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Abstract: The number of ecometabolomic studies, which use metabolomic analyses to disentangle
organisms’ metabolic responses and acclimation to a changing environment, has grown exponentially
in recent years. Here, we review the results and conclusions of ecometabolomic studies on the
impacts of four main drivers of global change (increasing frequencies of drought episodes, heat stress,
increasing atmospheric carbon dioxide (CO2) concentrations and increasing nitrogen (N) loads) on
plant metabolism. Ecometabolomic studies of drought effects confirmed findings of previous target
studies, in which most changes in metabolism are characterized by increased concentrations of soluble
sugars and carbohydrate derivatives and frequently also by elevated concentrations of free amino
acids. Secondary metabolites, especially flavonoids and terpenes, also commonly exhibited increased
concentrations when drought intensified. Under heat and increasing N loads, soluble amino acids
derived from glutamate and glutamine were the most responsive metabolites. Foliar metabolic
responses to elevated atmospheric CO2 concentrations were dominated by greater production of
monosaccharides and associated synthesis of secondary metabolites, such as terpenes, rather than
secondary metabolites synthesized along longer sugar pathways involving N-rich precursor molecules,
such as those formed from cyclic amino acids and along the shikimate pathway. We suggest that
breeding for crop genotypes tolerant to drought and heat stress should be based on their capacity
to increase the concentrations of C-rich compounds more than the concentrations of smaller N-rich
molecules, such as amino acids. This could facilitate rapid and efficient stress response by reducing
protein catabolism without compromising enzymatic capacity or increasing the requirement for
re-transcription and de novo biosynthesis of proteins.

Keywords: flavonoids; free amino acids; gas chromatography-mass spectrometry (GC-MS); proton
nuclear magnetic resonance spectrometry (1H-NMR); isoflavonoids; liquid chromatography-mass
spectrometry (LC-MS); phenolics; shikimate acid; soluble sugars; terpenes

1. Background

The term “ecometabolomics”, which first appeared in the scientific literature in 2009 [1,2],
describes the use of nontarget metabolomics to study the responses, acclimation and adaptation of

Metabolites 2020, 10, 239; doi:10.3390/metabo10060239 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
https://orcid.org/0000-0002-1716-8876
https://orcid.org/0000-0002-6105-0429
https://orcid.org/0000-0001-8095-6026
https://orcid.org/0000-0002-3582-7900
https://orcid.org/0000-0002-7215-0150
http://dx.doi.org/10.3390/metabo10060239
http://www.mdpi.com/journal/metabolites
https://www.mdpi.com/2218-1989/10/6/239?type=check_update&version=2


