Table S1 Plant growth metadata	Tabl	le S1	Plant	growth	metadata
--------------------------------	------	-------	-------	--------	----------

Species	Solanum pennellii
Genotypes	LA0716
	LA1272
	LA1340
	LA1376
	LA1523
	LA1656
	LA1674
	LA1693
	LA1773
	LA1809
	LA1941
	LA1946
	LA2560
	LA2657
	LA2719
	LA2963
Organ	Leaf
Organ specification	Leaflets; leaflets were collected from
	youngest fully expanded leaves
Cell type	Extraction procedure selectively extracts
	metabolites from glandular trichomes
Biosource amount	Single leaflet per biological replicate; six
	biological replicates per genotype
Growth location	Michigan State University Growth Chamber
	Facility chamber 10
Seedling es	tablishment
Date of plant establishment	12 August 2019
Plant growth stage	Cotyledon stage
Growth substrate	Peat pots (Hummert, Earth City, MO)
Light	16 h/8 h light/dark; 190 μmol m ⁻² s ⁻¹
	photosynthetic photon flux density (PPFD)
	(cool white fluorescent)
Humidity	75% (measured)
Temperature	21°C
Watering regime	Twice weekly; de-ionized water by bottom
	watering
Nutritional regime	Once weekly; half-strength Hoagland's
	solution by bottom watering [1]
Trans	splant
Date of transplant	9 September 2019
Plant growth stage	1 st pair of true leaves

Growth substrate	Peat-based propagation mix (SunGro,
	Agawam, MA) in 9-cm pots
Light	12 h/12 h light/dark; 600 μmol m ⁻² s ⁻¹ PPFD
	(high pressure sodium/metal halide)
Humidity	50% (chamber setpoint)
Temperature	28°C/12°C day/night
Watering regime	Once weekly; de-ionized water by bottom
	watering
Nutritional regime	Once weekly; half-strength Hoagland's
	solution by bottom watering [1]
Harvest date, time	9 December 2019; between 1400 and 1700
Plant growth stage	Mature flowering (16 weeks)

1. Hoagland, D.; Arnon, D. *The water-culture method for growing plants without soil*; Berkeley, Calif. : College of Agriculture, University of California, 1950.

Facility supervisor	Prof. A. D. Jones
Analyst	Daniel B. Lybrand
LC system	Waters Acquity UPLC
Autosampler	Waters 2777C
Column	Waters BEH C18 UPLC (2.1 x 100 mm; 1.7 μm)
Injection volume	5 μL
Flow rate	0.4 mL/min
Mobile phases	
А	10 mM ammonium formate in water with 5 mL/L 85% formic acid (final pH 2.8)
В	10 mM ammonium formate in 90% acetonitrile with 5 mL/L 85% formic acid
Gradient profile	0% B at 0-1 min, 55% B at 1.01 min, 100% B at 16- 18 min, 0% B at 18.01-20 min.
Column oven temperature	40°C
Autosampler temperature	10°C
Mass spectrometer	Waters G2-XS QToF
Software	MassLynx v4.2
Ionization source	Electrospray ionization
Data acquisition	Sensitivity mode, continuum
Polarity	Positive
Mass range	<i>m/z</i> 50-1500
Scan time	0.5 s
Capillary voltage	3.00 kV

|--|

Sampling cone voltage	35 V
Source offset	80 V
Source temperature	100°C
Desolvation temperature	350°C
Cone gas flow	50.0 L/h
Desolvation gas flow	600 L/h
Collision energy	
Function 1	6 eV
Function 2	15-40 eV
Lockmass reference	Leucine enkephalin (<i>m/z</i> 556.2766)
Data correction	Not applied

Facility supervisor	Prof. A. D. Jones	
Analyst	Daniel B. Lybrand	
LC system	Waters Acquity UPLC	
Autosampler	Waters 2777C	
Column	Waters BEH Amide UPLC (2.1 x 100 mm; 1.7 μm)	
Injection volume	5 μL	
Flow rate	0.5 mL/min	
Mobile phases		
A	10 mM ammonium bicarbonate in 50% acetonitrile (100 mM ammonium bicarbonate, pH 8.0 stock solution diluted with H ₂ O and acetonitrile)	
В	10 mM ammonium bicarbonate in 90% acetonitrile (100 mM ammonium bicarbonate, pH 8.0 stock solution diluted with acetonitrile)	
Gradient profile	100% B at 0 min, 0% B at 5 min, 100% B at 5.01-10 min.	
Column oven temperature	40°C	
Autosampler temperature	10°C	
Mass spectrometer	Waters TQD	
Software	MassLynx v4.2	
Ionization source	Electrospray ionization	
Data acquisition	Multiple Reaction Monitoring (MRM)	
Polarity	Negative	
Mass transitions		

Table 33 Sugar Core guarring allor LC-IVIS Inclaudia.	Table S3 Sugar	core quantification LC-MS r	netadata.
---	----------------	-----------------------------	-----------

Glucose	m/z 179 > 89
Dwell time	0.077 s
Cone voltage	16 V
Collision potential	10 V
¹³ C ₆ -glucose	<i>m/z</i> 185 > 92
Dwell time	0.077 s
Cone voltage	16 V
Collision potential	10 V
Sucrose	<i>m/z</i> 341 > 89
Dwell time	0.077 s
Cone voltage	40 V
Collision potential	22 V
¹³ C ₆ -sucrose	<i>m/z</i> 353 > 92
Dwell time	0.077 s
Cone voltage	40 V
Collision potential	22 V

Primer name	Oligonucleotide sequence	Efficiency (%)
RT_ASFF_F	CTACGCAGGCAGATGTAGAAA	00
RT_ASFF_R	ATCACTAGAAGGCAAGTGTAAGG	99
RT_EF-1a_F	TGCTGCTGTAACAAGATGGA	OF
RT_EF-1a_R	AGGGGATTTTGTCAGGGTTG	60
RT_actin_F	GGTCGTACCACTGGTATTGT	00
RT_actin_R	AAACGAAGAATGGCATGTGG	90
RT_ubiquitin_F	TCGTAAGGAGTGCCCTAATGCTGA	101
RT_ubiquitin_R	CAATCGCCTCCAGCCTTGTTGTAA	101
gDNA_EF-1a_F	GTTTGCTTTAATTCGTAGATGGAATTAATT	Ν/Δ
gDNA_EF-1a_R	CCA GTA GGG CCA AAG GTC ACA	IN/A

 Table S4 Oligonucleotide primers.

 Table S5 NMR metadata.

