
metabolites

H

OH

OH

Article

Metabolic Signatures of Gestational Weight Gain and
Postpartum Weight Loss in a Lifestyle Intervention
Study of Overweight and Obese Women

Chung-Ho E. Lau 1,2,* , Victoria Taylor-Bateman 1,3, Panagiotis A. Vorkas 4,5 ,
Gonçalo Graça 6 , Thanh-Huyen T. Vu 7 , Lifang Hou 7, Elena Chekmeneva 8 ,
Timothy M. D. Ebbels 6 , Queenie Chan 2,9 , Linda Van Horn 7,† and Elaine Holmes 1,10,*,†

1 Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Imperial College London,
London SW7 2AZ, UK; v.j.taylor-bateman@qmul.ac.uk

2 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London,
London W2 1PG, UK; q.chan@imperial.ac.uk

3 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry,
Queen Mary University of London, London EC1M 6BQ, UK

4 Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction,
Imperial College London, London SW7 2AZ, UK; p.vorkas@imperial.ac.uk

5 Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
6 Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London,

London SW7 2AZ, UK; g.gomes-da-graca@imperial.ac.uk (G.G.); t.ebbels@imperial.ac.uk (T.M.D.E.)
7 Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University,

Chicago, IL 60611, USA; huyenvu@northwestern.edu (T.-H.T.V.); l-hou@northwestern.edu (L.H.);
lvanhorn@northwestern.edu (L.V.H.)

8 National Phenome Centre and Section of Bioanalytical Chemistry, Department of Metabolism,
Digestion and Reproduction, Imperial College London, Hammersmith Campus, IRDB Building,
London W12 0NN, UK; e.chekmeneva@imperial.ac.uk

9 MRC Centre for Environment and Health, Imperial College London, London W2 1PG, UK
10 Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University,

Perth, WA 6150, Australia
* Correspondence: chungho.lau@imperial.ac.uk (C.-H.E.L.); elaine.holmes@murdoch.edu.au (E.H.)
† Joint Senior Authors.

Received: 2 November 2020; Accepted: 1 December 2020; Published: 4 December 2020
����������
�������

Abstract: Background: Overweight and obesity amongst women of reproductive age are increasingly
common in developed economies and are shown to adversely affect birth outcomes and both
childhood and adulthood health risks in the offspring. Metabolic profiling in conditions of overweight
and obesity in pregnancy could potentially be applied to elucidate the molecular basis of the
adverse effects of gestational weight gain (GWG) and postpartum weight loss (WL) on future risks
for cardiovascular disease (CVD) and other chronic diseases. Methods: Biofluid samples were
collected from 114 ethnically diverse pregnant women with body mass index (BMI) between 25 and
40 kg/m2 from Chicago (US), as part of a randomized lifestyle intervention trial (Maternal Offspring
Metabolics: Family Intervention Trial; NCT01631747). At 15 weeks, 35 weeks of gestation,
and at 1 year postpartum, the blood plasma lipidome and metabolic profile of urine samples
were analyzed by liquid chromatography mass spectrometry (LC-MS) and 1H nuclear magnetic
resonance spectroscopy (1H NMR) respectively. Results: Urinary 4-deoxyerythronic acid and
4-deoxythreonic acid were found to be positively correlated to BMI. Seventeen plasma lipids
were found to be associated with GWG and 16 lipids were found to be associated with WL,
which included phosphatidylinositols (PI), phosphatidylcholines (PC), lysophospholipids (lyso-),
sphingomyelins (SM) and ether phosphatidylcholine (PC-O). Three phospholipids found to be
positively associated with GWG all contained palmitate side-chains, and amongst the 14 lipids that
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were negatively associated with GWG, seven were PC-O. Six of eight lipids found to be negatively
associated with WL contained an 18:2 fatty acid side-chain. Conclusions: Maternal obesity was
associated with characteristic urine and plasma metabolic phenotypes, and phospholipid profile
was found to be associated with both GWG and postpartum WL in metabolically healthy pregnant
women with overweight/obesity. Postpartum WL may be linked to the reduction in the intake of
linoleic acid/conjugated linoleic acid food sources in our study population.

Keywords: metabolic phenotyping; metabolomics; blood lipids; LC-MS; NMR; gestational weight
gain; lifestyle intervention

1. Introduction

Overweight and obesity are cardinal features of metabolic syndrome, and are triggers for further
onset of hypertension, dyslipidemia, insulin resistance and other factors that are components of
metabolic syndrome [1]. Additionally, maternal health is associated with both acute and long-term
impacts of the health of offspring including the development of metabolic syndrome in early
childhood [2–4]. Obesity amongst women of reproductive age is increasingly common in developed
countries. In the US, the majority of women of reproductive age are overweight or obese [5,6].
Maternal obesity is linked to gestational diabetes, stillbirth and caesarean delivery [7], and also adversely
affects childhood weight gain trajectories, raising the risk for developing future cardiometabolic,
respiratory and cognitive-related health outcomes in offspring [8–10]. These health outcomes are
further worsened among women with excessive gestational weight gain (GWG), associated with
postpartum weight retention [11] and it has been shown that their children are 30–45% more likely
to become obese both in childhood and adulthood [12]. Women tend to be conscious of providing
a healthy start to life for their offspring and thus are often motivated to adopt diet and lifestyle
changes, thereby providing a potential window of opportunity for intervention [13]. Recent lifestyle
intervention research programs such as the UPBEAT, GLOW, GeliS, and the LIFE-Moms studies were
funded to promote the aim of reducing the heath burden of excess GWG in pregnant women [14–17].
The Maternal-Offspring Metabolics: Family Intervention Trial (MOMFIT) is one of seven different
randomized clinical trials aimed at restriction of excess GWG funded by NIDDK/NHLBI LIFE-Moms
Consortium [16]. Pregnant women with a body mass index (BMI) of 25–40 kg/m2 were randomized to
either a lifestyle intervention involving a DASH (Dietary Approaches to Stopping Hypertension)—type
diet especially suited to pregnant women (called “Mama DASH”) that was calorie adjusted to meet
nutrient needs for each woman or a usual-care control group [18]. Self-monitoring, moderate physical
activity and adequate sleep were recommended and reinforced through weekly coaching calls and
group sessions mostly conducted via webinars for participants assigned to the intervention group.

Metabolic profiling is a robust tool for advancing knowledge of the consequences of maternal
obesity at the molecular level. We, and others, have shown that obesity and related co-morbidities,
including cardiovascular disease have a profound impact on the metabolome (the total chemical
composition of all low molecular weight compounds in a biological fluid or tissue) [19–23].
Metabolic profiling has also been applied to document the series of metabolic changes throughout
the course of pregnancy and pregnant women have a distinct metabolic profile compared with
non-pregnant women [24]. Moreover, metabolic profiling is an established technique for identifying
biomarkers of health risks in mother-child cohorts addressing issues such as gestational diabetes,
preterm birth, and fetal growth restriction [25–27]. For example, women with normal weight have
different placenta metabolic profiles compared with obese women [28], and the maternal metabolome
during pregnancy has been associated with newborn body fat [29].

In this study, we applied a systems approach based on nuclear magnetic resonance spectroscopy
and mass spectrometry profiling to characterize the metabolic changes related to reduced GWG and
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greater weight-loss postpartum (WL) in pregnant women enrolled in diet and lifestyle intervention
studies. Specifically, we analyzed urine and blood plasma samples collected as part of the MOMFIT
trial using a combination of, 1H nuclear magnetic resonance spectroscopy (1H NMR) to analyze urine
samples, and reverse phase ultra-performance liquid chromatography-time of flight-mass spectrometry
(RP-UPLC-qTOF-MS) to generate lipid profiles from the plasma samples. In this study, we identified
metabolites that were influenced by maternal BMI, GWG and postpartum WL.

