmalogens

1. Introduction

Sandhoff disease (SD) is a GM2 gangliosidosis (in the abbreviation GM2, G refers to
ganglioside, the M is for monosialic, and 2 refers to the fact that it was the second monosialic
ganglioside discovered) caused by mutations in the gene encoding the β subunit of β-
hexosaminidase (HEXB), leading to a deficiency in the lysosomal enzymes β-hexosaminidase
A (HEX A) and B (HEX B) [1]. HEX A and HEX B cleave N-acetylglucosamine (GlcNAc)
and N-acetylgalactosamine (GalNAc) residues from a variety of substrates, including
ganglioside GM2, abundant in nervous tissue. Over 50 different disease-causing muta-
tions in HEXB have been reported [2], giving rise to a wide spectrum of disease onset
and symptoms. Typically, in the infantile form, motor weakness is detected between the
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ages of three and six months, followed by severe hypotonia and blindness, with death
occurring between two and four years. In the juvenile and adult forms of the disease, the
clinical manifestations and progression are more heterogeneous [1,3,4]. Accumulation of
gangliosides GM2 and GA2 (asialylated GM2) is detected throughout the central nervous
system (CNS). Furthermore, the unacylated ganglioside, lyso-GM2 has been reported to be
increased in the brain and plasma of SD patients and in the mouse model [5].

The mouse model of SD, Hexb−/−, exhibits manifestations similar to those of human
patients albeit on a shorter time scale, with a lifespan of four to six months [6,7]. Deterioration
of motor function is first detected at three months of age and by five months there is an
almost complete lack of hind limb movement accompanied by muscle atrophy. Patho-
logical storage material, gangliosides as well as glycosaminoglycans, are detectable in
all regions of the CNS. Importantly, no storage material is detectable in heterozygous
human carriers of SD, nor in heterozygote mice (Hexb+/−) [6]. Apoptotic neurons have
been detected in the murine brain and spinal cord at the peri-symptomatic age of three
months. Similar features were observed in autopsy samples from brain and spinal cord
from a 19-month-old SD patient [7]. The CNS expression of genes known to be elevated
during macrophage/microglia-mediated inflammatory response has been reported in
brains of SD patients [8]. In the SD mouse, overexpression of inflammatory genes has
been detected commencing at age one month, with inflammation and microglial activation
becoming more widely distributed with time [8]. However, a rigorous dissection of the
biochemical pathways contributing to the evolution of SD has not been undertaken. In
this work, we sought to identify metabolic changes associated with SD progression and
pre-symptomatic alterations involved in the pathogenesis using the mouse as an authentic
model of disease.

2. Results
2.1. LC-MS and NMR Spectroscopy Show Metabolic Changes Directly Resulting from the
Enzyme Deficiency

Analysis of cerebrum and spinal cord separated the spectra according to genotype
using multivariate analysis (partial least squares discriminate analysis (PLS-DA)) of the
LC-MS dataset at each of the four time points studied. GM2 affects all the CNS but the
initial microscopic neuropathology is in the cerebrum which is neurone rich in the cor-
tex (grey matter), and also clinically associated with the rapid dementia. On the other
hand, with subcortical axons, the spinal cord is rich in myelinated axons. Thus, these
major structures typify the range of “grey-white” tissue divisions of the CNS studied in
this disease.

Increases in the concentration of several species of gangliosides GA2 and GM2 were
detected using negative ionisation mode LC-MS and were highly discriminatory between
controls and Hexb −/− mice (Figure 1A). GA2 (d18:1/18:0) was the most increased species
in cerebrum and spinal cord tissue from SD mice, being present only at trace concentrations
in controls (Figure 1B,C; Supplementary Figure S1). The increase in total GA2 and GM2
ganglioside content peaked at four months (655-fold increase in cerebrum tissue and
232-fold increase in spinal cord tissue from Hexb −/− mice compared to controls).