Analysis description		
Supervisor	Dr. Daniel Holmes	
Operator	Dr. Thilani Anthony	
Institution	Michigan State University	
Data and time of data acquisition	October 2019 - December 2019	
Sample description		
Field frequency lock	Chloroform- <i>d</i> ₁	
Additional solute	None	
Solvent	CDCl ₃ (600 µL 99.96 atom % D, Sigma-Aldrich)	
Chemical shift standard	CDCl ₃	
Concentration standard	None	
Instrument description		
Agilent DirectDrive2 500 MHz NMR		
Geographic location of the instrument	42.7288, -84.4745	
Magnet	499.70 MHz	
Probe	OneNMR Probe with Protune accessory for hands-off tuning	
Autosampler	7600AS 96 sample autosamplers	
Acquisition software	VnmrJ 3.2A	

Table S5 (cont'd)

Acquisition parameters				
Agilent DirectDrive2 500 MHz NMR				
a) Acquisition parameters file reference	 ¹H: VnmrJ/ Experiment Selector/ Common/ PROTON ¹³C: VnmrJ/ Experiment Selector/ Common/ CARBON HSQC: VnmrJ/ Experiment Selector/ Common/ (HC)HSQCAD HMBC: VnmrJ/ Experiment Selector/ Common/ (HC)gHMBCAD COSY: VnmrJ/ Experiment Selector/ Common/ (HH)gCOSY J-resolved: VnmrJ/ Experiment Selector/ Liquid/ JSpectra/ HOMO2DJ 			
b) Sample details	Tube: Kontes NMR tube, 8 in Temperature: 25 °C			
c) Instrument operation details	Radiation frequency: ¹ H: 499.90 ¹³ C: 125.71 HSQC: 499.90, 125.71 HMBC: 499.90, 125.71 COSY: 499.90, 499.90 J-resolved: 499.90 Acquisition nucleus: ¹ H: 90° = 7.9 μ s, ¹³ C: 90° = 10.20 μ s			
d) Number of data points acquired	¹ H: 16384 ¹³ C: 32768 HSQC: 1202, 128 HMBC: 1202,200 COSY: 674, 200 J-resolved: 2810, 64			
e) Data acquisition details	¹ H: number of scans: 32 ¹³ C: number of scans: 256 HSQC: t1 increments: 400; scan per t1 increment: 4 HMBC: t1 increments: 512; scan per t1 increment: 4-16 J-resolved: t1 increments: 128; scan per t1 increment: 16			

Table S5 (cont'd)

Spectral processing parameters		
Agilent DirectDrive2 500 MHz NMR		
a) Software	VnmrJ 3.2 A	
b) Process weighting	¹ H: LineBroaden ¹³ C: LineBroaden HSQC: gaussian (F2); gaussian (F1) HMBC: sqsinebell (F2); gaussian (F1) COSY: sqsinebell (F2); sqsinebell (F1) J-resolved: sinebell (F2); sinebell (F1)	

Figure S1 Quantification of acylsugars in 16 accessions of *S. pennellii*. Accessions are arranged left to right by latitude from north to south. (A) Total acylsugars. (B) Percent acylglucose accumulation. Results of ANOVA and Tukey's mean-separation test are indicated by letters; accessions that do not share at least one letter are significantly different from one another (p < 0.001, n = 6 for all accessions).

Figure S2 CID mass spectra of flavonoids extracted from *S. pennellii* analyzed by ES+ UHPLC-HR-MS. (A) Flavonoid A; (B) flavonoid B; (C) flavonoid C; (D) flavonoid D. See Table 4.3 for additional details.

HO 6' 5 4 OH HO 1' 2' OH HO 4 3' OH HO $1'$ 0 4' $00'$ $3'$ OH 0' $3'$ OH 0' $0'$ $00'$ $0'$ $00'$ $0'$ $00'$ $0'$ $0'$ $0'$ $0'$ $0'$ $0'$ $0'$	S3:12(4,4,4)Purified from S. pennellii LA0716Chemical Formula: $C_{24}H_{40}O_{14}$ HRMS: (ESI) m/z calculated for $C_{24}H_{40}O_{14}$ ([M+NH4] ⁺): 570.2756Experimental m/z : 570.2778InChI Key: LHNYRVYQFVCMPK-NPCJRIMBSA-NNMR (500 MHz CDCL)	
	Sample mass: 2 mg	
	Sumple muss. 2 mg	
Carbon #		¹³ C (ppm) (from HSQC and HMPC)
(group)	5.76 (d I = 4.0 Hz 1H)	
2 (CH)	4.86 (dd, J = 10.3, 4.0 Hz, 1H)	70.74
- 1 (CO)	-	176.72
- 2 (CH)	2.46 (hept, $J = 7.1$ Hz, 1H)	33.88
- 3,4 (CH ₃)	1.09 (d, J = 7.0 Hz, 6H)	18.87
3 (CH)	5.55 (t, J = 9.9 Hz, 1H)	69.10
- 1 (CO)	-	176.56
- 2 (CH)	2.53 (hept, $J = 7.0$ Hz, 1H)	33.85
-3,4 (CH ₃)	1.13 (d, J = 7.0 Hz, 6H)	18.86
(CH) = 1(CO)	4.93 ($t, J = 10.0 \text{ HZ}, 1\text{H}$)	08.44 176.16
-2(CH)	2.53 (hept $I = 7.0$ Hz 1H)	33.85
- 3.4 (CH ₃)	1.13 (d, J = 7.0 Hz, 6H)	18.86
5 (CH)	4.23 (m. 1H)	71.86
6 (CH ₂)	3.60 (m, 2H)	61.50
1' (CH ₂)	3.61 (m, 1H), 3.51 (d, J = 11.9 Hz, 1H)	64.41
2' (C)	-	104.44
3 ' (CH)	4.27 (m, 1H)	77.89
4' (CH)	4.27 (m, 1H)	73.10
5 ' (CH)	3.76 (m, 1H)	81.34
6 ' (CH ₂)	3.88 (d, J = 13.0 Hz, 1H), 3.75 (m, 1H)	60.13
	-	

Table S6 NMR chemical shifts for S3:12(4,4,4) Purified from *S. pennellii* LA0716.

Figure S3 ¹H NMR spectrum for S3:12(4,4,4) purified from *S. pennellii* LA0716.

Figure S4¹³C NMR spectrum for S3:12(4,4,4) purified from *S. pennellii* LA0716.

Figure S5 gCOSY NMR spectrum for S3:12(4,4,4) purified from *S. pennellii* LA0716.

Figure S6 gHSQCAD NMR spectrum for S3:12(4,4,4) purified from *S. pennellii* LA0716.

Figure S7 gHMBCAD NMR spectrum for S3:12(4,4,4) purified from S. pennellii LA0716.

Figure S8 ¹H-¹H HOMO2DJ NMR spectrum for S3:12(4,4,4) purified from *S. pennellii* LA0716.