2. Results

2.1. 1H NMR Detectable Urine Metabolome Correlates with BMI in Our Study Cohort

As stages of pregnancy were associated with urinary metabolic variations in our study samples
(Supplementary Figure S1), we have stratified the data analysis by study sampling timepoints—Baseline
(W15), Week 35 (W35), and at 1 year Postpartum (1Y). We aimed to identify metabolites associated
with measures of obesity in our study cohort, rather than with pregnancy stage. Univariate Pearson’s
correlation analyses were performed on each of the aligned 1H NMR spectral peak signals against BMI
separately for each timepoint, and 4-deoxyerythronic acid (r = 0.33, false discovery rate (FDR) = 0.04)
and 4-deoxythreonic acid (r = 0.36, FDR = 0.02) were identified as positively correlated to baseline BMI
after multiple testing correction. No signals were found significantly correlated with W35 or 1Y BMI
after multiple testing corrections, although positive (non-significant) trends between 4-deoxyerythronic
acid and BMI remained evident at both timepoints (Figure 1). There was no evidence of correlation
between either 4-deoxyerythronic acid or 4-deoxythreonic acid, or any other metabolite and GWG or
WL post-delivery.
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Figure 1. Relationship between urinary 4-deoxyerythronic acid and BMI at three different sampling
timepoints. Signal integrals were normalized to median-fold change and log-transformed, and Pearson’s
correlation p-values before multiple testing correction are shown. FDR, false discovery rate.

2.2. Alteration in Plasma Phospholipid Levels Are Strongly Associated with GWG and WL

A total of 1127 positive mode ions in the RP-UPLC-QTOF analysis of blood plasma lipid
untargeted profiles passed quality control criteria and were selected for further data analysis. The effect
of pregnancy status on the lipidome was prominent, and clear clustering by sampling time-point
could be observed in the 1st component of the principal component model (Supplementary Figure S2).
Pearson’s correlation was performed to identify features significantly correlated to either GWG,
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WL or 1Y BMI (FDR < 0.05), which were then further annotated using MS/MS data collected during
the run. A total of 57 lipids that were associated with at least one of the outcome measures were
annotated (Supplementary Table S1). These mainly consisted of phospholipids including multiple
lysophospholipids, phosphatidylinositols (PI), phosphatidylcholines (PC), ether phosphatidylcholines
(PC-O) and sphingomyelins (SM) (Figure 2).
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Figure 2. The Venn diagram shows blood lipids associated to GWG, WL or 1Y BMI in the
study. Lipids significantly associated to either GWG, WL or 1Y BMI were identified through
correlation analyses. Pearson’s correlation analyses were performed on the 1127 MS positive
ion mode features that passed quality control, and features of FDR < 0.05 were considered
significantly correlating to gestational weight gain, postpartum weight loss or BMI at 1 year
postpartum. Many of the lipids related to GWG, WL, or postpartum BMI were lysophospholipids,
phosphatidylinositols, phosphatidylcholines, ether phosphatidylcholines, or sphingomyelins, and many
of the polyunsaturated lipids annotated contain 18:2, 20:4 or 22:6 side chains. Key: PC,
phosphatidylcholine; PI, phosphatidylinositol; PE, phosphatidylethanolamine; SM, sphingomyelin;
LPC, lyso phosphatidylcholine; LPE, lysophosphatidylethanolamine; LPS, lysophosphatidylserine;
DG, diacylglycerol; HexCer, hexosylceramide. Note, our analysis did not discriminate between
allyl-(plasmanyl) or alkenyl (plasmenyl) linked ether lipids which differ only in the position of the C=C
double bond in the sn-1 position and produce the same fragment ions. These were labelled as either
PC-O or LPC-O or LPS-O.

We also noted these included a significant number of 18:2 (11/57), 20:4 (7/57), and 22:6 (3/57)
side chain containing lipids. Linear regression analysis was performed in order to relate GWG and
WL to plasma lipid percentage changes in the corresponding sampling periods. Seventeen lipid
species were found to be associated with GWG and 16 lipids were associated with WL (Table 1).
Three phospholipids—PI (16:0_16:1), PC (16:0_20:4), and PC (16:0_22:5) were positively associated
with GWG, all containing a 16:0 side chain. Amongst the 14 lipids found to be negatively
associated with GWG, seven were ether phosphatidylcholines (PC (O-18:1_20:4), PC (O-20:0_20:4),
PC (O-18:1_16:0), PC (O-24:2_20:4), PC (O-22:1_18:1), PC (O-16:0_22:4), and PC (O-24:1_20:4)); three were
sphingomyelins—SM (d17:1/24:1), SM (d18:1/24:1), and SM (d18:2/24:1) all containing a 24:1 side chain;
two were polyunsaturated PC—PC (42:6) and PC (40:8); and 2 were lysoPC-O—LPC (O-16:1) and
LPC (O-18:1). Eight lipids were positively associated with WL; these included three lysoPC-O LPC
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(O-16:0), LPC (O-16:1), LPC (O-18:1), two PC-O PC (O-18:1_20:4) and PC (O-22:1_18:1), and PC (40:8),
LPS (O-18:0), and SM (d17:1/24:1). Notably, 6 out of eight lipids found negatively associated with WL
contained an 18:2 fatty acid side chain—PC (18:1_18:2), PC (16:1_18:2), PC (14:0_18:2), PC (15:0_18:2),
PI (16:0_18:2), and DG(18:1_18:2). Of the 14 lipids associated with GWG, seven were also associated
with WL but with their direction of association reversed (Table 1, Figure 3). Some lipids such as
LPS(O-18:0), were more strongly associated with WL than GWG (Figure 3).

1 
 

 

Figure 3. Scatter plots illustrating opposite direction of associations are observed between metabolite
level, and GWG or WL. The Y-axes represent the change in metabolite intensity between the Baseline
and WK35 (for GWG) or between the 1Y and W35 (for WL) samples, and these were calculated
per-participant and expressed in percentage change.

Additionally, we noted that metabolite levels of four phosphatidylinositols PI (16:0_20:4),
PI (18:0_20:2), PI (32:0) and PI (34:1) were positively correlated with postpartum BMI, and five
lysophospholipids—LPC (17:0), LPC (18:1), LPC (18:2), LPC (22:6) and LPC (O-18:0) as well as two
other lipids with 22:6 side chains (docosahexaenoic acid)—PC (17:0_22:6) and PE(O-20:0_22:6) were
negatively correlated with postpartum BMI. These lipids were not directly associated with GWG or
WL (Figure 3).
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Table 1. Linear regression analysis between lipid level (fractional change), and GWG and WL.
Only lipids which were found to be significantly associated with either GWG or WL are shown below
(p threshold = 0.0017). Bonferroni correction is used to account for multiple testing.

Lipid Species Beta GWG 95% Confidence p Beta WL 95% Confidence p

PC (42:6) −0.011 (−0.015, −0.007) 8.9 × 10−8 0.009 (0.001, 0.018) 3.5 × 10−2

SM (d17:1/24:1) −0.011 (−0.015, −0.007) 5.6 × 10−7 0.013 (0.007, 0.019) 1.2 × 10−5

PC (O-18:1_20:4) −0.015 (−0.022, −0.009) 2.2 × 10−6 0.026 (0.017, 0.036) 3.4 × 10−7

PC (O-20:0_20:4) −0.018 (−0.025, −0.01) 6.2 × 10−6 0.006 (0.001, 0.011) 2.0 × 10−2

PC (40:8) −0.013 (−0.019, −0.007) 2.4 × 10−5 0.011 (0.005, 0.016) 2.4 × 10−4

PC (16:0_20:4) 0.009 (0.005, 0.013) 2.8 × 10−5 −0.004 (−0.007, 0) 2.8 × 10−2

PC (O-18:1_16:0) −0.011 (−0.016, −0.006) 2.9 × 10−5 0.010 (0.002, 0.017) 9.7 × 10−3

SM (d18:2/24:1) −0.014 (−0.021, −0.008) 6.4 × 10−5 0.007 (0.002, 0.012) 6.4 × 10−3

PC (O-24:2_20:4) −0.009 (−0.014, −0.005) 1.2 × 10−4 0.006 (0.002, 0.01) 5.8 × 10−3

Table 1. Cont.