Alongside GA2 and GM2 gangliosides, bis(monoacylglycero)phosphates (BMPs) were
the most discriminatory lipids detected in negative ion mode LC-MS between controls
and Hexb −/− mice. BMPs are lipids that localise to the inner membrane of endosomes and
lysosomes [9]. Seven BMP species accumulated in the CNS of Hexb −/− mice over time,
with BMP (22:6/22:6) being the first species to be significantly increased in one-month-old
SD mice compared to controls, and by far the more abundant at any time point in SD mice
(18-fold increase in the brain and 26-fold increase in spinal cord from four-month-old SD
mice compared to controls). At the last time point measured, the concentrations of all the
BMPs detected in SD spinal cord and cerebrum were significantly increased (Figure 1D,E).
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Figure 1. Metabolic variations between four-month-old Hexb −/− mice and controls detected using open profiling negative 
ion mode LC-MS were dominated by increases in gangliosides and bis(monoacylglycero)phosphates (BMPs). (A) partial 
least squares discriminate analysis (PLS-DA) loading scatter plot from the analysis of negative mode LC-MS of cerebrum 
tissue from four-month-old control and Hexb −/− mice. The most discriminatory increases in Hexb −/− mice compared to 
controls are labelled in red. (B) concentration of ganglioside species in cerebrum tissue from four-month-old control and 
Hexb −/− mice. (C) concentrations of ganglioside species in spinal cord tissue from four-month-old control and Hexb −/− mice. 
(D) concentration of BMP species in cerebrum tissue from four-month-old control and Hexb −/− mice. (E) BMP concentra-
tions in spinal cord tissue from four-month-old control and Hexb −/− mice. Results are presented as mean +/− SEM. Signifi-
cance level quoted for Student’s t-test * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 

Figure 1. Metabolic variations between four-month-old Hexb −/− mice and controls detected us-
ing open profiling negative ion mode LC-MS were dominated by increases in gangliosides and
bis(monoacylglycero)phosphates (BMPs). (A) partial least squares discriminate analysis (PLS-DA)
loading scatter plot from the analysis of negative mode LC-MS of cerebrum tissue from four-month-old
control and Hexb −/− mice. The most discriminatory increases in Hexb −/− mice compared to controls are
labelled in red. (B) concentration of ganglioside species in cerebrum tissue from four-month-old control and
Hexb −/−mice. (C) concentrations of ganglioside species in spinal cord tissue from four-month-old control and
Hexb −/−mice. (D) concentration of BMP species in cerebrum tissue from four-month-old control and Hexb −/−

mice. (E) BMP concentrations in spinal cord tissue from four-month-old control and Hexb −/−mice. Results are
presented as mean +/− SEM. Significance level quoted for Student’s t-test * p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001.
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Aqueous metabolites were analysed by high resolution 1H-NMR spectroscopy. Many
of the metabolites detected by 1H NMR spectroscopy in brain tissue extracts can also be
detected in 1H Magnetic resonance spectroscopy (MRS) studies of the intact brain, and thus,
there is a wide literature related to brain neurodegeneration we could compare our results
with. The presence of an extra resonance at 2.07 ppm, corresponding to N-acetylhexosamine
(HexNAc), was a unique and striking feature in SD mice, detected at every time point
studied, and in both cerebrum and spinal cord (Figure 2). This finding confirms previous
observations in SD patients and mice [10,11]. Moreover, the corresponding resonance
increased as the disease progressed from one to four months (Figure 2), indicating that the
storage material increases with time.
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Figure 2. Expanded region (1.85–2.35 ppm) from the 1H-NMR spectra of cerebrum tissue from one, two, three and four-
month-old Hexb −/− mice. The resonance corresponding to N-acetylhexosamine, at 2.07 ppm, increased with time (insert).
Other major resonances present in this region are as labelled. GABA: γ-aminobutyric acid.

2.2. Alterations in Lysophosphatidylcholines and Lipid Components of Myelin Are Early Stage
Changes Associated with Disease Progression

Owing to evidence of the role of lysophosphatidylcholines (LPCs) in β-amyloid-
induced neuronal loss in vitro [12], we studied the metabolism of lysophospholipids using
open profiling LC-MS. Several LPC species were affected in Hexb −/− mice; the concen-
tration of LPC 18:0 was decreased in cerebrum tissue from Hexb −/− mice at one month,
whereas the concentration of LPC 16:0 was increased at two months and the concentration
of LPC 18:1 was increased at two and three months (data not shown). Alongside these
changes, a time-dependent increase in the concentrations of LPC 20:4 and LPC 22:6 was
detected in SD cerebrum. This increase was significant from the earliest time point studied
(Figure 3A). However, the increase in these two species was not significant at four months
due to larger intra-group variations. In spinal cord tissue, the same trend was observed, al-
though the increase in LPC 20:4 and LPC 22:6 was not significant at one month (Figure 3B).
In addition, there was a time-dependent increase in the concentration of LPC 18:1 in spinal
cord tissue from Hexb −/− mice.
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for Student’s t-test * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 
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of SD mice at all time points studied (one to four months) with a severe drop starting at 
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group variations being larger than in the spinal cord (Figure 5D). At the symptomatic 
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0.0003) in cerebrum and spinal cord, respectively. 