HO_6' 5' 4' OH HO_1' 5' 4' OH HO_1' 3' OH HO_6' 5' OH HO_1' 2''OH HO_0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0	S3:18(4,4,10)-1 Purified from S. pennellii LA0716 Chemical Formula: $C_{30}H_{52}O_{14}$ HRMS: (ESI) m/z calculated for $C_{30}H_{52}O_{14}$ ([M+NH ₄] ⁺): 654.3695 Experimental m/z : 654 3699	
	InChI Key: DGVGFAZINI IXDI-ZCDL P	VLNSA-N
	NMR (500 MHz, CDCl ₃)	
	Samula massi 2 ma	
	Sample mass: 2 mg	
Carbon # (group)	¹ H (ppm)	¹³ C (ppm) (from HSQC and HMBC)
1 (CH)	5.77 (d, J = 4.0 Hz, 1H)	88.79
2 (CH)	4.84 (dd, <i>J</i> = 10.3, 4.0 Hz, 1H)	70.80
-1(CO)		176.59
- 2(CH) - 34(CH ₂)	2.55 (nept, J = 7.0 Hz, IH) 1 13 (d. $L = 7.0 \text{ Hz, 6H} \text{)}$	33.84 19.41
3 (CH)	5.56 (dd, J = 10.3 Hz, 1H)	69.06
- 1 (CO)	-	172.84
- 2 (CH ₂)	2.21 (t, J = 7.8 Hz, 2H)	34.28
- 3 (CH ₂)	1.52(m, 2H)	24.83
- 4,5,6 (CH ₂)	1.25 (m)	29.39
$- 7 (CH_2)$	1.13 (m)	38.93
- 8 (CH)	1.49 (m)	27.98
- 9,10 (CH3)	0.85 (m)	22.05
4 (CH)	4.91 (t, J = 10.4 Hz, 1H)	68.40
- 1 (CO)	-	176.16
- 2 (CH)	2.55 (hept, $J = 7.0$ Hz, 1H)	33.84
-3,4 (CH ₃)	1.13 (d, J = 7.0 Hz, 6H)	19.41
5 (CH)	4.21 (m. 1H)	71.89
6 (CH ₂)	3.61 (m, 2H)	61.51
1' (CH ₂)	3.60 (m, 1H), 3.52 (d, J = 12.0 Hz, 1H)	64.60
2′ (C)	-	104.52
3 ′ (CH)	4.25 (m, 1H)	78.18
4′ (CH)	4.31 (t, <i>J</i> = 8.4 Hz, 2H)	72.89
5' (CH)	3.74 (m, 1H)	81.39
6 ' (CH ₂)	$3.\overline{87}$ (d, $J = 13.0$ Hz, 1H), 3.74 (m, 1H)	60.02
	-	

Table S7 NMR chemical shifts for	53:18(4,4,10)-1 purified from <i>S. pennellii</i> LA0716.

Figure S9 ¹H NMR spectrum for S3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

Figure S10¹³C NMR spectrum for S3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

Figure S11 gCOSY NMR spectrum for S3:18(4,4,10)-1 purified from S. pennellii LA0716.

Figure S3.12 gHSQCAD NMR spectrum for S3:18(4,4,10)-1 purified from S. pennellii LA0716.

Figure S13 gHMBCAD NMR spectrum for S3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

Figure S14 ¹H-¹H HOMO2DJ NMR spectrum for S3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

HO 6' 5' 4' OH HO 1' 2'''OH HO 4' 3' 2''OH O'' 3' 2''OH O'' 3' 2''OH	S3:18(4,4,10)-2 Purified from <i>S. pennellii</i> LA0710 Chemical Formula: C ₃₀ H ₅₂ O ₁₄ HRMS: (ESI) <i>m/z</i> calculated for C ₃₀ H ₅₂ O ₁₄ ([M+N Experimental <i>m/z</i> : 654.3699 InChI Key: QCHCMGNIDJVBGL-ZCDLJ NMR (500 MHz, CDCl ₃) Sample mass: 2 mg	5 NH4] ⁺): 654.3695 YLNSA-N
Carbon # (group) 1 (CH)	¹ H (ppm) 5.77 (d, J = 4.0 Hz, 1H)	¹³ C (ppm) (from HSQC and HMBC) 88.81
$ \begin{array}{rcl} 2 \text{ (CH)} & & \\ & - & 1 \text{ (CO)} \\ & - & 2 \text{ (CH)} \\ & - & 3,4 \text{ (CH_3)} \end{array} $	4.83 (dd, $J = 10.3$, 4.0 Hz, 1H) - 2.55 (hept, $J = 7.0$ Hz, 1H) 1.13 (d, $J = 7.0$ Hz, 6H) 5.5((dd, $J = 7.0$ Hz, 6H)	70.81 176.89 33.85 18.91
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.56 (dd, $J = 10.0$ Hz, 1H) 2.21 (t, J = 7.6 Hz, 2H) 1.51 (pent, $J = 7.1$ Hz, 2H) 1.24 (m) 1.24 (m) 1.27 (m) 0.87 (t, $J = 6.9$ Hz, 3H)	69.02 172.70 34.11 24.79 29.31 38.93 22.56 14.06
4 (CH) - 1 (CO) - 2 (CH) - 3,4 (CH ₃) 5 (CH) 6 (CH ₂) 1' (CH ₂) 2' (C)	4.90 (t, J = 10.4 Hz, 1H) $-$ $2.55 (hept, J = 7.0 Hz, 1H)$ $1.13 (d, J = 7.0 Hz, 6H)$ $4.20 (m, 1H)$ $3.61 (m, 2H)$ $3.60 (m, 1H), 3.51 (d, J = 12.0 Hz, 1H)$ $-$	68.44 176.16 33.85 18.91 71.85 61.53 64.47 104.45
3' (CH) 4' (CH) 5' (CH) 6' (CH ₂)	$\begin{array}{r} 4.25 \text{ (m, 1H)} \\ \hline 4.30 \text{ (t, } J = 8.4 \text{ Hz, 2H)} \\ \hline 3.75 \text{ (m, 1H)} \\ \hline 3.89 \text{ (d, } J = 13.0 \text{ Hz, 1H)}, 3.74 \text{ (m, 1H)} \\ \hline - \end{array}$	78.27 72.99 81.40 60.02

 Table S8 NMR chemical shifts for S3:18(4,4,10)-2 purified from S. pennellii LA0716.

Figure S15 ¹H NMR spectrum for S3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

Figure S16¹³C NMR spectrum for S3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

Figure S17 gCOSY NMR spectrum for S3:18(4,4,10)-2 purified from S. pennellii LA0716.

Figure S18 gHSQCAD NMR spectrum for S3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

Figure S19 gHMBCAD NMR spectrum for S3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

Figure S20 ¹H-¹H HOMO 2DJ NMR spectrum for S3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

