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Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique
Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal
sources. Based on the number of rings and conjugation systems on the backbone, it can be further
categorized into three types A, B, and C. These compounds have been applied to various bioassays,
and some have exhibited promising bioactivities like antifungal activity against phytopathogenic
fungi and transcriptional activation on liver X receptor α. This review summarizes all the research
related to natural OPK NRPs, including their biological sources, chemical structures, bioassays,
as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal
sources and chirality-related issues of these products are also discussed.
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1. Introduction

Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl
secondary metabolites biosynthesized by large modularly organized multienzyme complexes
named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most
structurally diverse secondary metabolites in nature; they exhibit a broad range of activities,
which have been exploited in treatments such as the immunosuppressant cyclosporine A and
the antibiotic daptomycin [2,3]. Due to their high importance, a lot of bioengineering studies
have been carried out to elucidate their biosynthetic pathways, increase their yields, and generate
novel homologs [4,5]. Within the recent decades, a rarely observed class of NRPs containing an
Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold comprising three amino acids, including one
or two anthranilic acid(s), has emerged since the isolation of cinereain 32 years ago [6]. Interestingly,
the structures of OPK NRPs are close to some quinazolinone alkaloids, specifically types Q12 to Q18
quinazolinones, such as fumiquinazolines and benzomalvins mostly produced by Aspergillus and
Penicillium species as summarized in a recent review covering 157 compounds [7]. One major difference
of the core skeleton between OPK NRPs and those specific quinazolinones is that OPK compounds
bear a unique oxepine moiety instead of a phenyl group. Additionally, the OPK compounds were also
described as diketopiperazine alkaloids [8–10]. However, they were not included in recent reviews
on quinazolinones or diketopiperazines [7,11–14]. More attention should be paid to this class of
compounds, considering their various bioactivities and intriguing structures, although some synthetic
efforts have already been made [15,16]. To get a comprehensive perspective, here we review different
aspects of these OPK NRPs, including their biological sources, structures, bioactivities, and proposed
biosynthesis, for the first time.
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2. Results