Lipid Species Beta GWG 95% Confidence p Beta WL 95% Confidence p

PC (O-22:1_18:1) −0.014 (−0.021, −0.007) 1.5 × 10−4 0.009 (0.005, 0.014) 9.8 × 10−5

SM (d18:1/24:1) −0.010 (−0.016, −0.005) 4.3 × 10−4 0.006 (0.001, 0.011) 1.4 × 10−2

PC (O-16:0_22:4) −0.012 (−0.019, −0.005) 9.0 × 10−4 0.003 (−0.001, 0.007) 1.6 × 10−1

LPC (O-18:1) −0.014 (−0.022, −0.006) 9.7 × 10−4 0.047 (0.02, 0.074) 9.0 × 10−4

LPC (O-16:1) −0.011 (−0.017, −0.004) 1.2 × 10−3 0.082 (0.034, 0.13) 9.4 × 10−4

PC (O-24:1_20:4) −0.008 (−0.013, −0.003) 1.2 × 10−3 0.007 (0.003, 0.012) 2.7 × 10−3

PI (16:0_16:1) 0.140 (0.055, 0.226) 1.5 × 10−3 −0.016 (−0.026, −0.006) 1.3 × 10−3

PC (16:0_22:5) 0.022 (0.009, 0.036) 1.6 × 10−3 −0.008 (−0.014, −0.003) 3.8 × 10−3

SM (d18:2/14:0) 0.009 (0.002, 0.016) 1.2 × 10−2 −0.013 (−0.019, −0.007) 1.1 × 10−4

LPC (O-16:0) −0.009 (−0.016, −0.002) 1.4 × 10−2 0.064 (0.03, 0.098) 3.3 × 10−4

PC (18:1_18:2) 0.079 (0.013, 0.145) 2.0 × 10−2 −0.014 (−0.022, −0.006) 7.1 × 10−4

PC (16:1_18:2) 0.013 (0.002, 0.025) 2.2 × 10−2 −0.012 (−0.017, −0.006) 1.6 × 10−4

PI (16:0_18:2) 0.012 (−0.004, 0.029) 1.4 × 10−1 −0.009 (−0.014, −0.004) 8.9 × 10−4

LPS(O-18:0) −0.005 (−0.012, 0.002) 1.8 × 10−1 0.156 (0.082, 0.229) 5.3 × 10−5

DG (18:1_18:2) −0.013 (−0.041, 0.015) 3.4 × 10−1 −0.010 (−0.017, −0.004) 1.5 × 10−3

PC (14:0_18:2) 0.007 (−0.017, 0.031) 5.7 × 10−1 −0.017 (−0.025, −0.01) 1.3 × 10−5

PC (15:0_18:2) 0.000 (−0.009, 0.009) 9.6 × 10−1 −0.008 (−0.012, −0.003) 9.8 × 10−4

2.3. The Impact of Lifestyle Intervention on Plasma Lipid Levels

The study participants were split into two groups, with one group assigned to “usual care” and the
other as “intervention”, who were prescribed DASH diet-specific calorie goals to follow during the 2nd
and 3rd trimesters of their pregnancies along with coaching calls and further monitoring. The effects of
intervention on the urine and plasma metabolite levels at W35 and 1Y were not significantly different
between the “usual care” and “intervention” groups as assessed by Student’s t-test. We next considered
if the intervention modulated the associations between lipid level and GWG, and tested each of the
57 annotated lipids with ANOVA (linear model) by including an interaction term between GWG
and study intervention grouping in the model. We found that metabolite-GWG associations of four
lipids—PC (O-18:1_18:2), PC (18:1_18:2), PC (18:0_20:3) and PC (42:6) were potentially modulated by
the effect of study intervention (nominal p < 0.05, 0.05 < FDR < 0.2), however none of them reached
significance after accounting for multiple testing (Figure 4).
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3. Discussion

This study identified urine and plasma lipid molecular markers of maternal obesity in a cohort of
healthy pregnant women with overweight/obesity who were randomized as part of a diet and lifestyle
intervention trial. Whilst previous metabolic profiling studies have examined metabolites associated
with BMI or GWG during pregnancy [30], there is currently a lack of published information on the
metabolomic signature of postpartum WL—a parameter of considerable interest to postnatal women
participating in lifestyle intervention studies. Several of the phospholipids associated with GWG were
also found to be associated with post-partum WL, but in the reversed direction, suggesting that the
metabolic pathways associated with WL likely largely substantially overlap with those associated
with GWG.

Specifically, the current study found that all three phospholipids observed to be positively
associated with GWG contained a 16:0 fatty acid (palmitate) side chain. Palmitate is the primary
product of de novo lipogenesis, and is enhanced during pregnancy [31]. A study by Postle et al. showed
that the increased plasma phosphocholine levels throughout pregnancy was dominated by individual
lipids containing palmitate (16:0) rather than stearate (18:0) at the sn-1 position, and suggested that
adapted maternal hepatic PC metabolism served to provide the fetus with an adequate supply of
22:6(n3) [32]. Elevated palmitate concentrations in both maternal and placental blood have previously
been associated with both BMI and gestational diabetes [33].

Ether phosphatidylcholines (PC-O) made up a large proportion of the lipids that were negatively
associated with GWG in our analysis, a previous study has shown that maternal level of ether
phosphatidylcholines (PC-O) containing fatty acid 20:4 (e.g., arachidonic acid) were negatively
associated with newborn body fat percentage, and may exert a protective effect against obesity
development [34]. Notably, six of the eight lipids that were negatively associated with WL contained
an 18:2 side chain. Since linoleic acid/ conjugated linoleic acid are diet-derived, and are major isomers
for 18:2 fatty acid, our analysis suggests WL maybe linked to the reduction in the intake of linoleic
acid/conjugated linoleic acid food source in the study sample. Nuts, seeds, meats and eggs are all
dietary sources of linoleic acid, and preliminary analyses from our study have shown that meat
and legume intakes were correlated with levels of a subset of phospholipids containing an 18:2
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sidechain at 1-year postpartum (data not shown). Linoleic acid is a major natural ligand for cell
signaling biomolecules peroxisome proliferator-activated receptors (PPARs) [35], which regulate lipid
and glucose metabolism. The level of linoleic acid detected in human adipose tissue has steadily
increased over the last 50 years [36]. Four of the eight lipids directly associated with WL in our study
were lysophospholipids, previously reported to be associated with WL in children [37], and were
inversely associated with risk of development type 2 diabetes [38]. Additionally, we noted several
phosphatidylinositols (PI) were positively associated with postpartum BMI; PI are important building
blocks for cell signaling molecules in the insulin signaling pathway which also regulate diabetes,
obesity and cell growth [39]. Phospholipids with 22:6 side chains (docosahexaenoic acid) were found
negatively associated with postpartum BMI, but not associated with either GWG or postpartum WL;
docosahexaenoic acid supplements taken by pregnant/lactating mothers have previously been shown
to lower BMI [40].