HO ₂ 6'	\$3:19(4,5,10)-1	
5, 4, OH	Purified from S. pennellii LA0716	
	Chemical Formula: C ₃₁ H ₅₄ O ₁₄	
	HRMS: (ESI) m/z calculated for C ₃₁ H ₅₄ O ₁₄ ([M+NH ₄] ⁺): 668.3852	
	Experimental <i>m/z</i> : 668.3856	
	InChI Key: WWMDOPWHTJPJMW-KSMF	YLDCSA-N
	NMR (500 MHz, CDCl ₃)	
	Sample mass: 2 mg	
		¹³ C (ppm)
Carbon #		(from HSOC
(group)	¹ H (ppm)	and HMBC)
1 (CH)	5.78 (d, J = 4.0 Hz, 1H)	88.80
2 (CH)	4.85 (dd J = 10.4 4.0 Hz 1H)	70.84
- 1 (CO)	-	176.77
- 2 (CH)	2.40 (sextet, $J = 6.8$ Hz, 1H)	40.61
$-3(CH_3)$	1.12 (m, 3H)	16.08
- 4 (CH ₂)	1.42, 1.60 (m, 2H)	26.78
$-5(CH_3)$	0.86 (t, $J = 7.3$ Hz, 3H)	11.42
3 (CH)	5.56 (t, J = 10.0 Hz, 1H)	69.00
- 1 (CO)	-	173.04
$- 2(CH_2)$	2.20 (t, J = 7.5 Hz, 2H)	34.16
- 3 (CH ₂)	1.51(m, 2H)	24.68
- 4,5,6 (CH ₂)	1.24 (m)	29.34
- 7 (CH ₂)	1.13 (m)	38.82
- 8 (CH)	1.48 (m)	28.08
- 9,10 (CH ₃)	0.85 (m)	22.71
4 (CH)	4.90 (t, $J = 10.0$ Hz, 1H)	68.49
- 1 (CO)	-	176.16
- 2 (CH)	2.53 (hept, $J = 7.0$ Hz, 1H)	34.03
- 3,4 (CH ₃)	1.11 (d, $J = 7.0$ Hz, 6H)	18.85
5 (CH)	4.20 (m, 1H)	71.85
6 (CH ₂)	3.60, 3.60 (m, 2H)	61.55
1' (CH ₂)	3.61 (m, 1H), 3.51 (d, <i>J</i> = 11.9 Hz, 2H)	64.60
2 ′ (C)	-	104.52
3 ′ (CH)	4.24 (m, 1H)	78.07
4′ (CH)	4.30 (t, $J = 8.5$ Hz, 1H)	72.96
5' (CH)	3.74 (m, 1H)	81.35
6 ' (CH ₂)	3.88 (d, J = 13.1 Hz, 1H), 3.74 (m, 1H)	60.06
- (2)		

 Table S9 NMR chemical shifts for S3:19(4,5,10)-1 purified from S. pennellii LA0716.

Figure S21 ¹H NMR spectrum for S3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

Figure S22 ¹³C NMR spectrum for S3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

Figure S23 gCOSY NMR spectrum for S3:19(4,5,10)-1 purified from S. pennellii LA0716.

Figure S24 gHSQCAD NMR spectrum for S3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

Figure S25 gHMBCAD NMR spectrum for S3:19(4,5,10)-1 purified from S. pennellii LA0716.

Figure S26 ¹H-¹H HOMO2DJ NMR spectrum for S3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

HO 6' 5' 4' OH HO 1' 2' OH HO 4 2' OH HO 4 2' OH HO 6 5 0 1 0 1 0 0' 3 2' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S3:19(4,5,10)-2 Purified from <i>S. pennellii</i> LA0716 Chemical Formula: C ₃₁ H ₅₄ O ₁₄ HRMS: (ESI) <i>m/z</i> calculated for C ₃₁ H ₅₄ O ₁₄ ([M+NH ₄] ⁺): 668.3852 Experimental <i>m/z</i> : 668.3855 InChI Key: GPWDXGGZLQIWLR-KSMFYLDCSA-N NMR (500 MHz, CDCl ₃) Sample mass: 2 mg		
Carbon #		¹³ C (ppm)	
(group)	¹ H (ppm)	(from HSQC and HMBC)	
1 (CH)	5.78 (d, J = 4.0 Hz, 1H)	88.86	
2 (CH)	4.85 (dd, J = 10.4, 4.0 Hz, 1H)	70.68	
- 1 (CO)	-	176.81	
- 2 (CH)	2.40 (sextet, J = 6.8 Hz, 1H)	40.57	
$- 3 (CH_3)$	1.13 (m, 3H)		
$- 4 (CH_2)$	1.45, 1.61 (m, 2H) 0.87 (t_{1} = 7.2 H = 2H)	20.02	
- 3 (CH ₃)	0.8 / (1, J = /.5 HZ, 5 H)	11.30	
3 (CH)	5.56 (t, J = 10.0 Hz, 1H)	68.48	
- 1 (CO)	-	172.64	
- 2 (CH ₂)	2.20 (t, J = 7.5 Hz, 2H)	34.07	
- 3 (CH ₂)	1.51(m, 2H)	24.75	
- 4,5,6,7 (CH ₂)	1.25 (m)	29.26	
- 8 (CH ₂)	1.24 (m)	31.92	
- 9 (CH ₂)	1.25 (m)	22.49	
- 10 (CH ₃)	0.87 (m)	14.13	
4 (CH)	4.91 (t, <i>J</i> = 10.0 Hz, 1H)	68.48	
-1(CO)		176.16	
-2(CH)	2.54 (hept, $J = 6.84$ Hz, 1H)	33.86	
- 3,4 (CH ₃)	1.13 (d, $J = 6.84$ Hz, 6H)	18.82	
5 (CH)	4.20 (m, 1H)	71.92	
6 (CH ₂)	3.60, 3.60 (m, 2H)	61.51	
1' (CH ₂)	3.61, 3.51 (d, <i>J</i> = 11.9 Hz, 2H)	64.56	
2′ (C)	-	104.45	
3 ′ (CH)	4.24 (m, 1H)	78.32	
4′ (CH)	4.31 (t, <i>J</i> = 8.4 Hz, 2H)	72.98	
5' (CH)	3.75 (m, 1H)	81.43	
6' (CH ₂)	3.87 (d, <i>J</i> = 13.1 Hz, 1H), 3.74 (m, 1H)	60.09	
	-		

 Table S10 NMR chemical shifts for S3:19(4,5,10)-2 purified from S. pennellii LA0716.

Figure S27 ¹H NMR spectrum for S3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

Figure S28¹³C NMR spectrum for S3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

Figure S29 gCOSY NMR spectrum for S3:19(4,5,10)-2 purified from S. pennellii LA0716.

Figure S30 gHSQCAD NMR spectrum for S3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

Figure S31 gHMBCAD NMR spectrum for S3:19(4,5,10)-2 purified from S. pennellii LA0716.

Figure S32 ¹H-¹H HOMO 2DJ NMR spectrum for S3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