Metabolites 2020, 10, 239 2 of 20

living organisms to environmental conditions [3–6]. The advances in nontarget analytical platforms
has provided a new tool for ecologists and environmental researchers. Gas chromatography-mass
spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic
resonance spectrometry (NMR) are the platforms that are most often used because they offer the best
capacity to determine the widest ranging sets of metabolites and thus are the most adequate and used
platforms for ecometabolomics. GC-MS has proven to be a robust tool for the study of volatile organic
compounds [7,8], but GC-MS analysis of extracts containing other analytes such as organic acids,
sugars, amino acids and steroids is more complicated. Many metabolites are nonvolatile and must be
derivatized prior to GC-MS analysis [9]. In such cases, thermolabile compounds may be lost. Moreover,
it is difficult to elucidate the unknown structures of metabolites by using GC-MS alone. LC-MS is of
particular importance for studying a great number of metabolic pathways at once, since this analytical
approach has an excellent capacity to separate and determinate semipolar metabolites. This coincides
with the fact that the plant metabolism embodies a huge range of semipolar compounds, including
many key groups of secondary metabolites, which are thus better separated and detected by LC-MS [10].
Thus, GC-MS is best suited for compound classes appearing mainly in primary metabolism (frequently
after derivation, i.e., amino acids, fatty acids and sugars) or for volatile compounds. LC-MS is more
adequate for determining the overall biochemical richness of plants including several semipolar
groups of secondary metabolites, and thus is the most frequently used platform in ecometabolomics
of plants. To gain structural elucidation power, the method of collision-induced dissociation can be
used [11], giving rise to the fragment spectrum (MS/MS method) [12]. Fourier-transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS) can be used to further increase the number of detectable
metabolites. FT-ICR-MS is a very high resolution technique in that masses can be determined with
very high accuracy. This is due to the great sensitivity of this method to separate compounds with
different mass-to-charge ratios (m/z) by their different cyclotron frequencies in a fixed magnetic field.
This method has been rarely used together with previous chromatographic methods in ecometabolomic
studies until recently [13], but the results are promising. 1H-NMR has proven to be an appropriate tool
for untargeted analyses. It has the advantage that it can be applied to determine polar, semipolar and
nonpolar metabolites, and it produces signals that are directly and linearly correlated with compound
abundance [14]. However, NMR spectroscopy has intrinsic low sensitivity for low concentrations
of metabolites and signal overlapping for complex mixtures. This can at times be problematic for
structural elucidation of a metabolite at low concentrations [12]. Thus, although the sensitivity of NMR
spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a
weak point for NMR compared with MS [12]. MS-based metabolomics provides an excellent approach
that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover,
different MS approaches, such as different ionization techniques and mass analyzer technologies,
can be used in order to increase the number of metabolites that can be detected, making this the most
frequent analytical technique used in metabolomics studies [12].

While the early use of ecometabolomics has been reviewed previously [3,15], there has been a
recent explosion in the number of ecometabolomics studies undertaken in specific environmental fields,
such as abiotic stresses in crop plants [16,17], plant responses to pathogens and toxic chemicals [18–20],
plant resistance to salt stress [21], plant responses to cold and heat stress [22], plant tolerance to
metals and metalloids [23], N eutrophication [24,25] and elevated atmospheric CO2 [26,27]. There is
thus a need to review both what has been learned from these studies and to explore the potential
for applying ecometabolomics in future research. Thus, ecometabolomics can provide important
knowledge regarding the acclimation responses to stress at the level of primary metabolism shifts and
regulation of secondary metabolites related to antioxidants and defense against stress [1,3,5,17,19].
Furthermore, ecometabolomics should provide clues for breeding and selection in evolutionary and
epigenetic processes [1,3,5,17,19].

Here, we aimed to summarize the usage of ecometabolomics in understanding plant responses
and adaptation to four key global change factors, namely drought, climate warming, atmospheric CO2
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concentrations and N eutrophication. These factors were chosen because they change at rates that
outpace the evolution of phenotypic plasticity in organisms. In doing so, we also identify knowledge
gaps and areas for future research.

2. Drought

Arid and semiarid lands currently occupy about 41% of the global land surface [28],
and socioeconomic and climatic modeling predicts that the arid land surface area may increase
by 11–23% by the end of this century, reaching between 50–56% of the total land surface area under
more probable RCP4.5 and RCP8.5 scenarios [29]. We must take into account that RCP4.5 scenario
peak of CO2 emissions will occur around 2040, then decline, whereas the emissions continue to rise
throughout the full 21st century in the RCP8.5 scenario. As the most used scenarios in projection
modeling, the RCP4.5 projection represents the most “optimistic but possible” scenario, while the
RCP8.5 represents the most pessimistic scenario. Plants in affected regions must respond rapidly to
higher levels of drought stress if they are to acclimate and survive. Thus, understanding plant species’
metabolic shifts in response to drought will allow prediction and mitigation of ecological change in
wild and crop plant communities under scenarios of increased drought. In addition, changes in plant
metabolome may affect community composition and ecosystem trophic webs through shifts in the
nutritional value of plant tissues or through the accumulation of secondary protective compounds
that may play a role as attractants/repellents, triggered by acclimation mechanisms to environmental
change [2,5,21]. Gaining a deeper understanding of metabolic adaptive strategies to short-term drought
effects may thus be useful in the selection of novel drought-resistant genotypes of crop plant species.