2.1. Biological Sources and Chemical Structures

Up to March 2020, thirty-five products bearing OPK backbone (Figure 1, Tables 1–3) have been
isolated from natural sources, surprisingly all from fungi. The first compound reported was cinereain
(1) from fungus Botrytis cinerea ATCC 64157 cultured on shredded wheat medium [6] followed by the
isolation of asperloxin A (2) [17] and B (3) [18] from Aspergillus ochraceus DSM 7428, which was a part
of One-Strain-Many-Compounds (OSMAC) approach to release the chemical diversity of this strain in
A. Zeeck´s group [19]. Oxepinamides A–C (4–6) were reported to be isolated from the organic extract
of the culture broth and mycelia of filamentous fungus Acremonium sp. grown in static liquid culture
containing seawater-based medium [20]. Janoxepin (7) with a rare D-leucine residue was obtained
from Aspergillus janus IBT 22274 cultivated on yeast extract sucrose (YES) medium [21]. Circumdatins
A (2) and B (8), first reported to be benzodiazepines with two benzyl groups from Aspergillus
ochraceus IBT 12704 as good chemotaxonomic markers [22], were later isolated from a marine-derived
fungus Aspergillus ostianus strain 01F313, and their structures were revised to be oxepine-containing
benzodiazepine alkaloids by X-ray crystallography [23]. The structure of circumdatin A was finally
established to be the same as reported for asperloxin A (2) [17]. The first oxepine-containing alkaloid
with a phenylalanine residue brevianamide L (9) containing a 12-hydroxyl dihydro-oxepine ring,
together with brevianamides O and P (10–11), was isolated from the solid-state fermented rice culture of
Aspergillus versicolor (AS 3.4186) [8,9]. Oxepinamide D (12) and oxepinamides E–G (13–15), containing
a 12-oxygenated-oxepine ring, were isolated from Aspergillus puniceus F02Z-1744 grown on solid
media containing rice and soybean [24]. Protuboxepins A (16) and B (17) were isolated from the
marine-derived fungus Aspergillus sp. SF-5044, whose 28S rRNA gene (Genbank accession number
FJ935999) showed a high-sequence identity of 99.64% with that of Aspergillus protuberus (FJ176897) [25].
Circumdatin L (18) was isolated from the solid rice culture of Aspergillus westerdijkiae DFFSCS013 [26].
Dihydrocinereain (19) with cinereain (1) was characterized from a marine strain of Aspergillus carneus
KMM 4638 grown on modified rice medium with seawater [27]. Varioxepine A (20) bearing a unique
oxa-cage was isolated from the marine algal-derived fungus Paecilomyces variotii EN-291 fermented in
potato dextrose broth medium [28]. Varioloids A and B (21–22) with protuboxepin B (17) were also
isolated from Paecilomyces variotii EN-291 fermented in the same condition [10]. Versicoloids A and
B (23–24) were isolated from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879 grown
in liquid medium containing starch and polypeptone [29]. Versicomide D (25) was isolated from
Aspergillus versicolor XZ-4 fermented in liquid medium with seawater [30]. Protuboxepins C and D
(26–27) were isolated from the sponge-derived fungus Aspergillus sp. SCSIO XWS02F40, which was
found to belong to a clade related to Aspergillus austroafricanus NRRL 233 with an identity of 99.4% using
ITS1-5.8S-ITS2 sequence region [31,32]. Chrysopiperazines A and B (28–29) with versicoloids A and B
(23–24) were obtained from a gorgonian-derived Penicillium chrysogenum strain (CHNSCLM-0019), and
their absolute configurations were completely solved by NOESY, Marfey’s reaction, and electronic
circular dichroism (ECD) and vibrational circular dichroism (VCD) methods [33]. Protuboxepins F (30)
and G (31) were isolated from the marine sponge-derived fungus Aspergillus versicolor SCSIO 41016
grown on solid rice media with artificial sea salt [34]. Oxepinamides H−K (32–35) were isolated from a
deep-sea-derived Aspergillus puniceus SCSIO z021 fermented in liquid medium with sea salt [35].
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Table 1. Structures and Biological sources of Type A Oxepine-Pyrimidinone-Ketopiperazine NRPs.

No. Name
Substitution groups

Sources
R1 R2 R3 R4 R5

1 Cinereain =CHCH(CH3)2, Z n/a H CH(CH3)2 H Botrytis cinerea ATCC 64157 [6]
Aspergillus carneus KMM 4638 [27]

4 Oxepinamide A CH(CH3)CH2CH3 OH OCH3 H CH3 Acremonium sp. [20]

5 Oxepinamide B OH CH(CH3)CH2CH3 OCH3 H CH3 Acremonium sp. [20]

6 Oxepinamide C CH2CH(CH3)2 OCH3 OCH3 H CH3 Acremonium sp. [20]

7 Janoxepin =CHCH(CH3)2, Z n/a H H CH2CH(CH3)2 Aspergillus janus IBT 22274 [21]

10 Brevianamide O OH CH(CH3)CH2CH3 H Benzyl H Aspergillus versicolor (AS 3.4186) [9]

11 Brevianamide P H CH(CH3)CH2CH3 H Benzyl H Aspergillus versicolor (AS 3.4186) [9]

12 Oxepinamide D OH Benzyl H H CH3 Aspergillus puniceus F02Z-1744 [24]

16 Protuboxepin A CH(CH3)CH2CH3 H H H Benzyl Aspergillus sp. SF-5044 [25]
Penicillium expansum Y32 [36]

17 Protuboxepin B CH(CH3)2 H H H Benzyl
Aspergillus sp. SF-5044 [25]

Paecilomyces variotii EN-291 [10]
Penicillium expansum Y32 [36]

19 Dihydrocinereain H CH2CH(CH3)2 H CH(CH3)2 H Aspergillus carneus KMM 4638 [27]

22 Varioloid B OCH3 CH(CH3)2 H Benzyl H Paecilomyces variotii EN-291 [10]

23 Versicoloid A H CH(CH3)CH2CH3 OCH3 CH(CH3)2 H
Aspergillus versicolor SCSIO 05879 [29]

Penicillium chrysogenum
CHNSCLM-0019 [33]