$HO \xrightarrow{4} \underbrace{5}_{2''O} \xrightarrow{1}_{2''O} \xrightarrow{1}_{1''O} \xrightarrow{1''O} $	G3:12(4,4,4) Purified from <i>S. pennellii</i> LA0716 Chemical Formula: C ₁₈ H ₃₀ O ₉ HRMS: (ESI) <i>m/z</i> calculated for C ₁₈ H ₃₀ O ₉ ([M+NH ₄] ⁺): 408.2228 Experimental <i>m/z</i> : 408.2235 InChI Key: NVEWKQZGZJWFKH-SXHVGMSVSA-N InChI Key (α): NVEWKQZGZJWFKH-VKNNWULWSA-N InChI Key (b): NVEWKQZGZJWFKH-MSGZUBATSA-N NMR (500 MHz, CDCl ₃) Sample mass: 2 mg			
Carbon # (group)	$\frac{^{1}\text{H}(\text{ppm})}{\alpha \qquad \beta}$		$\begin{array}{c c} & {}^{13}C \text{ (ppm)} \\ (\text{from HSQC and} \\ & \text{HMBC)} \\ \hline \alpha & \beta \\ \hline & 00.29 \\ \hline \end{array} $	
2 (CH) - 1 (CO) - 2 (CH)	5.49 (d, J = 3.7 Hz) 4.91 (m) 2.49 (hept, $J = 7.0 Hz$)	4.74 (d, $J = 7.6$ Hz) 4.89 (m) - 2.49 (hept, $J = 7.0$ Hz)	90.28 71.06 175.83 33.93	95.75 73.30 175.83 33.93
- 3,4 (CH ₃) 3 (CH) - 1 (CO) - 2 (CH) - 3,4 (CH ₃)	1.10 (m) 5.67 (t, $J = 9.9$ Hz) - 2.56 (hept, $J = 7.0$ Hz) 1.14 (m)	1.10 (m) 5.39 (t, $J = 9.7$ Hz) 2.56 (hept, $J = 7.0$ Hz) 1.14 (m)	18.87 68.67 175.91 33.87 18.85	18.87 71.21 175.91 33.87 18.85
4 (CH) - 1 (CO) - 2 (CH) - 3,4 (CH ₃)	5.02 (t, $J = 9.7$ Hz) 2.49 (hept, $J = 7.0$ Hz) 1.10 (m)	5.02 (t, J = 9.7 Hz) 2.49 (hept, J = 7.0 Hz) 1.10 (m)	68.53 176.83 33.93 18.87	68.53 176.83 33.93 18.87
5 (CH)	4.08 (ddd, J = 10.3, 4.2, 2.3 Hz)	3.58 (m)	69.47	74.54
6 (CH ₂)	3.57, 3.68 (m)	3.57, 3.68 (m)	61.05	61.05

Table S11 NMR chemical shifts for G3:12(4,4,4) purified from *S. pennellii* LA0716.

Figure S35 gCOSY NMR spectrum for G3:12(4,4,4) purified from S. pennellii LA0716.

Figure S36 gHSQCAD NMR spectrum for G3:12(4,4,4) purified from S. pennellii LA0716.

Figure S37 gHMBCAD NMR spectrum for G3:12(4,4,4) purified from *S. pennellii* LA0716.

LA0716.

HO 6 5 O MOH	G3:18(4,4,10)-1			
	Purifie	d from <i>S. pennellii</i> LA0716		
	Chemical Formula: C ₂₄ H ₄₂ O ₉			
	HRMS: (ESI) m/z calculated for $C_{24}H_{42}O_9([M+NH_4]^+)$: 492.3167			
	Experimental <i>m/z</i> : 492.3168			
	InChI Key: YTHLWGABNVZNEQ-QGZVAWBXSA-N InChI Key (α): YTHLWGABNVZNEQ-MJALHYBGSA-N InChI Key (β): YTHLWGABNVZNEQ-UKMCQSRUSA-N			
	NMR (500 MHz, CDCl ₃)			
	Sample mass: 2 mg			
	¹ H (npm)		¹³ C (ppm) (from HSQC and HMBC)	
Carbon #	α	β	α	β
(group) 1 (CH)	5.50 (d, J = 3.7 Hz, 1H)	4.75 (d, <i>J</i> = 8.1 Hz, 1H)	90.25	95.78
2 (CH) - 1 (CO) - 2 (CH) - 3,4 (CH ₃)	4.88 (dd, J = 9.9, 3.7 Hz) - 2.56 (hept, J = 7.0 Hz) 1.14 (m)	4.85 (m) 2.56 (hept, <i>J</i> = 7.0 Hz) 1.14 (m)	71.13 176.73 33.92 18.82	73.44 176.73 33.92 18.82
3 (CH) - 1 (CO) - 2 (CH ₂) - 3 (CH ₂) - 4,5,6 (CH ₂) - 7 (CH ₂) - 8 (CH) - 9,10 (CH ₃)	5.69 (t, $J = 9.9 \text{ Hz}$) 2.23 (t, $J = 7.4 \text{ Hz}$) 1.54(m) 1.25(m) 1.24 (m) 1.50 (m) 0.85 (d, $J = 6.6 \text{ Hz}, 6\text{H}$)	5.41 (t, J = 9.6 Hz) 2.23 (t, J = 7.4 Hz) 1.54(m) 1.25(m) 1.24 (m) 1.50 (m) 0.85 (d, J = 6.6 Hz, 6H)	68.83 172.62 34.09 24.84 29.37 27.15 27.93 22.65	71.15 172.62 34.09 24.84 29.37 27.15 27.93 22.65
4 (CH) - 1 (CO) - 2 (CH) - 3,4 (CH ₃)	5.02 (m) - 2.56 (hept, J = 7.0 Hz) 1.14 (m)	5.02(m) - 2.56 (hept, J = 7.0 Hz) 1.14 (m)	68.53 176.73 33.92 18.82	68.53 176.73 33.92 18.82
5 (CH)	4.06 (ddd, <i>J</i> = 10.2, 4.0, 2.2 Hz)	3.56 (m)	69.53	74.52
6 (CH ₂)	3.53, 3.66 (m)	3.53, 3.66 (m)	61.00	61.00

 Table S12 NMR chemical shifts for G3:18(4,4,10)-1 purified from S. pennellii LA0716.

Figure S41 gCOSY NMR spectrum for G3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

Figure S42 gHSQCAD NMR spectrum for G3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

(mqq) โî

Figure S43 gHMBCAD NMR spectrum for G3:18(4,4,10)-1 purified from *S. pennellii* LA0716.

LÃ0716.

Table S13 NMR chemical shifts for G3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

6 5,0 ~OH	G3:18(4,4,10)-2				
	Purified from S. pennellii LA0716				
	Chemical Formula: C ₂₄ H ₄₂ O ₉				
	HRMS: (ESI) m/z calculated for C ₂₄ H ₄₂ O ₉ ([M+NH ₄] ⁺): 492.3167			.3167	
	Experimental <i>m/z</i> : 492.3170				
	InChI Key: LJSYEIZIEREFSJ-QGZVAWBXSA-N InChI Key (a): LJSYEIZIEREFSJ-MJALHYBGSA-N InChI Key (b): LJSYEIZIEREFSJ-UKMCQSRUSA-N				
	NMR (500 MHz, CDCl ₃)				
	Sample mass: 2 mg				
	¹ H (ppm)			¹³ C (ppm) (from HSQC and HMBC)	
Carbon # (group)	α	β	α	β	
1 (CH)	5.50 (d, <i>J</i> = 3.4 Hz)	4.75 (d, <i>J</i> = 8.1 Hz)	90.29	95.77	
2 (CH)	4.86 (dd, <i>J</i> = 10.0, 3.4 Hz)	4.85 (m)	71.15	73.48	
- 1 (CO) - 2 (CH) - 3,4 (CH ₃)	2.56 (hept, $J = 7.0$ Hz) 1.15 (m)	2.56 (hept, J = 7.0 Hz) 1.15 (m)	176.83 33.89 18.79	176.83 33.89 18.79	
3 (CH)	5.69 (t, $J = 10.0 \text{ Hz}$)	5.40 (t, J = 9.7 Hz)	68.83 172.82	71.13	
$\begin{array}{c} - 2 (CH_2) \\ - 3 (CH_2) \\ - 4 CH_2 \end{array}$	2.23 (t, $J = 7.4$ Hz) 1.53(m)	2.23 (t, $J = 7.4$ Hz) 1.53(m)	34.10 24.82	34.10 24.82	
$ \begin{array}{cccc} - & 4,5,6,7 (CH_2) \\ - & 8 (CH_2) \\ - & 9 (CH_2) \end{array} $	1.24(m) 1.24 (m) 1.28 (m)	1.24(m) 1.24 (m) 1.28 (m)	29.20 31.79 22.70	29.20 31.79 22.70	
- 10 (CH ₃)	0.88 (t, J = 7.0 Hz)	0.88 (t, J = 7.0 Hz)	14.06	14.06	
4 (CH) - 1 (CO)	5.02 (m)	5.02(m)	68.54 176.83	68.54 176.83	
- 2 (CH) - 3,4 (CH ₃)	2.56 (hept, J = 7.0 Hz) 1.15 (m)	2.56 (hept, J = 7.0 Hz) 1.15 (m)	33.89 18.79	33.89 18.79	
5 (CH)	4.07 (ddd, <i>J</i> = 10.2, 4.0, 2.3 Hz)	3.56 (m)	69.57	74.53	
6 (CH ₂)	3.57, 3.68 (m)	3.57, 3.68 (m)	61.06	61.06	