A growing number of studies have used nontarget metabolomics techniques to analyze metabolic
shifts in plant photosynthetic tissues under drier conditions (Figure 1, Table S1). There are clear
increases and decreases in specific metabolites and metabolite groups in response to drying. Specifically,
most studies report increased foliar concentrations of some monosaccharides and disaccharides,
including their direct derivatives, and many report higher concentrations of sugar alcohols (both acyclic
and cyclic) and sugar acid derivatives, along with oligosaccharides such as raffinose and stachyose,
under higher drought intensity [30–33]. The pathways from glucose to xylulose, xylose, inositol and
several polyols and sugar alcohols are activated in several plant species under drought stress. Polyols,
such as sorbitol and mannitol, are osmoprotectants [34,35], and some, including mannitol, act as
enzyme protectants (thiol-regulated enzymes) against inactivation by free radicals, such as hydroxyl
radicals. This is important because hydroxyl radicals increase in abundance under drought-induced
oxidative stress [36]. The role of sugars and sugar alcohols as osmolytes has been widely reported in
plant antistress acclimation [37,38]. High concentrations of glucose and other soluble sugars could
reflect a need for sugar reserves to supply energy during stress events and minimize negative effects
of stress [28]. Accumulations of sugars and alcohol sugars that are accompanied by increases in
concentrations of organic acids in Krebs cycle metabolism, which have been observed in some studies,
do not appear to be consistent under drought stress [37].
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Figure 1. Shifts in principal plant metabolites and metabolic pathways in response to drought conditions reported in 81 ecometabolomic studies. The numbers 
within the squares are the numbers of reports describing changes in photosynthetic tissue metabolite concentration and/or pathway activity under drought stress. 
Red numbers within red squares indicate significant increases; black numbers within black squares indicate significant decreases. Red arrows indicate upregulation 
of the metabolic pathway; bold black arrows indicate no changes. 

Figure 1. Shifts in principal plant metabolites and metabolic pathways in response to drought conditions reported in 81 ecometabolomic studies. The numbers within
the squares are the numbers of reports describing changes in photosynthetic tissue metabolite concentration and/or pathway activity under drought stress. Red
numbers within red squares indicate significant increases; black numbers within black squares indicate significant decreases. Red arrows indicate upregulation of the
metabolic pathway; bold black arrows indicate no changes.
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A second group of plant metabolites frequently observed at greater concentrations under
drought stress comprises a diverse array of amino acids, particularly those derived from pyruvate,
phosphoenolpyruvate, oxaloacetate, shikimic acid and α-ketoglutaric acid (Figure 1). These include
tryptophan, isoleucine and proline [39–42]. Although foliar concentrations of other amino acids,
such as aspartate [42] and alanine [43], have been shown to decrease under drought stress, total amino
acid concentrations generally increase in response to drought conditions. We found that proline
was the most frequently observed upregulated amino acid under drought stress [35,44–46], probably
in response to reduced carbon (C) and nitrogen (N) storage that occurs during drought stress [47].
Increases in choline and serine concentrations have also been reported [48,49] (Figure 1, Table S1).
The large number of studies showing rises in proline concentrations under drought are consistent with
the demonstrated role of proline as osmolyte and antioxidant against multiple stresses [50]. There was
limited evidence, from only three studies (Table S1) that the osmoprotectant glycine-betaine and its
derivatives occurred at higher concentrations under drought conditions. However, one study showed
that drought increased concentrations of glycine-betaine, supporting its role in drought stress [46,51].
Choline, a precursor to glycine-betaine, has also been reported to increase in concentration under
drought (Figure 1, Table S1). In contrast, aspartate is unlikely to play a role as osmoprotectant during
drought [2,51,52], with eight studies reporting increases and seven studies reporting decreases. Finally,
there is strong evidence for the production of nonaliphatic amino acids involved in the shikimic
acid pathway, given that foliar tissue concentrations of these amino acids consistently increase under
drought conditions (Figure 1, Table S1). These aromatic amino acids and specially tryptophan are
involved in drought antistress mechanisms [53,54].