24 Versicoloid B OH CH(CH3)CH2CH3 OCH3 CH(CH3)2 H
Aspergillus versicolor SCSIO 05879 [29]

Penicillium chrysogenum
CHNSCLM-0019 [33]

25 Versicomide D CH(CH3)CH2CH3, 18S H OCH3 CH(CH3)2 H Aspergillus versicolor XZ-4 [30]

26 Protuboxepin C CH(CH3)CH2CH3, 16S OCH3 H H Benzyl Aspergillus sp. SCSIO XWS02F40 [31]

27 Protuboxepin D CH(CH3)CH2CH3, 16S OH H H Benzyl Aspergillus sp. SCSIO XWS02F40 [31]

28 Chryzopiperazine A CH(CH3)CH2CH3, 19S OCH3 OCH3 H CH(CH3)2
Penicillium chrysogenum
CHNSCLM-0019 [33]

29 Chrysopiperazine B OCH3 CH(CH3)CH2CH3, 19S OCH3 H CH(CH3)2
Penicillium chrysogenum
CHNSCLM-0019 [33]
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Table 1. Cont.

No. Name
Substitution groups

Sources
R1 R2 R3 R4 R5

30 Protuboxepin F =CHCH(CH3)2, Z n/a H H Benzyl Aspergillus versicolor SCSIO 41016 [34]

31 Protuboxepin G =CHCH(CH3)2, E n/a H H Benzyl Aspergillus versicolor SCSIO 41016 [34]

32 Oxepinamide H OCH3 Benzyl H H CH3 Aspergillus puniceus SCSIO z021 [35]

33 Oxepinamide I Benzyl OCH3 H H CH3 Aspergillus puniceus SCSIO z021 [35]

34 Oxepinamide J Benzyl OH H H CH3 Aspergillus puniceus SCSIO z021 [35]

35 Oxepinamide K =CH-Phenyl, Z H H H CH3 Aspergillus puniceus SCSIO z021 [35]

Note: backbone numberings follow Figure 1, and the other numberings are based on the original publications. n/a: not applicable due to double bond substitution.
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Table 2. Structures and Biological sources of Type B Oxepine-Pyrimidinone-Ketopiperazine NRPs.

No. Name
Substitution Groups

Sources
R6 R7

9 Brevianamide L CH(CH3)CH2CH3 OH, 12S Aspergillus versicolor (AS 3.4186) [8]
13 Oxepinamide E CH(CH3)CH2CH3, 17S OH, 12R Aspergillus puniceus F02Z-1744 [24]
14 Oxepinamide F CH(CH3)CH2CH3, 17S OCH3, 12R Aspergillus puniceus F02Z-1744 [24]
15 Oxepinamide G CH(CH3)2 OCH3, 12R Aspergillus puniceus F02Z-1744 [24]
20 Varioxepine A CH(CH3)2 See Figure 1 Paecilomyces variotii EN-291 [28]
21 Varioloid A CH(CH3)2 O(CH2)COCH(CH3)2, 12R Paecilomyces variotii EN-291 [10]

Table 3. Structures and Biological sources of Type C Oxepine-Pyrimidinone-Ketopiperazine NRPs.

No. Name Scaffold Sources

2 Asperloxin A
(Circumdatin A) 7/6/7/6/5, Figure 1

Aspergillus ochraceus DSM 7428 [17]
Aspergillus ochraceus IBT 12704 [22]
Aspergillus ostianus 01F313 [23]

3 Asperloxin B 7/6/7/6/5, Figure 1 Aspergillus ochraceus DSM 7428 [18]

8 Circumdatin B 7/6/7/6/5, Figure 1 Aspergillus ochraceus IBT 12704 [22]
Aspergillus ostianus 01F313 [23]

18 Circumdatin L 7/6/7/6, Figure 1 Aspergillus westerdijkiae DFFSC S013 [26]

2.2. Bioactivities

2.2.1. Plant Growth Regulation

Cinereain (1), the first OPK peptide, could significantly inhibit the growth of etiolated wheat
coleoptiles (p < 0.01) at 10−4 and 10−3 M and cause mild necrosis and chlorosis in corn, but it did not
have any effect on intact greenhouse-grown bean and tobacco plants [6].