Figure 3. Concentration of three lysophosphatidylcholine species in cerebrum and spinal cord tissues from one-month-
old control and Hexb −/− mice. (A) concentration of lysophosphatidylcholine (LPC) 18:0, 20:4 and 22:6 in the cerebrum.
(B) concentration of LPC 18:0, 20:4, and 22:6 in spinal cord. Results are presented as mean +/− SEM. Significance level
quoted for Student’s t-test * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

Myelin, the insulating axonal sheath that ensures correct transmission of nerve im-
pulses, has a high lipid content (about 70% of its dry weight in humans and rats) [13].
Galactosylceramides (GalCers) and glucosylceramides (GluCers), also called cerebrosides,
are the most typical of these lipids, followed by ethanolamine-containing plasmalogens [13].
In the present study, our LC-MS/MS method could not discriminate between GalCers
and GluCers, and so we refer to the detected species as hexosylceramides (HexCer). Hex-
Cer species were measured using positive ion mode LC-MS and identified using their
exact mass and the presence of an intense ion m/z 264.3, corresponding to the loss of
the acyl group bound to the amine of the ceramide and to a double dehydration of the
ceramide moiety, in the MS/MS mass spectrum. Plasmalogen-phosphoethanolamine (PE)
and HexCer species were decreased in the cerebrum of one-month-old SD mice (Figure 4A).
The targeted measurement of plasmalogen-PE (p36:1) in cerebrum and spinal cord con-
firmed that its concentration was decreased in SD mice compared to controls at one and
two months (Figure 4B).

The analysis of CNS tissues using 1H-NMR spectroscopy revealed large metabolic
alterations between control and SD mice (Figure 5A). N-acetylaspartate is a marker of
neuroaxonal tissue throughout the brain and the spinal cord, measurable using NMR
spectroscopy [10,11,14–17]. Multivariate analysis revealed that the most discriminatory
decrease detected by 1H NMR spectroscopy in CNS tissue from SD mice was a reduction
in the concentration of N-acetylaspartate (Figure 5A). It was decreased in the spinal cord
of SD mice at all time points studied (one to four months) with a severe drop starting
at the peri-symptomatic age of three months (Figure 5B). In the cerebrum, the decrease
in N-acetylaspartate reached significant values only in age groups one and two months,
intra-group variations being larger than in the spinal cord (Figure 5D). At the symptomatic
humane end point of four months, the concentration of N-acetylaspartate was reduced
by 13.7% (although non-significant, p = 0.18; for resonances at 2.70–2.72 ppm) and 46.5%
(p = 0.0003) in cerebrum and spinal cord, respectively.

Glutamate, aspartate and γ-aminobutyric acid (GABA) were quantified using 1H-NMR
spectroscopy in CNS tissue (Figure 6). The concentration of glutamate was reduced in the
cerebrum of two-month-old SD mice and from two months onwards in spinal cord tissue
(Figure 5G). The concentration of aspartate was also significantly decreased in cerebrum
tissue from one and four-month-old Hexb −/− mice and in the spinal cord at three and four
months (Figure 5H). Finally, the concentration of GABA was decreased in the cerebrum
of the mouse model of SD at one and four months and in spinal cord tissue at two and
four months (Figure 5G,H). The decreases in neurotransmitter concentrations were highly
discriminatory between both groups studied for CNS tissues (Figure 5A).
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Figure 4. Measurement of myelin components using LC-MS. (A) concentration of major components of myelin, plasmalogen-
phosphatidylethanolamine and hexose-ceramide species, in cerebrum tissue from one-month-old control and Hexb −/− mice.
(B) concentration of plasmalogen-phosphatidylethanolamine 36:1 (PE (p18:0/18:1)) in cerebrum from Sandhoff disease
(SD) mice relative to controls (abundance set to 1). (C) concentration of plasmalogen-phosphatidylethanolamine 36:1 (PE
(p18:0/18:1)) in spinal cord from SD mice relative to controls (abundance set to 1). Results are presented as mean +/- SEM.
Significance level quoted for Student’s t-test * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

Myo-inositol is a glia marker, more specifically thought to be a marker for astroglio-
sis, [10,11,18] that can be detected using 1H-NMR spectroscopy. At four months, an increase
in the concentration of myo-inositol was among the most discriminatory metabolic changes
detected in SD cerebrum and spinal cord (Figure 5A). Surprisingly, the concentration of
myo-inositol in SD spinal cord at ages one and two months was significantly decreased
compared to healthy controls, though an increase was clearly observable from three months
onwards, correlating with the symptomatic phase of the disease (Figure 5C). Moreover, the
calculation of the N-acetylaspartate to myo-inositol ratio, representative of the proportion
of neuronal cells to glial cells, demonstrated a time-dependent decrease of neuronal density
in favour of the microglial population in SD CNS (data not shown).