Strengths of this study include the focus on diet assessment and intervention among these
pregnant women with overweight or obesity, offering more specific exploration of the possible
metabolomic associations. The major limitation is the relatively small sample size and its consequences.
In both the urine 1H NMR and the plasma lipid datasets, the principal component analysis (PCA)
scores plots show that there were dominant shifts in metabolite profiles between the first and third
trimester, with profiles reversed at 1 year postpartum (Supplementary Figure S1). The relatively low
variance explained by the first two principal components, particularly for the urine dataset (13.01%),
further highlights the challenge of identifying weight-related changes against the extreme metabolic
shifts caused by pregnancy, and other genetic and environmental factors. Although we did not
observe significant associations of any metabolites with either GWG or WL in our urinary 1H NMR
profile—possibly due to the large within-individual temporal and biological variabilities that are
characteristic of the urinary metabolome [41], we did however identify urinary 4-deoxyerythronic
acid and 4-deoxythreonic acid as positively associated with BMI in our study population. Levels of
urinary 4-deoxyerythronic acid were found to be higher during pregnancy (Figure 1) and were
highest in the 3rd trimester, which corroborates previously published research [42]. Additionally,
we observed 4-deoxyerythronic acid and 4-deoxythreonic acid to be well correlated during pregnancy,
particularly at the late stage of pregnancy (WK15, Pearson’s r = 0.31, nominal p = 0.001; WK35,
Pearson’s r = 0.68, nominal p = 4 × 10−16), but not in the postpartum urine samples (Pearson’s r = 0.09,
p = 0.34). The differential correlation during pregnancy may reflect a biological role for both isomers
during pregnancy, or the stronger correlation during late pregnancy may be the consequence of the
increased production of one or the other compound. Since 4-deoxythreonic acid has been reported to
be increased in sleep deprivation [43] and major depressive disorder [44], it would appear unlikely
that the formation of one of these isomers is a result of a spontaneous chemical reaction. Recently,
urinary 4-deoxyerythronic acid was shown to be associated with BMI in healthy children [45] and it is
possible that 4-deoxyerythronic acid—a catabolite of threonine metabolism, may play an important
role in development during early-life [46]. Future maternal and children lifestyle/dietary intervention
studies could consider targeting metabolites within the threonine metabolic pathway.

One of the key exploratory objectives of the MOMFIT study was to identify molecular markers
of response to the lifestyle intervention as prescribed in the study trial during the pregnancy
period. One previous study reported reduced levels of sphingomyelins were associated with lifestyle
intervention in obese children [47], and in a recent UK based lifestyle intervention study of 1158 obese
pregnant women, diet intervention reduced the rate of increase in extremely large, very large, large and
medium VLDL particles during gestation [48]. Whilst there was some evidence from our study that
the intervention may alter GWG-metabolite relations in a few lipids, we did not identify any markers
that successfully differentiated the control and intervention group directly, possibly hampered by a
combination of small sample size (N = 50 for control/N = 64 for intervention) and small effect size
due to the lifestyle intervention design. Over 1000 pregnant women with obesity were recruited
in the UPBEAT study, but their lifestyle intervention was only marginally associated with reduced



Metabolites 2020, 10, 498 9 of 15

GWG amongst participants (mean difference: −0·55 kg; 95% confidence interval: −1·08 kg to −0·02 kg;
p = 0.04) [48]. Implementation of lifestyle intervention during pregnancy is by necessity moderate
since acute weight loss or excessive exercise could have adverse effects on the infant. Therefore,
the consequent impact on the metabolome will be less marked than that observed after following a
more severely restricted diet where alterations in protein, lipid and short chain fatty acid metabolism
and potentially ketogenesis are commonly observed. Nevertheless, we see systematic alterations in the
metabolome related to BMI, weight gain and WL. In order to achieve deeper insight into gestational
weight gain and WL post pregnancy, future studies should account for participant advice adherence,
and consider collecting more granular habitual data over the study intervention period for analysis,
including changes in physical activity levels. Our work provides evidence based on the lipidomic
profiles that calorie and nutrient intakes likely play a vital role in both reducing excessive GWG and in
facilitating WL postpartum. Our future planned work includes utilizing the urine and lipid profiles
collected in this participant sample for identifying possible diet-influenced phenotypes in the two
study groups, which may in turn facilitate the monitoring of participant adherence to diet and lifestyle
intervention advice.

4. Materials and Methods

4.1. Participant Recruitment

The MOMFIT Study participant recruitment and methodology are described elsewhere [14]. Briefly,
ethnically diverse pregnant women aged 18–40 years with overweight or obesity (BMI 25–40 kg/m2)
from Chicago (USA) were enrolled at 9–15 weeks of gestation in a randomized diet and lifestyle
intervention trial: MOMFIT; www.clinicaltrials.gov NCT01631747. All participants signed informed
consent approved by the Northwestern University Institutional Review Board. Urine and blood plasma
specimens (114, including 50 Usual Care control and 64 Intervention) were collected from a subsample
of participants enrolled in the trial collected at 15 weeks, 35 weeks of gestation, and at 1 year postpartum
and were made available for metabolic profiling analyses (Figure 5, Table 2). Demographic information,
medical and obstetric history, household food insecurity, automated self-administered 24-h dietary
recall (ASA24) and sleep pattern, blood pressure measurements and maternal physical activity were
assessed. Urine and blood plasma metabolite profiles were acquired using metabolic profiling. From a
subset of 114 of the enrolled participants, 107 (47 Usual Care control and 60 Intervention) of these
individuals were profiled whilst the remaining 7 participants were excluded due to missing or
incomplete urine samples.Metabolites 2020, 10, x FOR PEER REVIEW 10 of 15 
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Table 2. Characteristics of study volunteers. Summary statistics of the subsample of the MOMFIT
trial (114 individuals: 50 control and 64 intervention) included in the metabolic profiling study.
Values represent means and standard errors, and p-values (calculated through 2-tailed Student’s t test).

Characteristics Control (n = 50) Intervention (n = 64) p Values

Age (y, 15 weeks) 34 ± 4 34 ± 4 0.16
Weight (kg, 35 weeks) 95 ± 12 91 ± 13 0.07
BMI (kg/m2, 35 weeks) 35 ± 4 34 ± 4 0.06

Gestational Weight Gain (kg) 10.6 ± 5.1 9.6 ± 4.6 0.14
Weight Loss postpartum (kg) 9.1 ± 7.2 9.4 ± 6.7 0.43

Both the Usual Care and Intervention participants received publicly available recommendations
relevant to pregnancy including the 2008 Physical Activity Guidelines for Americans and
recommendations from the American College of Obstetrics and Gynecology. The “Mama” DASH
dietary intervention group was prescribed calorie goals based on height, preconception weight, physical
activity level, and nutrient needs relevant for restricted total GWG (0.18–0.27 kg/week for women with
overweight and obesity respectively) during the second and third trimesters. The MOMFIT intervention
group participants received training in self-monitoring their diet intake using a commercially available
mobile application, coaching calls from the registered dietitian nutritionist and group or webinar-based
DASH diet intervention sessions [14]. They also received a simple pedometer (Accusplit accelerometer
AX2710) or were encouraged to monitor activity using their smartphone tracking device and log
activity in their mobile application account. The activity goal was 30 min or more of moderate walking
> 10,000 steps per day.

Research has been carried out according to the international and national guidelines and
regulations (including the Declaration of Helsinki), and informed consent was obtained from all
subjects. Ethics approvals were obtained from the following committees: IRB office, Northwestern
University (STU00053566-MOD0019); Imperial College Research Ethics Committee (18IC44500).