2.2.2. Anti-Inflammatory Activity

In a topical resiniferatoxin (RTX)-induced mouse ear edema assay, oxepinamide A (4) showed
good topical anti-inflammatory activity with 82% inhibition of edema at the standard testing dose of
50 µg per ear [20].

2.2.3. Antifungal Activity

Oxepinamides A–C (4–6) showed no antifungal activity toward Candida albicans in a broth
micro-dilution assay [20]. Janoxepin (7) showed no antifungal activity in an in-house disc diffusion
assay [21]. Brevianamide L (9) showed no inhibitory activity against Candida albicans at a concentration
of 100 µg/mL [8]. However, varioxepine A (20) and varioloids A and B (21–22) exhibited activity against
the plant-pathogenic fungus Fusarium graminearum with MIC values of 4, 8 µg/ml, respectively [10,28].
Versicoloids A and B (23–24) exhibited antifungal activities against the three phytopathogenic fungi
Colletotrichum acutatum, Magnaporthe oryzae, and Fusarium oxysporum, both with MICs of 1.6, 128, and
64 µg/mL. Their activity against Colletotrichum acutatum was even stronger than the positive control
cycloheximide (MIC of 6.4 µg/mL), and they could be regarded as candidate agrochemical antifungal
agents [29]. Chrysopiperazine A (28) did not show activity against Candida albicans at the concentration
of 50 µM [33]. Oxepinamides H–K (32–35) showed low percent inhibition (< 50%) against the four
phytopathogenic fungi—Curvularia australiensis, Colletotrichum gloeosporioides, Fusarium oxysporum,
and Pyricularia oryzae—at a concentration around 0.6 mM [35].

2.2.4. Cytotoxicity

Oxepinamides A–C (4–6) showed no significant activity against any cell line in the National
Cancer Institute´s 60 cell-line panel [20]. Circumdatin B (8) was also tested in the NCI´s 60 cancer cell
line panel and did not show activity either [22]. Neither Circumdatin A (2) nor Circumdatin B (8)
showed cytotoxicity against A548 lung cancer cells [23]. Brevianamides L, O, and P (9–11) showed no
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cytotoxicity against human breast cancer (Bre04), human lung (Lu04), or human neuroma (N04) cell
lines (GI50 > 10 µg/mL) [8,9]. Protuboxepin A (16) showed weak inhibitory activity against human
acute promyelocytic leukemia cells (HL-60), human breast cancer adenocarcinoma cells (MDA-MB-231),
hepatocellular carcinoma cells (Hep3B), rat fibroblast cells (3Y1), and chronic myelogenous leukemia
cells (K562), with IC50 values of 75, 130, 150, 180, and 250 µM, respectively [25]. A further in vitro
study revealed that this compound could bind to α- and β-tubulin and thereby stabilize tubulin
polymerization, altogether disrupting microtubule dynamics. This disruption led to chromosome
misalignment and metaphase arrest, inducing apoptosis in tumor cells [37]. The compound circumdatin
L (18) did not show cytotoxicity toward the human carcinoma A549, HL-60, K562, and MCF-7 cell
lines (IC50 > 10 µM) [26]. Dihydrocinereain (19) was tested against murine ascites Ehrlich carcinoma
cells but did not show activity up to 100 µM [27]. Similarly, protuboxepins C and D (26-27) showed no
inhibitory activity against A549 cells with IC50 values of 100 and 190 µM and weak activities against
HeLa cells with IC50 values of 61 and 114 µM [31]. Protuboxepin G (31) displayed moderate cytotoxic
activities against three renal carcinoma cell lines (ACHN, OS-RC-2, and 786-O cells) with the IC50

values 27.0, 47.1, and 34.9 µM, respectively [34].