The branched-chain amino acids valine and leucine were detected using 1H-NMR
spectroscopy. In cerebrum, their concentrations were increased in one month SD mice
compared to controls (Figure 5E). In spinal cord, the concentration of leucine was increased
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at one (Figure 5F) and two months in the SD mouse compared to controls, while the
concentration of valine was increased at one, three and four months.
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Figure 5. Metabolic variations between Hexb −/− mice and controls from one to four months of
age detected using NMR spectroscopy. (A) PLS-DA loading scatter plot from the analysis by 1H-
NMR spectroscopy of spinal cord tissue from four-month-old control and Hexb −/− mice. The most
discriminatory decreases in Hexb −/− mice are labelled in blue and the most discriminatory increases
in Hexb −/− mice are labelled in red. (B) concentration of N-acetylaspartate in spinal cord tissue
from one to four-month-old control and Hexb −/− mice (two resonances shown). (C) concentration of
myo-inositol in spinal cord tissue from one to four-month-old control and Hexb −/−mice. (D) expanded
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region (1.96–2.095 ppm) from the 1H-NMR spectra of cerebrum tissue from four-month-old control
Hexb −/− mice. The resonance corresponding to N-acetylaspartate is decreased in the Hexb −/−

mouse. (E) concentration of leucine and valine in cerebrum tissue from one-month-old control and
Hexb −/− mice. (F) concentration of leucine and valine in spinal cord tissue from one-month-old
control and Hexb −/− mice. (G) concentration of three neurotransmitters, aspartate, glutamate and
GABA, in cerebrum tissue from Hexb −/− mice. Control concentration is set to 1. (H) concentration
of aspartate, glutamate and GABA, in spinal cord tissue from control and Hexb −/− mice. Control
concentration is set to 1. Results are presented as mean +/− SEM. Significance level quoted for
Student’s t-test * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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Moreover, the calculation of the N-acetylaspartate to myo-inositol ratio, representative of 
the proportion of neuronal cells to glial cells, demonstrated a time-dependent decrease of 
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The branched-chain amino acids valine and leucine were detected using 1H-NMR 
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Figure 6. Expanded region (2.20–2.90 ppm) from the 1H-NMR spectrum of cerebrum
tissue from a four-month-old control mouse showing the presence of resonances for three
neurotransmitters (labelled in red), GABA, glutamate and aspartate, as well as succinate,
glutamine, glutathione and the neuro-axonal marker N-acetylaspartate.

2.3. Sphingoid Bases Accumulate in the SD Mouse Brain

To investigate sphingolipid metabolism further we performed a separate tissue extrac-
tion and chromatography to analyse sphingoid bases in the tissue (Figure 7). C16 species
showed limited variance between genotypes with no significant alterations in any age
group. However, C18 species appear to be key features of disease pathology. C18 sphinga-
nine is significantly increased in 1 month mice (t-test, p = 0.0041) but this increase is not
maintained at a significant level in samples from older mice. This suggests an upregulation
of de novo sphinganine synthesis or decline in ceramide synthesis downstream in 1 month
samples. On the other hand, C18 sphingosine accumulation in SD samples is observed
across all age groups, with significant results in 1 and 3 month old mice (t-test, p = 0.044,
p = 0.025, respectively). Impairment of the salvage pathway should reduce the production
of sphingosine, so this suggests that compensatory upregulation of sphingosine synthesis
may occur in SD.
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3. Discussion

We describe here the course of SD at a metabolic level, with numerous abnormalities
in diverse metabolites affected in the mouse model of SD (Figure 8).
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Figure 8. Representation of the metabolic changes observed in the metabolomic study of a mouse
model of SD from one to four months of age, matched with the manifestations observed in this
murine model.