A key finding from ecometabolomic studies is the observation that drought induces an increase in
foliar concentrations of proline, arginine and glutamine in the glutamate pathway (Figure 1, Table S1).
Consistent with its role as a precursor of γ-aminobutyric acid (GABA), higher concentrations of glutamate
typically accompany elevated concentrations of GABA in drought-treated plants (Figure 1). This result
is consistent with the role of GABA in the control of stomatal closure, especially under stress [55–57].
Although metabolomic and other analytical methods have yielded data consistently showing higher
concentrations of amino acids from the pyruvate and oxaloacetate pathways, no clear patterns of organic
acid concentrations in the Krebs cycle are apparent [57]. The results also indicate a trend towards higher
ABA concentrations (Figure 1). ABA triggers a cascade of effects, terminating in stomatal closure [35],
and is involved in the upregulation of genes involved in the formation of proline from glutamate [58].

Fatty acids concentration increases have been also associated to drought acclimation [59]. Increased
production of osmoprotectants occurred as an immediate response, but lipid metabolism also shifts as
the drought continues since the plant needs to adapt its membranes as well [59]. In fact, ten studies
have observed increases in fatty acids concentration, and only four studies have observed decreases
(Figure 1). The timing of drought and sampling may be behind these contradictory results.

Three clear effects of drought stress on secondary metabolites have been revealed by
ecometabolomic studies. First, there is stronger evidence for increases, rather than decreases, in
concentrations of terpenes and flavonoid groups such as anthocyanins under drought stress (Figure 1).
Specifically, four out of five studies have shown increases in concentrations of terpenes. These results
were to be expected, because terpenes act as antioxidant molecules [34]. Although some recent reviews
have observed both increases and decreases in foliar concentrations of terpenes and their associated
derivatives under contrasting levels of drought stress [60], most studies have shown higher terpene
concentrations under drought stress (Figure 1, Table S1). Second, a recent meta-analysis of 1475
studies [61] showed that, among secondary metabolites, only concentrations of flavonoids tended to
increase under drought. This finding is consistent with our evaluation of 28 out of 30 ecometabolomics
studies showing rises of flavonoid concentrations in photosynthetic tissues under drought conditions,
with only two studies reporting decreased concentrations (Figure 1, Table S1). Third, ecometabolomics
studies generally reported an upregulation of salicylic acid (seven studies) in response to drought.
Salicylic acid is a product of the shikimic acid pathway and, along with other nonaliphatic amino acids,
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has been shown to alleviate drought-mediated damage [62]. Jasmonic acid concentrations increased in
four studies and decreased in only one study in response to drought (Figure 1, Table S1).

Some of these contradictory results can be explained by the differences between short-term and
mid- to long-term responses to drought acclimation. Jasmonic acid, which stimulates glutathione
metabolism, may be triggered by ABA accumulations [63,64]. The observed discrepancies in drought
responses, such as those reported for jasmonic acid, could be due to the fact that metabolic changes
induced by moderate stress may promote the biosynthesis of jasmonic acid, whereas severe stress may
imply degradation of flavonoids during scavenging of free radicals [65].

Finally, of the reviewed studies using an NMR platform approach to study drought effects of
plant metabolism, five studies occurred prior to 2014 and four occurred after. Meanwhile, of the
studies using chromatography separation followed by MS detection, 22 were completed prior to 2014
and 49 occurred thereafter. This clearly shows the increasing preference for chromatography and MS
platforms over NMR platforms.

In conclusion, ecometabolomic studies have collectively shown that plant responses to drought
stress involve a system based on increases in concentrations of osmoprotectants and oxidative
protectants such as amino acids and N-rich molecules that are coupled to protein catabolism and/or
reduction in protein biosynthesis [37], with a rise in sugars and alcohol sugars also being noted. At the
same time, increases in terpene, flavonoid and anthocyanin concentrations, including their derivatives,
represent larger C-rich secondary compounds that are not coupled to protein catabolism. Thus, the
breeding of genotypes with a greater capacity for drought tolerance should focus on those in which
concentrations of C-rich compounds increase to a greater extent than those of smaller N-rich molecules.
Such a strategy should facilitate a rapid response to drought stress without compromising enzymatic
capacity or increasing the requirement for re-transcription and de novo biosynthesis of proteins.

