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Abstract: Dihydrofolate reductase (DHFR), an essential enzyme in the folate pathway, is a potential
target for new anti-tuberculosis drugs. Fifteen crystal structures of Mycobacterium tuberculosis DHFR
complexed with NADPH and various inhibitors are available in the RCSB Protein Data Bank, but none
of them is a substrate binding structure. Therefore, we performed molecular dynamics simulations
on ternary complexes of M. tuberculosis DHFR:NADPH with a substrate (dihydrofolate) and each
of three competitive inhibitors in 2,4-diaminopyrimidine series (P1, P157, and P169), in order to
gain insight into the inhibition-mechanism of DHFR in the folate pathway. The binding energy and
thermodynamics values of each system were calculated by the Molecular Mechanics/Generalized
Born Surface Area (MM/GBSA) method. The dynamics of the enzyme and the motion of each amino
acid residue at the active site were examined. The key factors that promote the binding of P157 and
P169 on M. tuberculosis DHFR (mtbDHFR) reveal opportunities for using these compounds as novel
anti-tuberculosis drugs.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Treatment of TB
requires taking a combination of drugs for at least six to nine months. Due to the long treatment time,
improper use of these drugs can promote the development of drug-resistant M. tuberculosis strains.
In 2015, the World Health Organization reported that 1.4 million people died from multidrug-resistant
TB (MDR-TB) with up to 480,000 new cases of MDR-TB globally [1]. According to the rapid
growth of MDR-TB and the fatality of the disease, the development of high efficacy drugs for TB is
urgently needed.

Dihydrofolate reductase (DHFR) is a notable drug target for the design of anti-malarial [2],
anti-bacterial [3], and anti-cancer [4] drugs. DHFR is an enzyme necessary for the folate biosynthesis
pathway in eukaryotic and prokaryotic cells [5–8]. The enzyme DHFR catalyzes the reduction of
7,8-dihydrofolate (DHF) to the product 5,6,7,8-tetrahydrofolate (THF) by hydride transfer from the
NADPH cofactor. The product THF is a precursor for the synthesis of RNA, DNA, and protein
to promote the cell growth and proliferation of living organisms [9]. Mostly, inhibitors of DHFR
inhibit the enzyme by competitive inhibition, which involves binding to the active site of a substrate,
specifically, a non-allosteric site. However, few cases of inhibitor are bind to allosteric site on the
enzyme surface [10]. A pocket-based virtual ligand screening (VLS) tool, PoLi, revealed that a
unique scaffold of ononetin occupies the unique site on Escherichia coli DHFR [11]. Dias’s group
reported the binding affinity of three antifolate drugs (pyrimethamine, cycloguanil, and trimethoprim)

Sci. Pharm. 2017, 85, 31; doi:10.3390/scipharm85030031 www.mdpi.com/journal/scipharm

http://www.mdpi.com/journal/scipharm
http://www.mdpi.com
https://orcid.org/0000-0003-1104-2700
http://dx.doi.org/10.3390/scipharm85030031
http://www.mdpi.com/journal/scipharm


Sci. Pharm. 2017, 85, 31 2 of 11

for M. tuberculosis DHFR (mtbDHFR). These three drugs bind to the active site of the substrate,
and pyrimethamine (P1), which is a 2,4-diaminopyrimidine compound, exhibits the highest binding
affinity for mtbDHFR [12].