4.2. Urinary 1H NMR Metabolite Measurements

Urine samples were analyzed by 1H NMR. One-dimensional 1H NMR spectra were acquired on
a Bruker Avance III spectrometer (Bruker BioSpin, Rheinstetten, Germany) operating at 14.1 Tesla.
The spectrometer was equipped with a Bruker SampleJet system, and a 5-mm broad-band inverse
configuration probe maintained at 300 K. Prior to analysis, samples were randomized and individual
samples were thawed and homogenized using a vortex mixer and centrifuged at 13,000× g for 10 min
at 4 ◦C to remove insoluble material. An aliquot of 540 µL of urine sample was mixed with 60 µL of a
buffer solution (1.5 M KH2PO4, 2 mM NaN3, 1% deuterated 3-(trimethylsilyl)-[2,2,3,3-d4]-propionic
acid sodium salt (TSP) solution, pH 7.4). Samples were transferred into an NMR tube (5 mm outer
diameter Bruker SampleJet NMR tubes) and were kept at 6 ◦C in the Bruker SampleJet (Bruker BioSpin,
Rheinstetten, Germany) unit. The 1H NMR spectra were acquired using a standard 1D pulse sequence
using the first increment of the NOE pulse sequence to achieve suppression of the water resonance
with gradients (noesygppr1d). In total, 32 transients were collected into 64 K data points using a
spectral width of 12,000 Hz with a recycle delay of 4 s, a mixing time of 10 ms, and an acquisition
time of 2.73 s. Line-broadening of 0.3 Hz was applied prior to Fourier transformation. All 1H NMR
spectra were automatically phased and baseline-corrected using Topspin 3.2 software (Bruker BioSpin,
Rheinstetten, Germany). The 1H NMR urine spectra were referenced to the TSP resonance at 0 ppm.
The NMR spectra were aligned using recursive segment-wise peak alignment—an algorithm based on
cross-correlation, using MATLAB 2018a (MathWorks, Natick, MA, USA). Assignment of endogenous
urinary metabolites was made by reference to online compound databases, statistical methods applied
to the full spectra (STOCSY [49]), and/or confirmed by 2D NMR experiments [50].
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4.3. LC-MS Blood Lipids Measurements

Lipid profiling was performed on plasma samples using reverse-phase UPLC-MS with data
acquired in positive (ESI+) and negative (ESI−) ion modes. Experiments were performed on a Waters
Synapt G2-S UPLC-QTOF-MS system. Prior to analysis 400 µL of isopropanol was added to 100 µL
plasma. Samples were then vortexed for 10 min at room temperature before being centrifuged at
18,000× g for 30 min. Approximately, 150 µL of supernatant was transferred to a glass vial with insert
for analysis. A pooled study quality control sample (QC) was also generated, by mixing together
a small volume from each study sample, for conditioning of the chromatographic column and to
assess analytical reproducibility. A 7-point dilution series, generated with 100%, 80%, 60%, 40%, 20%,
10%, 1% of the QC sample, was used to assess linearity between metabolite concentration and signal
response. An ACQUITY sample manager (Waters Corp, Milford, MA, USA) maintaining samples
at 4 ◦C and a ACQUITY Binary Solvent Manager (Waters Corp, Milford, MA, USA) were used to
inject a volume of 4 µL of extracts into an ACQUITY UPLC BEH C8 column (2.1 × 100 mm, 1.7 µm;
Waters Corp). Separation was achieved with mobile phases consisting of water/isopropanol/acetonitrile
2:1:1 (5 mM ammonium acetate, 0.05% acetic acid, 20 µM phosphoric acid) as mobile phase A and
isopropanol/acetonitrile 1:1 (5 mM ammonium acetate, 0.05% acetic acid) as mobile phase B over
13.25 min at a flow rate of 0.6–1 mL/min. The elution gradient was set as follow: 99–70% A (0–2 min,
flow rate: 0.6 mL/min), 70–10% A (2–11.5 min, flow rate: 0.6 mL/min), 10–0.1% A (11.5–12 min,
flow rate: 0.6 mL/min), 0.1–35% (12–12.55 min, flow rate: 1 mL/min), 35–70% (12.55–12.65 min,
flow rate: 0.9 mL/min), 70–99% (12.65–12.75 min, flow rate: 0.8 mL/min), 99% (12.75–13.25 min,
flow rate: 0.7–0.6 mL/min). The MS acquisition parameters used were as follow: capillary voltage 2 kV
(both ESI+ and ESI−), cone voltage 30 V (both ESI+ and ESI−), temperature 350 ◦C, desolvation flow
600L/h, source temperature 100 ◦C. The MS data were collected at a range of 50–2000 Da with a scan
time of 0.2 s and interscan delay of 0.015 s. To provide a lock-mass correction, a 400 ng/µL solution of
leucine enkephalin was infused at a rate of 15 µL/min. MS spectra were acquired in continuum mode.
For data preprocessing, the MS peaks were centroided using MassLynx (version 4.1, Waters Corp,
Milford, MA, USA) and the data were converted to NetCDF format using DataBridge (Waters Corp,
Milford, MA, USA). Chromatographic peak detection, retention time alignment, and feature grouping
were carried out using XCMS (version 3.2.0) [51] in the R programming environment. Only features
(m/z_RT pairs) which scale linearly according to dilution (R2 > 0.8 with 7-point dilution series) and
showed good reproducibility (RSD < 0.3 on QC samples) were carried forward to further data analysis.
Annotation of plasma lipid features was based matching of feature’s m/z against online databases such
as METLIN [52], Human Metabolome Database (HMDB) [53] and LipidMaps [54], which enabled
the identification of lipid class and number of carbons of the fatty acyl chains. This information was
confirmed by running data-dependent (DDA) and data-independent (MSE) LC-MS/MS fragmentation
experiments. Fatty acyl side chains compositions were determined for most features. Some features
annotations are considered putative as either they lacked clear direct evidence from MS/MS collected
through data dependent acquisition, or annotations were made based on ion coelution correlations
to known adducts alone (Supplementary Table S1). Our analysis does not discriminate between
allyl-(plasmanyl) or alkenyl (plasmenyl) linked ether lipids which differ only by the position of the
C=C bond in the sn-1 position and produce the same fragment ions.

4.4. Statistical Analysis

Metabolite signal intensities were normalized using median fold change, and signals were
log-transformed, mean-centered and scaled to unit-variance prior to conducting PCA to identify
inherent structure in the spectral data relating to BMI, GWG or WL post-partum. For the initial
Pearson’s correlation analyses performed against the 1127 lipid features, a false discovery rate of 0.05
was used as significance level cutoff. Linear regression analysis was performed to relate GWG and WL
to plasma lipid percentage changes in the corresponding sampling periods, the plasma lipid percentage
changes were calculated using the median fold change normalized data without log-transformation.
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Lipid % change during the 1st period (GWG) = (LipidW35 − LipidW15)/LipidW15, and % change during
the 2nd period (WL) = (Lipid1Y − LipidW35)/LipidW35. In the follow-up linear regression analyses
performed against the 57 annotated lipid species, a more stringent multiple testing correction method
was applied. Bonferroni correction was applied based on the effective number of test—defined as
the number of principal components required to explain 95% of variance in the LCMS metabolomics
dataset, and p adjusted value of 0.05 was used as significance level cutoff. All statistical analyses were
performed using R (“The R Project for Statistical Computing” https://www.r-project.org) software
environment (v3.5).

5. Conclusions

In conclusion, our study provides evidence that phospholipid profiles and their incorporated
fatty acyl chains are possible markers of GWG and postpartum WL in metabolically healthy pregnant
women with overweight/obesity. Importantly, phospholipids associated with GWG tend to also be
associated with postpartum WL but as expected, in the opposite direction. Postpartum WL may be
linked to the reduction in the intake of linoleic acid/conjugated linoleic acid food sources in our study
sample. Alterations in blood lipids could potentially be explored to further evaluate and shed light on
the biological effects and benefits of lifestyle interventions. Larger studies in independent cohorts are
warranted to validate our findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/12/498/s1,
Figure S1: Principal Component Analysis of NMR urine samples, Figure S2: Principal Component Analysis of
LC-MS plasma samples, Table S1: Details of Lipid annotations.