3. Heat Stress

As heat stress becomes an increasing challenge under projected global warming, with a greater
frequency and intensity of heat waves [66], research on methods to improve crop resistance to heat
events is of paramount importance but remains a scientific challenge [67,68]. Heat stress in plants
stimulates the production of reactive oxygen species (ROS) that damage a wide array of cellular
components through disrupted membrane stability or reduced energy metabolism [69,70]. As a
result, ROS trigger oxidative stress responses [71–73]. Similarly to drought, heat stress has been
shown to increase concentrations of soluble carbohydrates in photosynthetic tissue, such as sugar
metabolites and associated derivates [73,74] and, in particular, sugar alcohols, fructose and raffinose
(Figure 2, Table S2). The findings of these metabolomic analyses are consistent with earlier studies
of plant physiological responses to heat stress, which found a reduction in photosynthesis and an
increase in respiration [75,76], mediated through the mobilization of nonstructural polysaccharides.
This mobilization drives increases in cellular concentrations of soluble carbohydrates, available as
C-skeletons for catabolic and anabolic reactions, improving osmotic and antioxidant protection [75–77].

Ecometabolomic studies have also revealed high concentrations of amino acids in foliar tissue in
response to heat stress, especially those synthesized in the pyruvate and α-ketoglutarate-glutamate
pathway, such as proline, GABA, glutathione, alanine, isoleucine and leucine (Figure 2, Table S2).
Heat stress effects on proline concentrations in plants have been widely studied [78,79] and have shown
the importance of proline in osmotic adjustment [80], protection of protein structures [81] and scavenging of
free oxidative radicals [82]. In Arabidopsis, glutathione controls expression of heat shock protein genes [83],
and, in wheat and maize, it acts as an electron donor for free radical scavenging [84]. We found that few
ecometabolomics studies have reported a rise in glutathione concentration, but this could be because all
glutamate-related metabolites are detected at higher concentrations under heat stress. Of these, GABA has
also been shown to accumulate in Arabidopsis roots under heat stress [85]. In fact, studies applying drought
and heat at the same time have observed a rise in sugars and free amino acids, reinforcing the useful role
of these groups of primary metabolites for short-term adaptation to these stresses [59].
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Ecometabolomic analyses have revealed a lack of consistency in changes in flavonoid foliar tissue
concentrations (total or as individual compounds) in response to heat stress (Figure 2, Table S2).
For example, several studies have shown that changes in phenolic compounds and derivatives, such as
anthocyanins, under increasing temperatures depend rather on the magnitude of temperature change,
the organ in question and other conditions such as light or water availability than on the particular
temperature value [86–89]. Rising terpene concentrations in leaves under high temperatures [90] were
confirmed by ecometabolomic studies, indicating that the biosynthesis of isopentyl diphosphate from
pyruvate and glyceraldehide-3-P relates to heat stress avoidance. This result is consistent with the role
of isopentyl diphosphate in the synthesis of terpenoids and carotenoids in antioxidant responses to
oxidative stress [91,92].

Metabolomic studies provided evidence for shifts in the plant metabolome under heat stress.
Increased concentrations of soluble sugars and amino acids are generalized heat response mechanisms
across several plant species. Accumulation of primary metabolites, such as carbohydrates, in response
to heat stress increases the stability of proteins and the cell membrane bilayer structure [93]. Thus,
strategies that develop and select for phenotypes with efficient protective mechanisms against heat
stress, such as those that trigger increases in soluble carbohydrates, should be encouraged in contrast
with those that trigger increases in free amino acids. Carbohydrates can be obtained from nonfunctional
reserves, whereas free amino acids come from protein catabolism or from decreased de novo biosynthesis
of proteins. An increase in the capacity of a fast synthesis of fatty acids that protect from cell damage is
also suggested as a mechanism against heat stress.