An increase in GM2 was observed at every time point studied in nervous tissues from
the Hexb −/− mice. The concentration of various species of the asialo-sphingolipid, GA2,
steadily increased in the CNS as the disease progressed, highlighting the extent of the lyso-
somal storage due to deficiency in HEX A and B in the mouse model of SD. The increases
in BMPs, lipids located to the inner membranes of lysosomes and late endosomes [9]
most probably reflect the impairment of the endo-lysosomal degradation pathway, and
the accumulation of these organelles. Similar increases have been observed previously
in several lysosomal disorders including Niemann–Pick diseases, neuronal ceroid lipo-
fuscinoses, SD and also drug-induced phospholipidosis [19–27]. In addition, BMPs have
been reported to stimulate the degradation of glycosphingolipids in lysosomes [9] and
participate in the transport of cellular cholesterol and its degradation [9,28,29]. Therefore,
increased concentrations of BMPs could also denote an adaptive mechanism for the cells
to degrade lipids accumulating due to the enzyme deficiency in SD. In our study, BMP
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(22:6/22:6) was the most abundant BMP species in the CNS from SD mice, similar to what
was observed in the brain of mouse models of neuronal ceroid lipofuscinosis [19]. The brain
is particularly rich in docosahexaenoic acid (DHA, C22:6 (n − 3)), and the accumulation
of BMP (22:6/22:6) probably reflects the high proportion of this fatty acid in cerebrosides.
In addition, the 1H-NMR spectroscopy demonstrated an accumulation of HexNAc as
a result of the deficiency in β-hexosaminidase in the mouse model of SD. This confirms
previous data obtained using magnetic resonance spectroscopy on patients and on a mouse
model of SD [10,11].

At one month, decreases in the main myelin lipid components, plasmalogen-PE and
HexCer, were detected in the CNS of SD mice. This agreed with a previous report showing
a significant reduction in the gene expression of UDP-galactose ceramide galactosyltrans-
ferase (Cgt), a key-enzyme in the biosynthesis of myelin lipids such as GalCer [30] from
eight weeks of age, and decrease in structural protein components of myelin from five
weeks of age [31]. Indeed, it is well documented that myelin-associated lipids are decreased
in the brains of humans and animal models of SD [32,33]. Unexpectedly, the concentration
of plasmalogen-PE (p36:1), a major component of myelin, was not significantly different
between SD mice and controls at three and four months of age despite clear differences
detected at one and two months. In mice, biosynthesis of GalCer principally occurs be-
tween postnatal days 10 to 20, whereas myelin formation is maximal between days 20 to
25 [34,35]. One possibility is that the decreased abundance of myelin lipid components,
clearly significant at the earliest time points, reflects impaired biosynthesis of the lipid
components of myelin rather than myelin destruction. However, these changes could also
be due to a reduction in the oligodendrocyte population or impaired metabolism in this cell
type; therefore, further study of the cellular changes within the brain would be necessary
to understand these metabolic changes. As the deficiency of the myelin lipids occurs before
physical manifestations can be detected in SD mice, defects in myelination in SD mice
probably should not be attributed solely to neuronal pathology, which, as illustrated by the
continuous decrease in N-acetylaspartate, becomes more prominent with time. Lysophos-
phatidylcholines have previously been shown to induce demyelination [36–39]. Hence,
early increases in the concentrations of LPC species in the nervous system of SD may
contribute to the impairment of myelination occurring at the early stages of the disease.

The concentration of myo-inositol was increased in the spinal cord of four-month-old
Hexb −/− mice compared to controls, presumably reflecting the activation of glial cells
in the CNS as part of an inflammatory process as previously observed in models of neu-
rodegeneration [18]. These results agree with previous reports showing that microglial
activation and production of inflammatory molecules were increased in an age-dependent
manner in SD mice [8,40]. Moreover, our results agree with previous findings suggesting
that the progressive activation and expansion of microglia occurs concomitant with neu-
rodegeneration in SD and may trigger loss of neurons [8,41]. Indeed, we demonstrate that
the concentrations of N-acetylaspartate and myo-inositol follow an inverse temporal trend,
suggesting that both processes are interrelated.