In our previous work, molecular docking calculations of 50 2,4-diaminopyrimidine derivatives
classified compounds into low affinity and high affinity groups against mtbDHFR [13]. However,
their inhibition-mechanism with DHFR in the folate pathway and the dynamic motions of enzymes
upon the binding of different ligands in an aqueous environment are not fully understood. Dynamics
of the enzyme, especially the fluctuation of Met20 loop, play an important role in enzyme catalysis
pathway of E. coli DHFR [14]. Sawaya and Kraut (1997) reported a structure of E. coli DHFR during
the catalytic pathway and explained the motion of the loop and subdomain movement. The loop
Met20 is closed in the holoenzyme (DHFR:NADPH), and the Michaelis complex (DHFR:NADPH:DHF)
while the other complexes show an occluded conformation [15]. In closed conformation, the Met20
loop is moved closer to the active site and forces the nicotinamide and pterin rings to stay close
together in the active site of E. coli DHFR [16]. For mtbDHFR, the Met20 loop is equivalent to L1 [12].
The motions of mtbDHFR are needed in order to understand the different binding affinities of inhibitor
and substrate to the enzyme. There are 15 crystal structures of M. tuberculosis DHFR complexed with
NADPH and various inhibitors in the RCSB Protein Data Bank (PDB; http://www.rcsb.org) [17],
but none of them is a substrate binding structure. Therefore, we performed molecular dynamics (MD)
simulations on ternary complexes of mtbDHFR:NADPH, with substrate (DHF) and each of the three
2,4-diaminopyrimidine compounds (P1, P157, and P169) as inhibitors, in order to gain insight into the
catalytic-mechanism and inhibition-mechanism of DHFR in the folate pathway with implicit water.
Chemical structures of ligands, bound to mtbDHFR in this study, are shown in Figure 1.
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downloaded from the RSCB Protein Data Bank [17]. All missing hydrogen atoms were added by the 
Discovery Studio Visualizer 4.0 program [19]. The initial conformations of three compounds (P1, 
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Figure 1. Chemical structures of three compounds; (a) P1; (b) P157; and (c) P169; substrate;
(d) Dihydrofolate (DHF), and cofactor; (e) (NADPH).

The binding energy (∆G) and thermodynamics values of each system were calculated by the
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method [18]. The dynamics of the
enzyme and the motion of each amino acid residue at the active site, which may play a role in ligand
binding, were examined.

2. Method of Calculations

2.1. Molecular Structure Preparations

The crystal structure of the ternary complex of mtbDHFR:NADPH with P1 (PDB ID: 4KM0) was
downloaded from the RSCB Protein Data Bank [17]. All missing hydrogen atoms were added by the
Discovery Studio Visualizer 4.0 program [19]. The initial conformations of three compounds (P1, P157,
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and P169) and the substrate (DHF) were built by using GaussView 05 [20]. Further geometry optimizations
were conducted by the density functional theory at the B3LYP/6-31G(d,p) level, as included in the Gaussian
09 program package [20].

2.2. Molecular Modeling Studies

Starting coordinates of the ternary complex of mtbDHFR:NADPH with each of P1, P157, P169, and
DHF were modeled by molecular docking calculations using the AutoDock 4.2 software package [21].
The most stable conformation with the lowest binding energy and the highest percent frequency of
each protein-ligand complex was selected to perform MD simulations in aqueous solution by using
the AMBER12 software package [22]. The protein and ligands were parameterized according to the
ff12SB force field [23] and general AMBER force field [24], respectively. Systems were solvated by
the TIP3P water model [25] in a periodic truncated octahedral box with a density of around 1 g/cm3.
Na+ counter ions were added to neutralize the system. After system energy minimization, the systems
were heated from 0 K to 300 K over 20 ps. MD simulations were run for 20 ns at 300 K and 1 atm.
The SHAKE algorithm [26] for bond constraints and the Langevin thermostat for temperature control
were also applied.

2.3. Thermodynamics Quantities Calculations

The binding energy (∆Gbind) of complexation was calculated using Equation (1).

∆Gbind = ∆H − T∆S = ∆Eele + ∆Evdw + ∆GGB + ∆GSA − T∆S (1)

where ∆H and entropy term (T∆S) are the enthalpy change, and the temperature with the conformational
entropy change upon protein and ligand binding, respectively. The enthalpy change is calculated
from the summation of electrostatic energy (∆Eele), van der Waals energy (∆Evdw), electrostatic
solvation energy or polar contribution (∆GGB), and non-electrostatic solvation component or non-polar
contribution (∆GSA).