Author Contributions: C.-H.E.L. planned and performed the NMR and LC-MS metabolic profiling experiments,
processed the metabolic profiling data, performed the statistical data analysis and drafted the initial manuscript.
V.T.-B. performed the LC-MS metabolic profiling experiments and helped with the metabolomics data analysis.
P.A.V. helped with the acquisition, processing, annotation, and interpretation of the LC-MS lipid profiling data.
G.G. helped with metabolite identification in the LC-MS lipid profiling data. T.-H.T.V. helped with the dietary
data analysis. E.C. and L.H. helped with study setup. T.M.D.E. and Q.C. helped with the data analysis and project
supervision. L.V.H. and E.H. designed and oversaw the study. All authors have read and agreed to the published
version of the manuscript.

Funding: The MOMFIT (Maternal Offspring Metabolics: Family Intervention Trial; www.clinicaltrials.gov
NCT01631747) study was supported by the National Heart, Lung, and Blood Institute, National Institute of Health
(US), Grant number U01HL114344.

Acknowledgments: Infrastructure support for this work was provided by the NIHR Imperial Biomedical Research
Centre, and in particular we thank the MRC-NIHR National Phenome Centre and Imperial Clinical Phenotyping
Centre for sharing their LC-MS lipid profiling method protocols with us. Elaine Holmes is supported by the
Department of Jobs, Tourism, Science and Innovation, Government of Western Australia through the Premier’s
Science Fellowship Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatrics 2017, 6, 397–407.
[CrossRef] [PubMed]

2. Yogev, Y.; Visser, G.H.A. Obesity, gestational diabetes and pregnancy outcome. Semin. Fetal Neonatal Med.
2009, 14, 77–84. [CrossRef] [PubMed]

3. Agarwal, P.; Morriseau, T.S.; Kereliuk, S.M.; Doucette, C.A.; Wicklow, B.A.; Dolinsky, V.W. Maternal
obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of
cardiometabolic disease in the offspring. Crit. Rev. Clin. Lab. Sci. 2018, 55, 71–101. [CrossRef] [PubMed]

4. Farpour-Lambert, N.J.; Ells, L.J.; de Tejada, B.M.; Scott, C. Obesity and Weight Gain in Pregnancy and
Postpartum: An Evidence Review of Lifestyle Interventions to Inform Maternal and Child Health Policies.
Front. Endocrinol. 2018, 9. [CrossRef] [PubMed]

5. Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity Among Adults in
the United States, 2005 to 2014. JAMA J. Am. Med Assoc. 2016, 315, 2284–2291. [CrossRef]

https://www.r-project.org
http://www.mdpi.com/2218-1989/10/12/498/s1
www.clinicaltrials.gov
http://dx.doi.org/10.21037/tp.2017.10.02
http://www.ncbi.nlm.nih.gov/pubmed/29184820
http://dx.doi.org/10.1016/j.siny.2008.09.002
http://www.ncbi.nlm.nih.gov/pubmed/18926784
http://dx.doi.org/10.1080/10408363.2017.1422109
http://www.ncbi.nlm.nih.gov/pubmed/29308692
http://dx.doi.org/10.3389/fendo.2018.00546
http://www.ncbi.nlm.nih.gov/pubmed/30319539
http://dx.doi.org/10.1001/jama.2016.6458


Metabolites 2020, 10, 498 13 of 15

6. Deputy, N.P.; Dub, B.; Sharma, A.J. Prevalence and Trends in Prepregnancy Normal Weight-48 States,
New York City, and District of Columbia, 2011–2015. Mmwr-Morb. Mortal. Wkly. Rep. 2018, 66, 1402–1407.
[CrossRef]

7. Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse
consequences for mother and child. BMJ Br. Med. J. 2017, 356. [CrossRef]

8. Mamun, A.A.; Mannan, M.; Doi, S.A.R. Gestational weight gain in relation to offspring obesity over the life
course: A systematic review and bias- adjusted meta- analysis. Obes. Rev. 2014, 15, 338–347. [CrossRef]

9. Nehring, I.; Lehmann, S.; von Kries, R. Gestational weight gain in accordance to the IOM/NRC criteria and
the risk for childhood overweight: A meta-analysis. Pediatric Obes. 2013, 8, 218–224. [CrossRef]

10. Karachaliou, M.; Georgiou, V.; Roumeliotaki, T.; Chalkiadaki, G.; Daraki, V.; Koinaki, S.; Dermitzaki, E.;
Sarri, K.; Vassilaki, M.; Kogevinas, M.; et al. Association of trimester-specific gestational weight gain with
fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am. J. Obstet. Gynecol. 2015,
212. [CrossRef]

11. Olson, C.M.; Strawderman, M.S.; Hinton, P.S.; Pearson, T.A. Gestational weight gain and postpartum
behaviors associated with weight change from early pregnancy to 1y postpartum. Int. J. Obes. 2003,
27, 117–127. [CrossRef] [PubMed]

12. Sridhar, S.B.; Darbinian, J.; Ehrlich, S.F.; Markman, M.A.; Gunderson, E.P.; Ferrara, A.; Hedderson, M.M.
Maternal gestational weight gain and offspring risk for childhood overweight or obesity. Am. J. Obstet. Gynecol.
2014, 211. [CrossRef] [PubMed]

13. Phelan, S. Pregnancy: A “teachable moment” for weight control and obesity prevention. Am. J. Obstet. Gynecol.
2010, 202. [CrossRef] [PubMed]

14. Ferrara, A.; Hedderson, M.M.; Brown, S.D.; Ehrlich, S.F.; Tsai, A.L.; Feng, J.R.; Galarce, M.; Marcovina, S.;
Catalano, P.; Quesenberry, C.P. A telehealth lifestyle intervention to reduce excess gestational weight gain
in pregnant women with overweight or obesity (GLOW): A randomised, parallel-group, controlled trial.
Lancet Diabetes Endocrinol. 2020, 8, 490–500. [CrossRef]

15. Kunath, J.; Gunther, J.; Rauh, K.; Hoffmann, J.; Stecher, L.; Rosenfeld, E.; Kick, L.; Ulm, K.; Hauner, H.
Effects of a lifestyle intervention during pregnancy to prevent excessive gestational weight gain in routine
care—The cluster-randomised GeliS trial. BMC Med. 2019, 17. [CrossRef] [PubMed]

16. Clifton, R.G.; Evans, M.; Cahill, A.G.; Franks, P.W.; Gallagher, D.; Phelan, S.; Pomeroy, J.; Redman, L.M.;
Van Horn, L.; Grp, L.I.-M.R. Design of lifestyle intervention trials to prevent excessive gestational weight
gain in women with overweight or obesity. Obesity 2016, 24, 305–313. [CrossRef]

17. Poston, L.; Bell, R.; Croker, H.; Flynn, A.C.; Godfrey, K.M.; Goff, L.; Hayes, L.; Khazaezadeh, N.; Nelson, S.M.;
Oteng-Ntim, E.; et al. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study):
A multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2015, 3, 767–777. [CrossRef]

18. Van Horn, L.; Peaceman, A.; Kwasny, M.; Vincent, E.; Fought, A.; Josefson, J.; Spring, B.; Neff, L.M.;
Gernhofer, N. Dietary Approaches to Stop Hypertension Diet and Activity to Limit Gestational Weight:
Maternal Offspring Metabolics Family Intervention Trial, a Technology Enhanced Randomized Trial. Am. J.
Prev. Med. 2018, 55, 603–614. [CrossRef]

19. Cirulli, E.T.; Guo, L.N.; Swisher, C.L.; Shah, N.; Huang, L.; Napier, L.A.; Kirkness, E.F.; Spector, T.D.;
Caskey, C.T.; Thorens, B.; et al. Profound Perturbation of the Metabolome in Obesity Is Associated with
Health Risk. Cell Metab. 2019, 29, 488–500. [CrossRef]