A notable finding in this study was the time-dependent increase in the concentration
of several lysophospholipid species in the brain and spinal cord in SD mice. Peripheral
blood monocytes participate in the expansion of microglial population in SD [8,41] and the
chemoattractant properties of LPCs, reported in the brain of the mouse model of infantile
neuronal ceroid lipofuscinosis, appear to be responsible for infiltration by phagocytes [42];
it is possible that these bioactive lipids have similar role in the neuropathology of SD. In
Alzheimer’s disease, increased activity of cytosolic phospholipase A2 leads to elevated
LPC concentrations which also stimulate release of pro-inflammatory cytokines [43]. Thus,
we propose that the increased LPCs observed in CNS tissues obtained from mice with SD
may play a similar role, recruiting blood monocytes to expand the microglial population
in response to the accumulation of gangliosides, creating an inflammatory state that
contributes to neuronal loss, as suggested in previous studies [8,41].
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Elevated levels of C18 sphingosine were observed across all age groups. This species
is a competitive inhibitor of protein kinase C (PKC) activation, a crucial regulator of several
processes in the brain [44]. PKC regulates the cytoskeleton dynamics required for synapse
formation and maintenance, and also regulates neurotransmission and synaptic plastic-
ity by phosphorylating transporters, ion channels and G protein-coupled receptors [45].
Therefore, this alteration may contribute to the impaired brain development that causes
mental retardation in SD patients.

Finally, the concentrations of three neurotransmitters, aspartate, glutamate and GABA,
were decreased in the cerebrum and spinal cord of the mouse model of SD at most time
points. This might be related to the decrease in neuronal density as evidenced by a reduction
in N-acetylaspartate, but it more likely represents a combination of impaired neuronal
function and cell loss, as seen from previous studies [46].

One limitation of the current study is that the “open profiling” method that was used
for lipidomics analyses the high concentration lipids in tissue extracts that are readily
soluble in chloroform/methanol. However, it may not detect low abundance lipids, or lipid
classes that are poorly soluble in chloroform. One notable lipid class we failed to detect
using this method is the sulfatides, an important class of lipids associated with myelin and
known to be altered in SD. Furthermore, the suggested neurotoxic lyso-GM2 and lyso-GA2
lipids were not detectable using this assay. More dedicated assays could be used to follow
these changes in the future.

Although the role of demyelination in SD requires further investigation, its early
occurrence indicates that it contributes importantly to pathogenesis and represents a point
of no return of the neurological disease following therapeutic gene transfer, as previously
indicated by histopathological studies [31]. If the critical role of demyelination is confirmed,
delivering corrective treatments such as gene therapy before injury to myelin is established
would be essential in order to achieve optimal therapeutic effects. Indeed, gene therapy-
based approaches have corrected myelin deficiencies not only for GM2 storage in SD but
also for GM1 storage in GM1 gangliosidosis [32,47].

4. Materials and Methods

Mouse model of Sandhoff disease: The SD mouse model (strain: B6; 129S-Hexbtm1Rlp),
developed by disruption of the Hexb gene [6], was obtained from the Jackson Laboratory,
USA. Homozygous males were mated with heterozygous females, or heterozygous animals
were interbred, to maintain the colony. Mice were fed ad libitum and killed by asphyxiation
at one, two, three or four months of age (n = 5 per age and genotype). Tissues were dissected
and frozen immediately on dry ice before storage at −80 ◦C. All studies were conducted
under Home Office licence and conformed to the UK Animals (Scientific Procedures)
Act 1986.

Metabolite extraction: Metabolites were extracted from 50 mg of cerebrum and spinal
cord tissue using the protocol from Le Belle and co-workers [48] and briefly described
below. First, 6 mL methanol and chloroform in a 2:1 ratio (v/v) was used per gram of
tissue. The mixture was homogenised in a TissueLyser (Qiagen, Germany) and sonicated
for 15 min at room temperature (22 ◦C). To the mixture was added 2 mL chloroform and
2 mL water per gram of tissue to form an emulsion. Then, the samples were centrifuged for
20 min at 20,844× g at 22 ◦C in a centrifuge 5424 (Eppendorf) to generate distinct organic
and aqueous fractions and a protein pellet. The organic and aqueous layers were transferred
to separate tubes. The entire process was repeated on the protein pellet and remnants of
the aqueous and organic fractions in order to perform a double extraction to maximize
extraction efficiency. Fractions separated during the second extraction were combined
with the first ones. Finally, aqueous extracts were dried overnight in a Concentrator Plus
(Eppendorf, Germany) evacuated centrifuge at room temperature (22 ◦C) while organic
layers were dried in a fume hood under a stream of nitrogen gas. All dried fractions were
stored at −80 ◦C until analysis.
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Profiling of intact lipids: The open profiling of lipids was performed using the dried
lipid fraction obtained after metabolite extraction (10 mg tissue equivalent). Chromatogra-
phy was performed on a Acquity UPLC® system using a Acquity UPLC® Charged Surface
Hybrid (CSH) C18 column (1.7 µm by 2.1 mm by 100 mm) (Waters Inc., Milford, MA, USA)
at 55 ◦C. Lipid fractions were diluted in isopropanol/acetonitrile/water (2:1:1 v/v/v).
The injection volume was 2 µL. The flow rate was 0.4 mL/min. Mobile phase A was com-
posed of 60% acetonitrile and 40% water with the addition of 10 mM ammonium formate.
Mobile phase B was 10% acetonitrile and 90% isopropanol with 10 mM ammonium formate.
The chromatographic gradient progressed from 40% mobile phase B up to 99% B over
18 min, followed by 2 min of equilibration at 40% B.