4. Elevated Atmospheric CO2 Concentrations

Atmospheric CO2 concentrations are rising continuously [94], and several impacts on plant
functioning, such as increased water and nutrient use efficiency [95–97], a positive effect on
photosynthesis rates [98,99] and changes in chemical foliar composition [100–103], have been associated
to this rise. Ecometabolomic studies show that metabolites that increase most markedly in plant
leaves under elevated atmospheric CO2 are terpenes and soluble sugars, particularly the galactose,
glucose, and fructose monosaccharides (Figure 3, Table S3). This indicates that increases in newly
photosynthesized carbon triggers immediate accumulations of photosynthetic products (glucose
and directly associated molecules). Previous studies have suggested that elevated atmospheric CO2

concentrations lead to increases in secondary metabolites from the shikimic acid pathway, such as
phenolics [74–79,100,104–108]. However, with the exception of quinic and cinnamic acids, which were
consistently observed to increase with CO2 concentrations (Figure 3), we found contrasting observations
among ecometabolomic studies (Figure 3, Table S3). Specifically, despite earlier evidence for positive
links between rises in atmospheric CO2 concentrations and C-rich secondary compounds [100,107,109],
data from ecometabolomic studies revealed that this relationship varies among compounds and
depends on interactions with other environmental variables. Moreover, these recent metabolomics
studies all reported increases in concentrations of salicylates and phenolic acids [110], anthocyanins,
and flavonoids [111,112] under doubled CO2 concentration, at least twice those observed under current
levels of ambient [CO2] [113,114]. Thus, plant responses to high concentrations of atmospheric CO2 are
specific between secondary metabolite families and depend on associated environmental conditions.
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Figure 3. Shifts in principal plant metabolites and metabolic pathways in response to increased atmospheric CO2 concentrations reported in 17 ecometabolomic studies.
The numbers within the squares are the numbers of reports describing changes in photosynthetic tissue metabolite concentration and/or pathway activity under
elevated atmospheric CO2 concentrations. Red numbers within red squares indicate significant increases; black numbers within black squares indicate significant
decreases. Red arrows indicate upregulation of the metabolic pathway.
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Rises in concentrations of foliar terpenes under increased levels of atmospheric CO2 have
been observed using targeted analyses [100,101,106,115]. This rise can, however, be also a partial
indirect response to warming coupled to atmospheric CO2 concentration enhancement [116,117].
Terpene production is dependent on sugar metabolism. As such, increases in terpene concentrations
under elevated atmospheric CO2 are likely to be a result of associated increases in soluble
monosaccharides (Figure 3). Although there have been limited reports of decreases in terpene
concentrations in plants under high CO2 atmospheric concentrations [118], the consensus from this
review of ecometabolomic studies is that plant responses to elevated CO2 are likely mediated by rises in
monosaccharide production and by associated secondary metabolite groups, such as terpenes, that are
directly synthesized from monosaccharides. In contrast, other secondary compounds synthesized by
longer pathways from other sugars and those involving N-rich molecule precursors, such as cyclic
amino acids and those in the shikimate pathway, should be not upregulated under elevated atmospheric
CO2 concentrations (Figure 2, Table S3). Decreases in N concentrations and increases in C:N ratios
are common in plant organs under elevated atmospheric CO2 [100,107]; however, no clear patterns
have been reported for key small organic N-rich molecules, such as amino acids and nucleosides,
with almost equal numbers of studies reporting positive and negative responses (Figure 3, Table S3).
Elevated atmospheric CO2 concentrations counteract the effect of drought and heat in producing high
concentrations of sugars and free amino acids in leaves of Arabidopsis [72].