Figure S47 gCOSY NMR spectrum for G3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

Figure S48 gHSQCAD NMR spectrum for G3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

(mqq) fì

Figure S49 gHMBCAD NMR spectrum for G3:18(4,4,10)-2 purified from *S. pennellii* LA0716.

HO 5 O POHO	G3:19(4,5,10)-1				
	Purified from S. pennellii LA0716				
	Chemical Formula: C ₂₄ H ₄₂ O ₉				
	HRMS: (ESI) m/z calculated for C ₂₄ H ₄₂ O ₉ ([M+NH ₄] ⁺): 506.3324				
	Experimental m/z: 506.3328				
	InChI Key: UCMUJVLLMOVWPV-VSLCRTCVSA-N InChI Key (α): UCMUJVLLMOVWPV-ONCJQFAMSA-N InChI Key (β): UCMUJVLLMOVWPV-MBFSEYTRSA-N				
	NN	MR (500 MHz, CDCl ₃)			
	Sample mass: 2 mg				
	1 H (nom)			¹³ C (ppm) (from HSQC and HMBC)	
Carbon #	α	ß	α	ß	
(group)	5.51(1 L - 2(1L))	P	00.20	P 05.96	
I (CH)	5.51 (d, J = 3.6 HZ)	4. /4 (d, $J = 8.1$ HZ)	90.29	95.86	
2 (CH)	4.88 (m)	4.87 (m)	71.17	73.35	
- 1 (CO)	-	-	176.22	176.22	
- 2 (CH)	2.41 (sextet, $J = 6.9$ Hz)	2.41 (sextet, $J = 6.9$ Hz)	40.92	40.92	
$-3(CH_3)$	1.13 (m, 5H) 1.45 + 1.65 (m, 2H)	1.15 (M, 5H) 1.45 + 1.65 (m, 2H)	10.33	10.33	
$- 4(CH_2)$	0.88 (t I = 7.3 Hz 3H)	0.88 (t I = 7.3 Hz 3H)	20.49	11 50	
- 5 (CH3)	0.00 (1, 5 7.5 112, 511)	0.00(1, 3, 7.5112, 511)	11.50	11.50	
3 (CH)	5.69 (t, J = 9.9 Hz)	5.41 (t, J = 9.6 Hz)	68.69	71.09	
- 1 (CO)	-	-	172.71	172.71	
- 2 (CH ₂)	2.23 (t, $J = 7.4$ Hz)	2.23 (t, J = 7.4 Hz)	34.05	34.05	
- 3 (CH ₂)	1.54(m)	1.54(m)	24.76	24.76	
-4,5,6 (CH ₂)	1.25(m)	1.25(m)	29.27	29.27	
- 7 (CH ₂)	1.24 (m)	1.24 (m)	27.22	27.22	
- 8 (CH)	1.50 (m)	1.50 (m)	27.88	27.88	
- 9,10 (CH ₃)	0.88 (d, J = 7.0 HZ, 0H)	0.88 (a, J = 7.0 Hz, 6H)	22.48	22.48	
4 (CH)	5.04 (m)	5.04(m)	68.55	68.55	
- 1 (CO)	-	-	176.73	176.73	
- 2 (CH)	2.54 (hept, J = 7.0 Hz)	2.54 (hept, J = 7.0 Hz)	33.98	33.98	
- 3,4 (CH ₃)	1.13 (m)	1.13 (m)	18.31	18.31	
5 (CH)	4.07 (ddd, <i>J</i> = 10.2, 4.0,	3.58 (m)	69.49	74.58	
	2.2 Hz)				
6 (CH ₂)	3.58, 3.69 (m)	3.58, 3.69 (m)	61.10	61.10	

Table S14 NMR chemical shifts for G3:19(4,5,10)-1 purified from S. pennellii LA0716.

Figure S53 gCOSY NMR spectrum for G3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

Figure S54 gHSQCAD NMR spectrum for G3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

Figure S55 gHMBCAD NMR spectrum for G3:19(4,5,10)-1 purified from *S. pennellii* LA0716.

	G3:19(4,5,10)-2			
	Purified from S. pennellii LA0716			
	Chemical Formula: C ₂₄ H ₄₂ O ₉			
	HRMS: (ESI) m/z calculated for C ₂₄ H ₄₂ O ₉ ([M+NH ₄] ⁺): 506.3324			3324
	Experimental m/z: 506.3328			
	InChI Key: FUSUEACFDRZDFT-VSLCRTCVSA-N InChI Key (a): FUSUEACFDRZDFT-ONCJQFAMSA-N InChI Key (b): FUSUEACFDRZDFT-MBFSEYTRSA-N			N N
	NMR (500 MHz, CDCl ₃)			
	Sample mass: 2 mg			
<i>.</i>	¹ H (ppm)		¹³ C (ppm) (from HSQC and HMBC)	
Carbon #	α	β	α	β
1 (CH)	5.51 (d, <i>J</i> = 3.1 Hz)	4.74 (d, <i>J</i> = 7.6 Hz)	90.25	95.82
2 (CH) - 1 (CO) - 2 (CH)	4.87 (m) - 2.41 (sextet, $J = 7.0 \text{ Hz}$)	4.86 (m) - 2.41 (sextet, $J = 7.0 \text{ Hz}$)	71.13 176.22 40.86	73.31 176.22 40.86
$\begin{array}{rrr} - & 3 (CH_3) \\ - & 4 (CH_2) \end{array}$	1.13 (m, 3H) 1.45, 1.65 (m, 2H)	1.13 (m, 3H) 1.45, 1.65 (m, 2H)	16.35 26.53	16.35 26.53
- 5 (CH ₃)	0.89 (t, J = 7.3 Hz, 3H)	0.89 (t, J = 7.3 Hz, 3H)	11.76	11.76
3 (CH) - 1 (CO) - 2 (CH ₂)	5.68 (t, $J = 9.6$ Hz) - 2.13 (t $J = 7.4$ Hz)	5.41 (t, $J = 9.7$ Hz) 	68.66 172.62 34.08	71.01 172.62 34.08
$\begin{array}{c} - 3 (CH_2) \\ - 4,5,6,7 (CH_2) \\ - 8 (CH_2) \end{array}$	1.53(m) 1.25(m) 1.24 (m)	1.53(m) 1.25(m) 1.24 (m)	25.13 29.33	25.13 29.33
$\begin{array}{ccc} - & 8 (CH_2) \\ - & 9 (CH_2) \\ - & 10 (CH_3) \end{array}$	1.24 (m) 1.25 (m) 0.88 (t, $J = 7.0$ Hz)	1.24 (m) 1.25 (m) 0.88 (t, J = 7.0 Hz)	32.21 22.56 14.07	22.56 14.07
4 (CH)	5.02 (t, $J = 9.7$ Hz)	5.02 (t, <i>J</i> = 9.7 Hz)	68.53	68.53
$\begin{array}{ccc} - & 1 (CO) \\ - & 2 (CH) \\ - & 3,4 (CH_3) \end{array}$	2.54 (hept, $J = 7.0$ Hz) 1.14 (m)	2.54 (hept, J = 7.0 Hz) 1.14 (m)	176.83 33.60 18.82	176.83 33.60 18.82
5 (CH)	4.04 (ddd, <i>J</i> = 10.2, 4.0, 2.2 Hz)	3.56 (m)	69.49	74.55
6 (CH ₂)	3.57, 3.68 (m)	3.57, 3.68 (m)	60.95	60.95