20. Elliott, P.; Posma, J.M.; Chan, Q.; Garcia-Perez, I.; Wijeyesekera, A.; Bictash, M.; Ebbels, T.M.D.; Ueshima, H.;
Zhao, L.C.; van Horn, L.; et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 2015,
7.[CrossRef]

21. Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.;
Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure.
Nature 2008, 453, 396–400. [CrossRef] [PubMed]

22. Tzoulaki, I.; Castagne, R.; Boulange, C.L.; Karaman, I.; Chekmeneva, E.; Evangelou, E.; Ebbels, T.;
Kaluarachchi, M.R.; Chadeau-Hyam, M.; Mosen, D.; et al. Serum metabolic signatures of coronary
and carotid atherosclerosis and subsequent cardiovascular disease. Eur. Heart J. 2019, 40, 2883–2896.
[CrossRef] [PubMed]

http://dx.doi.org/10.15585/mmwr.mm665152a3
http://dx.doi.org/10.1136/bmj.j1
http://dx.doi.org/10.1111/obr.12132
http://dx.doi.org/10.1111/j.2047-6310.2012.00110.x
http://dx.doi.org/10.1016/j.ajog.2014.12.038
http://dx.doi.org/10.1038/sj.ijo.0802156
http://www.ncbi.nlm.nih.gov/pubmed/12532163
http://dx.doi.org/10.1016/j.ajog.2014.02.030
http://www.ncbi.nlm.nih.gov/pubmed/24735804
http://dx.doi.org/10.1016/j.ajog.2009.06.008
http://www.ncbi.nlm.nih.gov/pubmed/19683692
http://dx.doi.org/10.1016/S2213-8587(20)30107-8
http://dx.doi.org/10.1186/s12916-018-1235-z
http://www.ncbi.nlm.nih.gov/pubmed/30636636
http://dx.doi.org/10.1002/oby.21330
http://dx.doi.org/10.1016/S2213-8587(15)00227-2
http://dx.doi.org/10.1016/j.amepre.2018.06.015
http://dx.doi.org/10.1016/j.cmet.2018.09.022
http://dx.doi.org/10.1126/scitranslmed.aaa5680
http://dx.doi.org/10.1038/nature06882
http://www.ncbi.nlm.nih.gov/pubmed/18425110
http://dx.doi.org/10.1093/eurheartj/ehz235
http://www.ncbi.nlm.nih.gov/pubmed/31102408


Metabolites 2020, 10, 498 14 of 15

23. Everett, J.R.; Holmes, E.; Veselkov, K.A.; Lindon, J.C.; Nicholson, J.K. A Unified Conceptual Framework for
Metabolic Phenotyping in Diagnosis and Prognosis. Trends Pharmacol. Sci. 2019, 40, 763–773. [CrossRef]
[PubMed]

24. Wang, Q.; Wurtz, P.; Auro, K.; Makinen, V.P.; Kangas, A.J.; Soininen, P.; Tiainen, M.; Tynkkynen, T.;
Jokelainen, J.; Santalahti, K.; et al. Metabolic profiling of pregnancy: Cross-sectional and longitudinal
evidence. BMC Med. 2016, 14, 205. [CrossRef]

25. Cecatti, J.G.; Souza, R.T.; Sulek, K.; Costa, M.L.; Kenny, L.C.; McCowan, L.M.; Pacagnella, R.C.;
Villas-Boas, S.G.; Mayrink, J.; Passini, R.; et al. Use of metabolomics for the identification and validation of
clinical biomarkers for preterm birth: Preterm SAMBA. BMC Pregnancy Childbirth 2016, 16. [CrossRef]

26. Maitre, L.; Fthenou, E.; Athersuch, T.; Coen, M.; Toledano, M.B.; Holmes, E.; Kogevinas, M.; Chatzi, L.;
Keun, H.C. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth
restriction in the Rhea mother-child cohort study. BMC Med. 2014, 12. [CrossRef]

27. White, S.L.; Pasupathy, D.; Sattar, N.; Nelson, S.M.; Lawlor, D.A.; Briley, A.L.; Seed, P.T.; Welsh, P.; Poston, L.;
Consortium, U. Metabolic profiling of gestational diabetes in obese women during pregnancy. Diabetologia
2017, 60, 1903–1912. [CrossRef]

28. Fattuoni, C.; Mando, C.; Palmas, F.; Anelli, G.M.; Novielli, C.; Laudicina, E.P.; Savasi, V.M.; Barberini, L.;
Dessi, A.; Pintus, R.; et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2018,
61, 89–95. [CrossRef]

29. Kadakia, R.; Nodzenski, M.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.;
O’Neal, S.K.; Lowe, L.P.; et al. Maternal metabolites during pregnancy are associated with newborn outcomes
and hyperinsulinaemia across ancestries. Diabetologia 2019, 62, 473–484. [CrossRef]

30. Hellmuth, C.; Lindsay, K.L.; Uhl, O.; Buss, C.; Wadhwa, P.D.; Koletzko, B.; Entringer, S. Association of
maternal prepregnancy BMI with metabolomic profile across gestation. Int. J. Obes. 2017, 41, 159–169.
[CrossRef]

31. Nikolova, V.; Papacleovoulou, G.; Bellafante, E.; Manna, L.B.; Jansen, E.; Baron, S.; Abu-Hayyeh, S.;
Parker, M.; Williamson, C. Changes in LXR signaling influence early-pregnancy lipogenesis and protect
against dysregulated fetoplacental lipid homeostasis. Am. J. Physiol.-Endocrinol. Metab. 2017, 313, E463–E472.
[CrossRef] [PubMed]

32. Postle, A.D.; Al, M.D.M.; Burdge, G.C.; Hornstra, G. The Composition of Individual Molecular-Species of
Plasma Phosphatidylcholine in Human-Pregnancy. Early Hum. Dev. 1995, 43, 47–58. [CrossRef]

33. Stirm, L.; Kovarova, M.; Perschbacher, S.; Michlmaier, R.; Fritsche, L.; Siegel-Axel, D.; Schleicher, E.; Peter, A.;
Pauluschke-Frohlich, J.; Brucker, S.; et al. BMI-Independent Effects of Gestational Diabetes on Human
Placenta. J. Clin. Endocrinol. Metab. 2018, 103, 3299–3309. [CrossRef] [PubMed]

34. Hellmuth, C.; Lindsay, K.L.; Uhl, O.; Buss, C.; Wadhwa, P.D.; Koletzko, B.; Entringer, S. Maternal Metabolomic
Profile and Fetal Programming of Offspring Adiposity: Identification of Potentially Protective Lipid
Metabolites. Mol. Nutr. Food Res. 2019, 63. [CrossRef]

35. Kliewer, S.A.; Sundseth, S.S.; Jones, S.A.; Brown, P.J.; Wisely, G.B.; Koble, C.S.; Devchand, P.; Wahli, W.;
Willson, T.M.; Lenhard, J.M.; et al. Fatty acids and eicosanoids regulate gene expression through direct
interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA
1997, 94, 4318–4323. [CrossRef]

36. Guyenet, S.J.; Carlson, S.E. Increase in Adipose Tissue Linoleic Acid of US Adults in the Last Half Century.
Adv. Nutr. 2015, 6, 660–664. [CrossRef] [PubMed]

37. Reinehr, T.; Wolters, B.; Knop, C.; Lass, N.; Hellmuth, C.; Harder, U.; Peissner, W.; Wahl, S.; Grallert, H.;
Adamski, J.; et al. Changes in the serum metabolite profile in obese children with weight loss. Eur. J. Nutr.
2015, 54, 173–181. [CrossRef]