Five thousand conformations were collected from the last 8 ns of the MD simulation of each
system to calculate the ∆Gbind. Moreover, a pairwise energy decomposition was also achieved to
monitor the important residues involved in the interactions between the enzyme and ligand.

3. Results and Discussion

3.1. Equilibration of MD Simulations

To monitor the stability of the systems, the total energy (Etotal) during 20 ns of MD simulations was
investigated (Figure 2). The average values of Etotal in each period of 20 ps are also presented (Figure 2, red
lines), which were practically stable throughout the simulations, around −59 × 103 kcal/mol, indicating
the equilibrium of the systems.
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3.2. MM/GBSA Calculations

Five thousand conformations from the last 8 ns of MD simulations were collected for MM/GBSA
binding free energy calculations. The results are presented in Table 1. A more negative value of the
∆Gbind implies a favorable binding of the ligand to the enzyme. According to the values of ∆Gbind,
the ternary complex of mtbDHFR:NADPH with P169 and DHF was more favorable than the complex
with either P157 or P1.

The majority of favorable binding of P169 and DHF is contributed from ∆Eele of carboxylate anions
(R-COO−). The ∆Evdw and ∆GSA are significant to the binding affinity of P169 for mtbDHFR. The T∆S
indicates the positional change of the system. As shown in Table 1, the mtbDHFR in the complex with
either P169 or DHF had a large entropy change, approximately −30 kcal/mol. The results indicate
the high order of the systems due to the strong binding of P169 or DHF molecules to the binding site
of mtbDHFR. The MD simulations show that the binding of all ternary mtbDHFR complexes in this
study was energetically favorable, spontaneously occurring based on the negative sign of ∆Gbind.

Table 1. The average binding free energy (∆Gbind) and the energy components for each
mtbDHFR-NADPH-ligand complex from Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA) calculations.

Energy (kcal/mol) P1 P157 P169 DHF

∆Evdw −31.93 −46.23 −52.60 −46.65
∆Eele −6.77 −14.98 −85.70 −127.65
∆GGB 19.83 32.78 86.52 128.08
∆GSA −3.96 −5.51 −7.09 −6.44
∆EMM −38.71 −61.21 −138.31 −174.30
∆Gsolv 15.87 27.27 79.44 121.63

T∆S −21.48 −26.04 −30.27 −30.17
∆Gbind −1.36 −7.90 −28.60 −22.50

∆Evdw: van der Waals energy, ∆Eele: electrostatic energy, ∆GGB: electrostatic solvation energy, ∆GSA:
non-electrostatic solvation component, ∆EMM: molecular mechanics energy, ∆Gsolv: solvation free energy, T∆S:
conformational entropy change.

3.3. The Dynamics of Loops and Domains

The secondary structure of mtbDHFR in all complexes exhibited the same general folding,
as shown in Figure 3a. The nomenclature of secondary structural elements is the same as those
defined by Li et al. [27], as shown in Figure 3b.

The available crystal structures of mtbDHFR in RCSB PDB are reported in two conformations,
corresponding to “open” and “closed” forms (Table 2). Loop L1 of mtbDHFR corresponds to loop
Met20 of E. coli, and the fluctuation of this loop causes the different conformations for DHFR [12].
The largest difference between open and closed conformations of mtbDHFR occurs between the Gly18
on loop L1 (residues 16–24) and Ser49 on helix αC (residues 44–49). To distinguish the open and closed
conformations of mtbDHFR in this study, the θ angle is defined, which is measured from the three
alpha-C atoms of the three amino acid residues Ser49, Tyr106, and Gly18 (Figure 4). The superposition
of the open and closed forms of the binary mtbDHFR:NADPH complexes are presented in Figure 4a.
According to the θ angle values of nine crystal structures, the average value of θ for the closed
conformation was 14.74 ± 1.68 degrees, and the open conformation was 18.41 ± 1.17 degrees.

Table 2. The conformation type and the θ angle of 9 crystal structures of mtbDHFR.

Complex PDB ID Conformation θ Angel (Degrees)

mtbDHFR-NADPH 4KLX open 18.34
mtbDHFR-NADPH 4KL9 closed 13.57
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Table 2. Cont.