 Table S15 NMR chemical shifts for G3:19(4,5,10)-2 purified from S. pennellii LA0716.

Figure S59 gCOSY NMR spectrum for G3:19(4,5,10)-2 purified from S. pennellii LA0716.

Figure S60 gHSQCAD NMR spectrum for G3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

Figure S61 gHMBCAD NMR spectrum for G3:19(4,5,10)-2 purified from *S. pennellii* LA0716.

Figure S63 S-plot of metabolite features resulting from the OPLS-DA model of north and south region accessions.

Compound	North-South	North-South
	load	corr
G3:15(5,5,5)b	-4.20E-01	-8.09E-01
G3:21(5,5,11)a	-7.67E-02	-7.55E-01
G3:15(5,5,5)a	-3.15E-01	-7.51E-01
G3:21(5,5,11)b	-1.15E-01	-7.46E-01
S3:21(5,5,11)	-1.55E-01	-7.33E-01
G3:16(5,5,6)a	-1.04E-01	-6.89E-01
S3:16(5,5,6)	-7.95E-03	-6.09E-01
S3:20(5,5,10)	-1.89E-01	-6.05E-01
G3:23(5,6,12)a	-2.87E-02	-6.04E-01
S3:15(5,5,5)	-1.51E-02	-6.01E-01
G3:23(5,6,12)b	-3.79E-02	-5.90E-01
G3:16(5,5,6)b	-1.24E-01	-5.85E-01
G3:22(5,5,12)a	-7.71E-02	-5.80E-01
G3:22(5,5,12)b	-1.12E-01	-5.53E-01
S3:23(5,6,12)	-7.65E-02	-5.53E-01
S3:22(5,5,12)	-2.16E-01	-5.51E-01
G3:20(5,5,10)a	-1.52E-01	-5.11E-01
G3:20(5,5,10)b	-2.02E-01	-4.73E-01
G3:14(4,5,5)	-4.29E-02	-1.34E-01
flavonoid C	-2.53E-03	-7.77E-02
flavonoid A	2.27E-03	4.50E-02
S3:21(4,5,12)	1.23E-02	8.82E-02
G3:19(4,5,10)-1a	2.44E-02	9.94E-02
S3:14(4,5,5)	7.20E-03	2.26E-01
S3:12(4,4,4)	9.82E-03	2.45E-01
S3:13(4,4,5)	1.81E-02	2.59E-01
G4:14(2,4,4,4)b	1.77E-02	2.70E-01
G4:15(2,4,4,5)	1.32E-02	2.95E-01
G3:17(4,5,8)-1a	4.68E-02	3.01E-01
S3:19(4,5,10)-1	8.45E-02	3.13E-01
G3:18(4,4,10)-1a	1.15E-01	3.22E-01
S3:20(4,4,12)	4.13E-02	3.23E-01
G4:14(2,4,4,4)a	1.87E-02	3.34E-01
G3:21(4,5,12)b	4.16E-02	3.42E-01
S3:18:(4,4,10)-1	1.06E-01	3.50E-01
G3:21(4,5,12)a	2.99E-02	3.59E-01
S3:17(4,5,8)	2.33E-02	3.62E-01

Table S16 Loadings and correlation values for 54 metabolite features from the North range/South range OPLS-DA model.

 Table S16 (cont'd)

Compound	North-	North-South
Compound	South load	corr
G3:16(4,4,8)-1a	8.70E-02	3.65E-01
flavonoid B	3.41E-02	3.74E-01
S3:16(4,4,8)	2.02E-02	3.77E-01
flavonoid D	1.70E-02	3.78E-01
S3:19(4,5,10)-2	4.70E-02	3.90E-01
G3:17(4,5,8)-2b	5.52E-02	4.03E-01
G3:17(4,5,8)-1b/2a	1.18E-01	4.07E-01
S3:17(4,4,9)	1.44E-02	4.13E-01
G3:16(4,4,8)-1b/2a	1.38E-01	4.16E-01
G3:16(4,4,8)-2b	5.74E-02	4.25E-01
G3:20(4,4,12)	6.97E-02	4.83E-01
S3:18(4,4,10)-2	3.86E-02	5.04E-01
G3:18(4,4,10)-2b	1.47E-01	5.52E-01
G3:19(4,5,10)-1b/2a	2.43E-01	5.70E-01
G3:18(4,4,10)-1b/2a	2.66E-01	6.63E-01
G3:13(4,4,5)	3.87E-01	8.66E-01
G3:12(4,4,4)	2.81E-01	8.75E-01

Figure S64 S-plot of metabolite features resulting from the OPLS-DA model of Pisco and Atico region accessions.