Mass spectrometry was performed on a Xevo G2 quadrupole-time of flight (Q-ToF)
mass spectrometer (Waters Inc., Milford, MA, USA) in positive and negative ion modes
using a scan time of 0.2 s, a collision energy of 6 V for each single scan, and a collision
ramp from 25 to 40 V for the fragmentation function in positive ion mode and from
30 to 50 V in negative ion mode. The capillary voltage was 2 kV, sampling cone was
30 V, extraction cone was 3.5 V and source temperature was 120 ◦C. Leucine enkephalin
was used as a lockmass to improve mass accuracy throughout the analysis, and 5 mM
sodium formate was used to calibrate the instrument prior to analysis (the maximum
threshold for mass difference between the measured mass and the exact mass was set at
5 ppm). Chromatograms were processed using the MarkerLynx XS tool from the MassLynx
software (version 4.1, Waters Inc., USA) using peak detection analysis with the following
parameters: Retention time: 0 to 18 min, mass range: 50 to 2300 Da and tolerance for the
mass value: 0.05 Da, minimum intensity to consider for a spectral peak: 2000 counts. Data
were de-isotoped and metabolites were identified using the following online databases:
www.lipidmaps.org (Lipid Metabolites and Pathways Strategies), www.hmdb.ca (Human
Metabolome Database) and www.genome.jp/kegg/ (the Kyoto Encyclopaedia of Genes
and Genomes). The abundance of specific species was calculated as the average area under
the curve of the LC-MS chromatogram for each corresponding m/z.

Targeted analysis of ceramides: Targeted analysis was performed using a 4000 QTRAP®

triple quadrupole instrument operated in positive ion mode. The parameters for each mass
transition were optimised individually by injecting standards. Analytes were monitored in
multiple reaction monitoring (MRM) mode using the following parameters in Table 1.

Table 1. Parameters used for the targeted analysis by mass spectrometry of ceramides reported in
the paper.

Compound MRM (Da) Dwell
Time (ms)

Declustering
Potential (V)

Collision
Energy (V)

Collision Cell
Exit Energy (V)

C14-Cer 510.523→ 264.300 150 71 39 6
C16-Cer 538.479→ 520.500 150 46 17 14
C18-Cer 566.402→ 548.700 150 36 19 48

C18:1-Cer 564.374→ 173.200 150 61 13 14
C20-Cer 594.483→ 576.500 150 96 23 8
C22-Cer 622.636→ 604.600 150 81 19 18

Data were processed using the Analyst software (version 1.6; AB Sciex, Darmstadt, Germany).
The abundance of specific species was calculated as the average area under the curve of
the LC-MS chromatogram for each corresponding m/z.

Analysis of aqueous metabolites by 1H-NMR spectroscopy: The dried aqueous sam-
ples were dissolved in 600 µL of a 0.5 mM solution of sodium-3-(trimethylsilyl)-2, 2, 3,
3-tetradeuteriopropionate (TSP) in deuterium oxide (D2O) containing 0.1% sodium azide
to protect the sample from bacterial contamination. The TSP served as an internal chem-
ical shift reference (1H δ0.0) and the spectrometer field frequency lock was provided by
D2O. The sample was transferred to a 5 mm NMR glass tube and analysed on a 11.74 T
(500 MHz 1H observation frequency) NMR spectrometer using a 5 mm 1H{13C}-TXI NMR
probe fitted with automatic tuning and matching (ATMA) (Bruker, Karlsruhr, Germany).

www.lipidmaps.org
www.lipidmaps.org
www.hmdb.ca
www.genome.jp/kegg/
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1H NMR spectra were obtained using the NOESY-presaturation pulse sequence, based on
the first increment of a 2D nuclear Overhauser effect spectroscopy (NOESY) pulse sequence
to suppress the residual 1H water signal. NMR spectra were acquired using 128 scans
collected into 16 k data points with an acquisition time of 4.09 s, a relaxation time of 2 s
and a mixing time of 150 ms. Solvent presaturation was applied during the relaxation and
mixing times and the total pulse recycle time was 2 s. All data were collected with the
sample temperature set to 27 ◦C.