5. Nitrogen Eutrophication

Global data clearly show an exponential rise in human-driven N emissions [103], which in natural
vegetation has mediated a diversity of effects on productivity, species composition, nutrient cycling and
soil processes [119–121]. In agriculture, long-term N fertilization in crops has enhanced yields [122,123]
and increased total protein and amino acid concentrations in food crops [124]. Targeted analyses based
on colorimetric and/or HPLC-UV detection have shown that increases in soil N availability, such as
those caused by N deposition and the application of N fertilizer, have strong positive impacts on amino
acid concentrations in crops [125–133]. Ecometabolomic analyses allow quantification of changes in
specific groups of amino acids and their precursor metabolites in response to elevated N loads. Current
metabolomics analyses clearly identify the links between elevated N loads and increases in foliar
concentrations of free dissolved amino acids, as well as decreases in some groups of C-rich metabolites,
such as flavonoids (Figure 4, Table S4). This observed decrease in flavonoid biosynthesis could be
associated to the reduced activity of phenylalanine ammonia lyase, which under low N releases N
from phenylalanine by the production of secondary metabolites [134].
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Figure 4. Shifts in principal plant metabolites and metabolic pathways in response to increased N loads reported in eight ecometabolomic studies. The numbers
within the squares are the numbers of reports describing changes in photosynthetic tissue metabolite concentration and/or pathway activity under higher N loads. Red
numbers within red squares indicate significant increases; black numbers within black squares indicate significant decreases. Red arrows indicate upregulation of the
metabolic pathway. Blue arrows indicate downregulation of the metabolic pathway.
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Ecometabolomic studies reporting higher glutamate and glutamine concentrations under greater N
supply (Figure 4, Table S4) are consistent with previous targeted studies. Glutamine is an N transporter
and precursor of other amino acids, nucleotides and chlorophyll [135,136]. Target analyses have also
shown that free glutamate and glutamine, including associated amino acids such as arginine, are used
by plants as N storage compounds under elevated N deposition conditions [125,131,137]. N fertilization
and N deposition above ambient levels has led to increases in arginine concentrations in needles of
conifer trees [138,139], allowing subsequent storage of arginine-rich proteins [139]. More generally,
plant species from N poor habitats accumulate ammonium NH4

+ in arginine as NH4
+ availability

increases, while plants from N-rich environments tend to accumulate NH4
+ in asparagine [140]. Under

high N loads, increased plant N uptake may yield toxic accumulation of NH4
+ [141]. As such, it is

likely that the transformation of NH4
+ into amino acids protects plants against excessive accumulation

of free NH4
+ [127]. Neutralization of NH4

+ in amino acids may be more efficient in the presence
of metabolites common to primary metabolic pathways, such as glycolysis and/or the Krebs cycle.
Moreover, analysis of ecometabolomic studies further allows us to suggest that amino acids formed
during ammonification of pyruvate (such as glycine, alanine, isoleucine and leucine), α-ketoglutarate
(glutamate, proline, arginine and glutamine) and oxoglutarate (ornithine, valine, aspartate, methionine,
lysine and asparagine) occur at greater concentrations under higher levels of N load than those derived
from longer and more complex metabolic pathways, such as tyrosine, phenylalanine and tryptophan.

6. Concluding Remarks

Ecometabolomic studies examining the impacts of drought, heat, elevated atmospheric CO2

concentrations and N eutrophication on plant foliar metabolism have already led to greater
understanding regarding plant responses to global change. Under drought conditions, metabolic
changes appear to be dominated by increases in soluble sugars and derivatives and, following this,
a rise in total free amino acid concentrations. Similar increases are frequently observed in plants under
heat stress. Given that changes in sugar concentrations were consistent across species, we suggested the
selection of potential drought- and heat-tolerant crop genotypes in which C-rich compounds respond
more efficiently than N-rich molecules to facilitate rapid response to drought stress, without a reduction
in of enzymatic capacity and the subsequent need for re-transcription and de novo biosynthesis
of proteins after the stress. We found that flavonoids, anthocyanins and terpenes are secondary
metabolites that are most commonly increased under drought conditions. In contrast, both climate
warming and increasing N loads are expected to lead to increased foliar concentrations of soluble
amino acids derived from glutamate and glutamine. Under drought and heat stress, several studies
have found higher concentrations of proline, which has roles as an osmolyte and as a scavenger of free
oxidative radicals. Elevated atmospheric CO2 concentration generally increases foliar free sugar and
terpene concentrations but does not have clear effects on other secondary compound concentrations.
We suggest that this response may be mediated by rises in monosaccharide production and associated
increases in secondary metabolites, such as terpenes, rather than those that are synthesized along
longer pathways from sugars involving N-rich precursor molecules, such as those formed from cyclic
amino acids and in the shikimate pathway.