2.2.5. Antibacterial Activity

In disk assays with cinereain (1) against Bacillus subtilis, Bacillus cereus, and Mycobacterium
thermosphactum (Gram-positive), and Escherichia coli and Citrobacter freundii (Gram-negative), no effects
were observed in concentrations up to 500 µg per disk [6]. Janoxepin (7) showed no antibacterial
activity in an in-house agar overlay assay [21]. Circumdatins A (2) and B (8) were subjected to
an inhibitory test against Methicillin-resistant Staphylococcus aureus (MRSA), but no activities were
observed [23]. Brevianamide L (9) showed no inhibitory activity against Escherichia coli, Staphylococcus
aureus, and Pseudomonas aeruginosa, at a concentration of 100 µg/mL [8]. Varioxepine A (20) and Varioloids
A and B (21–22) showed promising antibacterial activities against Micrococcus luteus, Staphylococcus aureus,
Escherichia coli, and the aquacultural bacteria Aeromonas hydrophila, Vibrio anguillarum, Vibro harveyi and
Vibro parahaemolyticus, with MIC values ranging from 16 to 64 µg/ml [10,28]. Versicomide D (25) was
applied to three pathogenic bacteria (E. coli, S. aureus and B. subtilis), but no MIC values were reported.
Chrysopiperazine A (28) did not show activity against Escherichia coli, Staphylococcus aureus, Pseudomonas
aeruginosa, Photobacterium halotolerans, and Enterobacter cloacae, at the concentration of 50 µM [33].

2.2.6. Anti-Plasmodial Activity

Janoxepin (7) exhibited antiplasmodial activity against the malaria parasite Plasmodium falciparum
3D7 in the radioisotope assay with IC50 lower than 28 mg/mL [21].

2.2.7. Transcriptional Activation

Selective transactivation effects of oxepinamides D–G (12–15) were examined, and they selectively
showed moderate transcriptional activation on Liver X Receptor α (LXRα) with EC50 values of 10.6,
12.8, 13.6, and 12.1 µM, but no agonistic effects were observed towards other seven nuclear receptors
FXRα, PPARα, PPARβ, PPARγ, RARα, RXRα, or ERα [24]. Oxepinamides H−K (32–35) later also
showed the same activation effects on LXRα with EC50 values of 15, 15, 16, and 50 µM, respectively,
but did not show inhibition activity against other seven enzymes [35].

2.3. Biosynthesis

The biosynthesis of OPK NRPs remains unsolved despite the fact that some biosynthetic pathway
studies have been performed on similar quinazolinone alkaloids [38–41]. Possible biosynthetic
pathways of several OPK compounds have, however, been proposed. Janoxepin (7) was suggested
to be derived from the condensation of anthranilic acid with a diketopiperazine ring formed
between two leucine residues, followed by oxidation of the benzoyl derivative to give the oxepine
derivative [21]. Similarly, oxepinamide D (12) was proposed to be biosynthesized by the condensation
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of a diketopiperazine with an anthranilic acid and subsequent oxidation of the benzene ring to form an
arene oxide, which was opened through a thermal 6π electrocyclic ring-opening process. Oxepinamides
E–G (13–15) were formed by dehydration on the 2,5-diketo ring, followed by the addition of water
between C-6 and C-12 [24]. Circumdatins A (2) and B (8) were proposed to be biosynthesized by
oxidation of circumdatins H and J to form a benzene oxide, where a retro-pericyclic reaction (benzene
oxide–oxepine tautomerism) took place to produce the final products [23,42]. Similar to janoxepin (7),
the backbone of varioxepine A (20) has also been proposed to be from the condensation of anthranilic
acid with a diketopiperazine, followed by epoxidation of the benzene ring to form the oxepine derivative.
A series of reactions were proposed, including a second epoxidation, ring arrangement, epoxy opening,
prenylation, dihydroxylation, and/or cyclization to yield the end product [28]. Protuboxepin D (27) was
proposed to be formed by condensation of D-phenylalanine, L-isoleucine, and anthranilic acid, followed
by oxidation of the benzene ring to form the oxepine derivative through an epoxy precursor and
sequent oxidation at C-3 to form the hydroxyl group. Protuboxepin C (26) was a methylation product
of protuboxepin D (27) [31]. A recent report proposed that additional opening and oxidation could
happen on the oxepine ring, which then may undergo addition of water, cyclization, and methylation
to yield unique (di/tetra)-hydropyran-pyrimidinone-ketopiperazine heterotricyclic products [34].