NMR spectral assignment was achieved with reference to previous literature, online
databases (www.hmdb.ca, Human Metabolome Database, version 3.5) and the Chenomx
spectral database contained in Chenomx NMR Suite (version 7.5, Chenomx, Edmonton,
Canada). NMR spectra were processed in ACD NMR Manager (version 12, Advanced
Chemistry Development, Toronto, Canada). Fourier transformation was applied to the
spectra and TSP was set as a reference at 0.0 ppm. Phasing and baseline correction were
carried out manually. The region corresponding to water was deleted (δ4.5–5.0 ppm) and
remaining spectral regions were integrated from 0.5 to 9.5 ppm. Resonances having the
least overlap with peaks corresponding to other metabolites were chosen to be integrated
for the quantification of each metabolite.

Sphingoid Base Analysis by LC-MS

Lipids were extracted following the method proposed by Sullards and co-workers [49].
Approximately 10 mg of tissue was weighed for extraction. Then, 90 µL of PBS and 750 µL
of methanol/chloroform (2:1) was added to each sample, prior to lysis in a TissueLyser
(Qiagen) for 12 min, at 16 Hz. The homogenates were incubated overnight at 48 ◦C. Af-
ter cooling, 75 µL potassium hydroxide (0.1 M in methanol) was added, and the samples
were sonicated for 10 min. Another incubation at 37 ◦C for 2 h completed the extraction.
0.4 mL of each sample extract was decanted for reverse phase LC-MS and centrifuged
(16, 100 g, 5 min) to remove insoluble material. An Avanti internal standard cocktail
(Cer/Sph Mixture 1, LM6002-1EA) was added to each sample (10 µL) to enable quantifica-
tion (including d17:1 sphingosine and d17:0 sphinganine), and the sample was dried under
nitrogen flow.

Dried extracts were reconstituted in 100 µL of the appropriate mobile phase (reverse
phase solution A/reverse phase solution B (60:40)), sonicated for 10 min and centrifuged (16,
100 g, 10 min). An adapted version of the method proposed by Shaner and colleagues [50]
was used. Then, 10 µL of sample was injected onto a C18 CSH column, 2.1 by 50 mm
(1.7 µm pore size; Waters), which was held at 55 ◦C using an Ultimate 3000 UHPLC
system (Thermo Fisher Scientific, Hemel Hempstead, UK). The mobile phase, comprised of
solvents A (CH3OH/H2O/CHCOOH; 58:41:1) and B (CH3OH/CHCOOH; 99:1), was run
through the column in a gradient (40% B, increased over a gradient to 100% B after , held
at 100% B from 2.3 min and then returned to 40% at 7.6 min for the final 0.5 min). Total run
time was 8.1 min, with a flow rate of 0.6 mL/min. 5 mM ammonium formate was used as
an additive in solvents A and B.

A LTQ Orbitrap Elite Mass Spectrometer (Thermo Fisher Scientific) was used with
a heated electrospray, using a source temperature of 400 ◦C and a capillary temperature
of 380◦C. In positive mode, a 3.5 kV spray voltage was used, while in negative it was
2.5 kV. Data was collected using the Fourier transform mass spectrometer (FTMS) analyser.
The resolution was set to 60,000 and the data was obtained in profile mode. The full scan
was performed across an m/z range of 110–2000.

Statistical analysis: Multivariate data analysis was performed using SIMCA-P+ (versions 12.0
and 13.0, Umetrics AB, Sweden). Mass spectrometry data sets were unit variance scaled,
while NMR spectroscopy data were Pareto scaled, prior to analysis. The pattern recognition
methods used were principal components analysis (PCA) to profile the dominant variation
in the dataset and PLS-DA to maximise classification of groups.

Univariate statistics were conducted using the GraphPad Prism package (version 4,
GraphPad Software, San Diego, CA, USA). The two-way unpaired two-tailed Student’s

www.hmdb.ca
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t-test was used to compare Hexb −/− mice with healthy controls. For reporting purposes,
a significance value was set at p ≤ 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/1/18/s1, Figure S1: Concentration of GA2 (d18:1/18:0) and GA2 (d18:1/20:0) calculated as the
average integrated area under the curve of the negative ion mode LC-MS chromatogram from the
analysis of cerebrum tissue from control and Hexb −/− mice.
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