Compound	Pisco-	Pisco-Atico
Compound	Atico load	corr
G3:16(4,4,8)-1b/2a	-4.00E-01	-7.11E-01
G3:17(4,5,8)-2b	-1.61E-01	-6.99E-01
G3:17(4,5,8)-1b/2a	-3.41E-01	-6.95E-01
G3:16(4,4,8)-2b	-1.56E-01	-6.86E-01
G3:17(4,5,8)-1a	-1.78E-01	-6.63E-01
G3:16(4,4,8)-1a	-2.59E-01	-6.35E-01
S3:17(4,4,9)	-3.41E-02	-5.81E-01
S3:17(4,5,8)	-6.27E-02	-5.70E-01
G3:12(4,4,4)	-2.43E-01	-5.68E-01
S3:16(4,4,8)	-5.15E-02	-5.62E-01
G3:13(4,4,5)	-3.16E-01	-5.25E-01
G3:16(5,5,6)b	-9.77E-02	-4.50E-01
G4:15(2,4,4,5)	-2.85E-02	-3.75E-01
G4:14(2,4,4,4)a	-3.73E-02	-3.50E-01
G4:14(2,4,4,4)b	-3.76E-02	-3.44E-01
G3:14(4,5,5)	-3.52E-02	-1.45E-01
S3:18(4,4,10)-2	-1.43E-02	-1.12E-01
S3:16(5,5,6)	-7.72E-04	-4.09E-02
G3:16(5,5,6)a	2.47E-02	1.87E-03
G3:15(5,5,5)b	8.78E-02	4.38E-03
S3:19(4,5,10)-2	7.59E-03	4.34E-02
flavonoid C	3.39E-03	5.54E-02
flavonoid D	7.23E-03	7.15E-02
G3:15(5,5,5)a	8.36E-02	1.01E-01
S3:23(5,6,12)	2.67E-02	1.14E-01
flavonoid B	3.11E-02	1.67E-01
S3:22(5,5,12)	8.00E-02	1.68E-01
S3:21(5,5,11)	3.64E-02	1.77E-01
G3:18(4,4,10)-2b	9.00E-02	1.98E-01
G3:23(5,6,12)b	1.40E-02	2.15E-01
G3:23(5,6,12)a	1.06E-02	2.27E-01
G3:18(4,4,10)-1b/2a	1.65E-01	2.61E-01
G3:19(4,5,10)-1b/2a	2.19E-01	3.11E-01
G3:18(4,4,10)-1a	1.81E-01	3.15E-01

Table S17 Loadings and correlation values for 54 metabolite features from the Pisco region/Atico

 region OPLS-DA model.

 Table S17 (cont'd)

Compound	Pisco-Atico	Pisco-Atico
Compound	load	corr
G3:19(4,5,10)-1a	1.30E-01	3.27E-01
G3:20(5,5,10)b	8.16E-02	3.32E-01
S3:20(5,5,10)	6.48E-02	3.36E-01
G3:22(5,5,12)b	6.05E-02	3.45E-01
G3:22(5,5,12)a	3.94E-02	3.46E-01
S3:12(4,4,4)	2.64E-02	3.48E-01
S3:15(5,5,5)	6.74E-03	3.54E-01
S3:13(4,4,5)	4.79E-02	3.64E-01
S3:19(4,5,10)-1	1.70E-01	3.71E-01
G3:21(5,5,11)b	3.96E-02	3.73E-01
G3:21(5,5,11)a	3.01E-02	3.77E-01
S3:18:(4,4,10)-1	2.00E-01	3.88E-01
S3:14(4,5,5)	2.16E-02	3.91E-01
G3:20(5,5,10)a	8.39E-02	3.93E-01
S3:20(4,4,12)	8.91E-02	4.04E-01
S3:21(4,5,12)	1.01E-01	4.22E-01
G3:20(4,4,12)	1.13E-01	4.38E-01
flavonoid A	3.69E-02	4.48E-01
G3:21(4,5,12)b	1.01E-01	4.72E-01
G3:21(4,5,12)a	7.07E-02	4.78E-01

Figure S65 S-plot of metabolite features resulting from the OPLS-DA model of LA2963 and and the other Atico group accessions. Class 1 = main Atico group accessions; Class 2 = LA2963.

Table S18 Loadings and correlation values for 54 metabolite features from the intraregion Atico OPLS-DA model.

Compound	Atico-	Atico-LA2963
Compound	LA2963 load	corr
G3:19(4,5,10)-1b/2a	-3.78E-01	-8.04E-01
G3:18(4,4,10)-2b	-2.17E-01	-7.63E-01
G3:20(4,4,12)	-1.30E-01	-7.49E-01
G3:18(4,4,10)-1b/2a	-3.38E-01	-7.39E-01
flavonoid A	-4.11E-02	-6.69E-01
flavonoid C	-2.22E-02	-6.52E-01
G3:19(4,5,10)-1a	-1.91E-01	-6.52E-01
G3:21(4,5,12)a	-6.74E-02	-6.36E-01
G3:21(4,5,12)b	-9.85E-02	-6.35E-01
G3:17(4,5,8)-2b	-2.37E-02	-5.89E-01
G3:18(4,4,10)-1a	-2.69E-01	-5.86E-01
G3:17(4,5,8)-1b/2a	-1.52E-02	-5.65E-01
flavonoid D	-2.98E-02	-5.21E-01
G3:20(5,5,10)a	-8.81E-02	-4.99E-01
flavonoid B	-5.79E-02	-4.76E-01
G3:16(4,4,8)-2b	-7.17E-03	-4.70E-01
G3:20(5,5,10)b	-8.84E-02	-4.14E-01
G3:16(4,4,8)-1b/2a	-7.23E-03	-3.92E-01
G3:21(5,5,11)a	-2.42E-02	-3.55E-01
G3:21(5,5,11)b	-3.11E-02	-3.48E-01
G3:22(5,5,12)a	-2.61E-02	-3.34E-01
G3:22(5,5,12)b	-3.84E-02	-3.21E-01
G3:16(4,4,8)-1a	-4.87E-03	-2.84E-01
G4:14(2,4,4,4)a	-1.83E-03	-2.78E-01
G3:23(5,6,12)a	-7.70E-03	-2.73E-01
G3:23(5,6,12)b	-1.01E-02	-2.66E-01
G4:14(2,4,4,4)b	-4.50E-03	-2.27E-01
\$3:16(5,5,6)	-1.90E-03	-2.22E-01
\$3:23(5,6,12)	-1.79E-02	-2.20E-01
G3:16(5,5,6)a	-1.96E-02	-2.15E-01
G3:15(5,5,5)b	-7.07E-02	-2.06E-01
G3:15(5,5,5)a	-5.50E-02	-1.88E-01
G3:14(4,5,5)	-2.56E-02	-1.43E-01
G4:15(2,4,4,5)	-5.00E-04	-9.65E-02

Table S18 (cont'd)

Compound	Atico-LA2963	Atico-LA2963
	load	corr
G3:16(5,5,6)b	-2.49E-02	7.43E-02
S3:21(5,5,11)	-2.10E-02	1.84E-01
S3:22(5,5,12)	-3.17E-02	1.99E-01
G3:17(4,5,8)-1a	3.77E-03	2.85E-01
G3:12(4,4,4)	1.25E-01	5.20E-01
G3:13(4,4,5)	1.99E-01	5.22E-01
S3:20(5,5,10)	4.53E-02	5.57E-01
S3:15(5,5,5)	9.00E-03	6.36E-01
S3:12(4,4,4)	4.52E-02	7.82E-01
S3:13(4,4,5)	8.35E-02	8.27E-01
S3:16(4,4,8)	1.42E-02	8.70E-01
S3:18(4,4,10)-2	7.11E-02	8.78E-01
S3:14(4,5,5)	3.83E-02	8.82E-01
S3:17(4,5,8)	1.61E-02	9.10E-01
S3:17(4,4,9)	2.07E-02	9.36E-01
S3:20(4,4,12)	1.73E-01	9.41E-01
S3:21(4,5,12)	1.91E-01	9.55E-01
S3:19(4,5,10)-2	1.35E-01	9.59E-01
S3:19(4,5,10)-1	3.85E-01	9.92E-01
S3:18:(4,4,10)-1	4.30E-01	9.97E-01