3. Discussion

In total, thirty-five OPK compounds have currently been characterized from natural sources.
The speed of novel OPK product discovery has been increasing in recent years, as over half of
the currently described products were isolated during the past eight years (Figure 2A). It is quite
noteworthy that all these compounds were isolated from five fungal genera. Specifically, 70% of
OPK NRPs, including the rediscovered cases, were obtained from the genus Aspergillus, followed by
genus Penicillium accounting for 14%, Acremonium 7%, Paecilomyces 7%, and Botrytis 2% (Figure 2B).
Interestingly, all type C producers are from Aspergillus section Circumdati, including A. ochraceus,
A. ostianus, and A. westerdijkiae, and a large proportion of type A and B compounds were obtained
from different isolates of in particular the two species A. versicolor and A. protuberus, both belonging to
A. versicolor clade in section Nidulantes [43–45]. In general, OPK compounds have been reported from
species in the closely related fungal families Aspergillaceae (Aspergillus, Penicillium) and Trichocomaceae
(Paecilomyces). Botrytis cinerea and Acremonium species are distantly related to Aspergillaceae and
Trichocomaceae, but they were also reported to produce OPK compounds. Unfortunately, several of the
reported strains have not been deposited in any culture collections affiliated to the World Federation
for Culture Collections (WFCC), which is possibly why their identity has not been validated. It is also
notable that even though some species reported bear the initials of a collection center, their strain number
cannot be traced in the corresponding collection system. For example, Aspergillus ochraceus DSM 7428
cannot be found in DSMZ collection, and Aspergillus versicolor (AS 3.4186) cannot be traced in CGMCC
collection. While the identification of Botrytis cinerea (ATCC 64157) can be verified, the identification
of Acremonium (strain unavailable) was based on fatty acid methyl ester (FAME) profiles, a method
which has not been authenticated for identification purposes in filamentous fungi. Genome mining of
Botrytis and Acremonium species will show whether OPK compounds are taxonomically widespread or
restricted to Aspergillaceae and Tricocomaceae.

Based on the number of rings and conjugation systems on the backbone, OPK NRPs were
categorized into three types: A, B, and C. Type A dominating the OPK NRPs with 25 compounds
shares the same 7/6/6 backbone, whereas type B OPK’s contains a larger conjugation system. Type C
7/6/7/6 backbone has one more ring than types A and B due to incorporation of a second anthranilic
acid moiety, and some products even display a complex 7/6/7/6/5 ring system with an additional
pyrrolidine-ring from proline. In nature, a lot of other OPK similar products have been isolated,
such as the quinazolinones [7,13]. Due to their possible related biosynthetic pathways, mistakes
might happen during structure elucidation [22,23]. One common issue with OPK compounds is the
absolute configuration (AC) determination of α carbons and R groups of the amino acids. In many
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reports, NOESY, Marfey´s reaction, X-ray crystallography, and ECD methods were applied. However,
one might observe a mixture of D- and L- products after the acid hydrolysis and derivation process
when using Marfey´s reaction method. Hydrolysis conditions thus may need to be optimized. In the
case of a chiral center at a flexible position, it can be very challenging to solve the correct configuration.
Success has recently been achieved by comparing the experimental VCD spectrum with calculated
data [33]. The chiral centers within the R group of the isoleucine residue in eight OPK compounds (4, 5,
9, 10, 11, 16, 23, and 24) remain uncharacterized. The chirality also makes it confusing when referring
to a structure in a publication. For example, the drawings of oxepinamide E and F (13–14) showed a
17R configuration (wrong) but was described as 17S (correct configuration by X-ray Crystallography) in
the same paper [24]. Additionally, the chiral center of janoxepin (7) was determined as R configuration
by Marfey´s method, but the drawing mistakenly exhibited S configuration [21]. Such errors also
happened when the structures were drawn in different publications, like the chirality of the two α