The review of current bibliography shows some key points that should be improved and deeply
studied to obtain more consistent information from ecometabolomic studies. First, most current
metabolomics studies are not conducted in real wild conditions, and there is a great disproportion
of studies between noncrop versus crop species. Most studies, i.e., 67.7%, have been conducted in
crop, forage or prototype plants (e.g., Arabidopsis thaliana, Brachypodium distachyon or Lotus japonica).
More studies should be conducted on wild plants and, if possible, sample in natural field conditions
and not in greenhouses or common gardens. Second, another interesting point can be derived from
the fact that the purpose of ecometabolomic studies is to provide a picture of the whole metabolism
and its shifts (at least those of the most important metabolic pathways), making it necessary to have
easy-to-use and free software allowing the statistical and metabolic pathway analyses. A third piece of
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potential advice relates to the case of heat stress, where most studies work at temperatures such as
20 ◦C or above, using controls that are not realistic and applicable to the current warming scenarios.
There is a lack of studies that work in field conditions under chronic moderate warming conditions in
a realistic scenario, and there is also a lack of studies considering the combination of field conditions
with two or more global change drivers, such as warming and drought, or warming and N and/or CO2

rises, in a realistic scenario.
We can also highlight an increasing trend in the use of chromatography coupled to MS detection

and a decreasing trend in the use of NMR techniques. In this regard, we have observed that 13.2% of
the studies considered in this review that were completed by the end of 2014 had used NMR analyses,
whereas this proportion fell to 4.7% after 2014. In contrast, chromatography separation coupled to MS
detectors was used in 86.8% of the considered manuscripts completed before 2014 and in 95.3% of the
considered manuscripts completed after 2014 (Tables S1–S4).

In summary, ecometabolomics provides a powerful tool not only for understanding responses of
plants to global change, but also for identifying potential traits for future crop selection. Furthermore,
potential plant community species composition shifts can be projected by comparing the capacity of
different plant species to acclimate to environmental shifts. Ecometabolomic studies are thus making
substantial steps forward to become an essential tool for ecologists and environmentalists.

7. Material and Methods

Data Collection

We searched the ISI Web of Science using combinations of the following keywords:
“ecometabolomic”, “metabolomics”, “metabonomic”, “metabolism”, “plant”, “foliar”, “leaf”, “needle”,
“LC-MS”, “GC-MS”, “NMR”, “sugar”, “amino acid”, “lipid”, fatty acid”, “food”, “dry”, “drier”,
“drought”, “aridity”, “warm”, “warming”, “heat”, “temperature”, “concentration”, “contents”, “CO2”,
“metabolite”, “omic”, “N”, “deposition”, “fertilization”, “crop”, “yield”, “terpene”, “alkaloid”,
“phenolics”, “flavonoids”, “isoflavonoid”, “free”, “anthocyanins” and “anthocyanidins”. We obtained
367 manuscripts. Thereafter, we conducted a first selection draft where we selected those studies (130)
that clearly stablished a treatment of water availability, temperature, atmospheric CO2 concentration
or N availability and provided data for control and treated plants, so they allowed adequate statistical
analyses of the changes in metabolite concentrations and/or metabolic pathway up- and down-regulation
(see Tables S1–S4).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/239/s1,
Table S1: Drought impacts on higher plant metabolism; Table S2: Heat (warming) impacts on higher plant
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