38. Tonks, K.T.; Coster, A.C.F.; Christopher, M.J.; Chaudhuri, R.; Xu, A.M.; Gagnon-Bartsch, J.; Chisholm, D.J.;
James, D.E.; Meikle, P.J.; Greenfield, J.R.; et al. Skeletal muscle and plasma lipidomic signatures of insulin
resistance and overweight/obesity in humans. Obesity 2016, 24, 908–916. [CrossRef]

39. Manna, P.; Jain, S.K. Phosphatidylinositol-3,4,5-Triphosphate and Cellular Signaling: Implications for Obesity
and Diabetes. Cell. Physiol. Biochem. 2015, 35, 1253–1275. [CrossRef]

40. Bergmann, R.L.; Bergmann, K.E.; Haschke-Becher, E.; Richter, R.; Dudenhausen, J.W.; Barclay, D.; Haschke, F.
Does maternal docosahexaenoic acid supplementation during pregnancy and lactation lower BMI in late
infancy? J. Perinat. Med. 2007, 35, 295–300. [CrossRef]

http://dx.doi.org/10.1016/j.tips.2019.08.004
http://www.ncbi.nlm.nih.gov/pubmed/31511194
http://dx.doi.org/10.1186/s12916-016-0733-0
http://dx.doi.org/10.1186/s12884-016-1006-9
http://dx.doi.org/10.1186/1741-7015-12-110
http://dx.doi.org/10.1007/s00125-017-4380-6
http://dx.doi.org/10.1016/j.placenta.2017.11.014
http://dx.doi.org/10.1007/s00125-018-4781-1
http://dx.doi.org/10.1038/ijo.2016.153
http://dx.doi.org/10.1152/ajpendo.00449.2016
http://www.ncbi.nlm.nih.gov/pubmed/28420650
http://dx.doi.org/10.1016/0378-3782(95)01663-N
http://dx.doi.org/10.1210/jc.2018-00397
http://www.ncbi.nlm.nih.gov/pubmed/29931171
http://dx.doi.org/10.1002/mnfr.201700889
http://dx.doi.org/10.1073/pnas.94.9.4318
http://dx.doi.org/10.3945/an.115.009944
http://www.ncbi.nlm.nih.gov/pubmed/26567191
http://dx.doi.org/10.1007/s00394-014-0698-8
http://dx.doi.org/10.1002/oby.21448
http://dx.doi.org/10.1159/000373949
http://dx.doi.org/10.1515/JPM.2007.085


Metabolites 2020, 10, 498 15 of 15

41. Maitre, L.; Lau, C.H.E.; Vizcaino, E.; Robinson, O.; Casas, M.; Siskos, A.P.; Want, E.J.; Athersuch, T.; Slama, R.;
Vrijheid, M.; et al. Assessment of metabolic phenotypic variability in children’s urine using H-1 NMR
spectroscopy. Sci. Rep. 2017, 7. [CrossRef]

42. Diaz, S.O.; Barros, A.S.; Goodfellow, B.J.; Duarte, I.F.; Carreira, I.M.; Galhano, E.; Pita, C.; Almeida, M.D.;
Gil, A.M. Following Healthy Pregnancy by Nuclear Magnetic Resonance (NMR) Metabolic Profiling of
Human Urine. J. Proteome Res. 2013, 12, 969–979. [CrossRef] [PubMed]

43. Giskeodegard, G.F.; Davies, S.K.; Revell, V.L.; Keun, H.; Skene, D.J. Diurnal rhythms in the human urine
metabolome during sleep and total sleep deprivation. Sci. Rep. 2015, 5. [CrossRef]

44. Chen, J.J.; Xie, J.; Li, W.W.; Bai, S.J.; Wang, W.; Zheng, P.; Xie, P. Age-specific urinary metabolite signatures
and functions in patients with major depressive disorder. Aging 2019, 11, 6626–6637. [CrossRef] [PubMed]

45. Lau, C.H.E.; Siskos, A.P.; Maitre, L.; Robinson, O.; Athersuch, T.J.; Want, E.J.; Urquiza, J.; Casas, M.;
Vafeiadi, M.; Roumeliotaki, T.; et al. Determinants of the urinary and serum metabolome in children from six
European populations. BMC Med. 2018, 16. [CrossRef] [PubMed]

46. Wang, J.; Alexander, P.; Wu, L.J.; Hammer, R.; Cleaver, O.; McKnight, S.L. Dependence of Mouse Embryonic
Stem Cells on Threonine Catabolism. Science 2009, 325, 435–439. [CrossRef] [PubMed]

47. Leal-Witt, M.J.; Ramon-Krauel, M.; Samino, S.; Llobet, M.; Cuadras, D.; Jimenez-Chillaron, J.C.; Yanes, O.;
Lerin, C. Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle
intervention in prepubertal children with obesity. Int. J. Obes. 2018, 42, 72–78. [CrossRef]

48. Mills, H.L.; Patel, N.; White, S.L.; Pasupathy, D.; Briley, A.L.; Ferreira, D.L.S.; Seed, P.T.; Nelson, S.M.;
Sattar, N.; Tilling, K.; et al. The effect of a lifestyle intervention in obese pregnant women on gestational
metabolic profiles: Findings from the UK Pregnancies Better Eating and Activity Trial (UPBEAT) randomised
controlled trial. BMC Med. 2019, 17. [CrossRef]

49. Cloarec, O.; Dumas, M.E.; Craig, A.; Barton, R.H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J.C.;
Holmes, E.; et al. Statistical total correlation spectroscopy: An exploratory approach for latent biomarker
identification from metabolic H-1 NMR data sets. Anal. Chem. 2005, 77, 1282–1289. [CrossRef]

50. Dona, A.C.; Kyriakides, M.; Scott, F.; Shephard, E.A.; Varshavi, D.; Veselkov, K.; Everett, J.R. A guide to
the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct.
Biotechnol. J. 2016, 14, 135–153. [CrossRef]

51. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data
for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal. Chem. 2006,
78, 779–787. [CrossRef] [PubMed]

52. Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.;
Siuzdak, G. METLIN—A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [CrossRef]
[PubMed]

53. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.
HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [CrossRef] [PubMed]

54. Fahy, E.; Sud, M.; Cotter, D.; Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res.
2007, 35, W606–W612. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep46082
http://dx.doi.org/10.1021/pr301022e
http://www.ncbi.nlm.nih.gov/pubmed/23231635
http://dx.doi.org/10.1038/srep14843
http://dx.doi.org/10.18632/aging.102133
http://www.ncbi.nlm.nih.gov/pubmed/31493765
http://dx.doi.org/10.1186/s12916-018-1190-8
http://www.ncbi.nlm.nih.gov/pubmed/30404627
http://dx.doi.org/10.1126/science.1173288
http://www.ncbi.nlm.nih.gov/pubmed/19589965
http://dx.doi.org/10.1038/ijo.2017.201
http://dx.doi.org/10.1186/s12916-018-1248-7
http://dx.doi.org/10.1021/ac048630x
http://dx.doi.org/10.1016/j.csbj.2016.02.005
http://dx.doi.org/10.1021/ac051437y
http://www.ncbi.nlm.nih.gov/pubmed/16448051
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
http://www.ncbi.nlm.nih.gov/pubmed/16404815
http://dx.doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://dx.doi.org/10.1093/nar/gkm324
http://www.ncbi.nlm.nih.gov/pubmed/17584797
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	1H NMR Detectable Urine Metabolome Correlates with BMI in Our Study Cohort 
	Alteration in Plasma Phospholipid Levels Are Strongly Associated with GWG and WL 
	The Impact of Lifestyle Intervention on Plasma Lipid Levels 

	Discussion 
	Materials and Methods 
	Participant Recruitment 
	Urinary 1H NMR Metabolite Measurements 
	LC-MS Blood Lipids Measurements 
	Statistical Analysis 

	Conclusions 
	References