carbons of both versicoloids A and B (23–24) drawn in a recent paper [33], which displayed opposite
configurations from the original structures [29]. Care should be taken to avoid making such erroneous
configurational drawings. Moreover, it is also notable that both D- and L- amino acids can participate
in building the OPK products based on all the characterized structures. Therefore, proposing the
chirality of α carbon from a biogenetic prospect can be challenging.Metabolites 2020, 10, x FOR PEER REVIEW 4 of 12 
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A wide range of bioassays have been applied to assess the potential bioactivity of the OPK type of
compounds. Though they in general seem to be inactive against human pathogenic strains of Candia
albicans, some showed potential in treating plant-pathogenic fungi such as Fusarium graminearum and
Colletotrichum acutatum. Notably, protuboxepin A (16) has the potential to become a new and effective
anticancer drug as it displayed antiproliferative activity by disrupting microtubule dynamics through
the tubulin polymerizing in tumor cells [37] despite several other reports showing that OPK compounds
did not seem to be active against cancer cells. Antibacterial tests have shown that varioloids A and B
(21–22) exhibited promising activities against several species, while the rest of antibacterial tests did
not display antibacterial activity effects. Interestingly, oxepinamides D-G and H−K (12–15, 32–35) all
selectively showed transactivation effects on LXRα, which implied their potential use as novel LXR
agonists in the treatment of atherosclerosis, diabetes, and Alzheimer’s disease.

Overall, this class of compounds seem to share similar biosynthetic steps to form the OPK
backbone, which is likely biosynthesized by the condensation of three amino acids, including one
or two anthranilic acids, to form the tricyclic core. Subsequent epoxidation on the benzene ring
of the first anthranilic acid residue followed by a ring rearrangement then produces the oxepine
moiety. Several successive tailoring reactions can happen before the full construction of the final
product(s) (Figure 3). Based on the knowledge of the biosynthesis of fumiquinazolines, and their well
documentated proposed biosynthetic pathways, we anticipate that the OPK NRPs biosynthetic gene
cluster contains at least a tri-modular NRPS gene with three adenylation domains, including one or
two anthranilate-activating domains, and a gene responsible for oxidizing the phenyl moiety of the
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anthranilic residue to form the oxepine unit [39,40]. Additionally, an epimerization domain as part
of NRPS is needed to convert L-amino acids to D-amino acids in the structures with a D-amino acid
residue. Other tailoring genes are also required to encode for OPK related enzymes such as anthranilate
synthase, oxidoreductases, and transporters.
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4. Conclusions

All the OPK NRPs described here were isolated from fungal sources with most compounds
reported from species within the families Aspergillaceae (Aspergillus, Penicillium) and Trichocomaceae
(Paecilomyces). Type A and B compounds share the same 7/6/6 backbone, with the former dominating
OPK NRPs with twenty-five reported compounds, while Type C OPKs have a larger 7/6/7/6 backbone
with four products reported. In general, these compounds showed promising activities against various
phytopathogenic fungi and exhibited transactivation effects on LXRα. In addition, the skeleton of OPK
NRPs is likely derived from the condensation of three amino acids, including one or two anthranilic
acid(s), and the oxepine moiety is formed by the epoxidation of the benzene ring followed by ring
arrangement. However, experimental investigation is needed to support this hypothesis. With the
advance of separation skills and spectroscopic techniques, more oxepine-containing compounds are
likely to be discovered. Considering that many of these compounds were reported from Aspergilli,
ongoing whole genome sequencing of all species in genus Aspergillus will possibly set the scene for
genomic driven approaches towards new OPK NRPs [46,47].
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