Complex PDB ID Conformation θ Angel (Degrees)

mtbDHFR-NADPH 1DG8 closed 15.07
mtbDHFR-NADPH-Methotrexate 1DF7 closed 15.81
mtbDHFR-NADPH-Br-WR99210 1DG7 closed 14.72
mtbDHFR-NADPH-Trimethoprim 1DG5 closed 14.54
mtbDHFR-NADPH-Trimethoprim 4KM2 open 18.79
mtbDHFR-NADPH-Cycloguanil 4KNE open 17.88
mtbDHFR-NADPH-Pyrimethamine 4KM0 open 18.64

PDB ID: Protein Data Bank ID.
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mtbDHFR:NADPH crystal structures in closed (4KL9 in pink and 1DG8 in orange) and open
(4KLX in green) conformation states. The angle θ is measured from the angle between three
alpha-C atoms (ball models) of Ser49, Tyr106, and Gly18; (b) Superposition of the ternary
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Arora’s group reported that three conformations of E. coli DHFR:NADPH:DHF change during the
catalysis pathway, which are closed, open, and occluded, depending on the position of the Met20 loop [28]
that corresponds to loop L1 in mtbDHFR. Dynamics of loop fluctuation of E. coli DHFR were observed in a
wide range of time-scales, ranging from picoseconds to milliseconds [14]. Therefore, 20 ns of MD simulation
should be sufficient to monitor the loop dynamics of mtbDHFR that is involved in the binding of ligands,
including the inhibitors, substrate, and cofactor. The motions of loop L1 of mtbDHFR for each MD system
were measured during 20 ns. The motion of loop L1 of mtbDHFR:NADPH:DHF in our MD system is
indicated by θ angle (Figure 5, gray line). The graph demonstrates that at the last 8 ns of MD simulations,
the loop L1 of mtbDHFR:NADPH complexes with either P1 (blue) or P157 (purple) is mostly open, whereas
in the complexes with P169 (red) and DHF (gray) the loop is frequently closed. The change of loop L1 to
a closed conformation also occurs in the E. coli DHFR catalytic cycle, as reported by Sawaya and Kraut.
The conformation changes of the loops depend on the ligands bound to the active site [15]. This may explain
why P169 has a stronger binding affinity for mtbDHFR, as compared to P1 and P157. Moreover, compound
P169 and substrate DHF showed strong binding affinities for mtbDHFR:NADPH, as indicated by the low
∆Gbing in Table 1. The results agree with the previous report of E. coli DHFR, that the closed conformation is
thermodynamically most favored [28] and has a stronger interaction with protein-ligand complexes.
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3.4. The Binding of NADPH on Mycobacterium tuberculosis Dihydrofolate Reductase

The cofactor NADPH is a significant factor that assists the binding between a protein and ligand.
The conformations of NADPH in each MD simulation at 16 ns were chosen as a representative
to study the binding behaviors of NADPH in each system. The median of the last 8 ns of the
simulation period is shown in Figure 6. The NADPH molecule (see Figure 1e) consists of “adenine
ribose-5-phosphate” and “nicotinamide ribose” moieties, which are connected by diphosphate at
the middle. The structure alignment of the NADPH molecule in each ternary complex is almost
identical. The adenine ribose-5-phosphate and diphosphate moieties of NADPH in all systems
stay in the same region and have a similar configuration, except the “nicotinamide ribose” moiety.
The adenine ribose-5-phosphate of NADPH binds to the C-terminus of βC, N-terminus of αC, and L2
of mtbDHFR. The adenine moiety has also shown interactions with Leu65 (βC), Arg67 (L2), and Val99
(αF) via hydrophobic interactions. The ribose-5-phosphate of NADPH forms H-bonds to Arg44, Ser66,
and Arg67. The diphosphate group in the middle part of NADPH binds near the helices αC and
αF and forms many hydrogen bonds. One significant difference observed between the structure of
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NADPH on mtbDHFR in a complex with inhibitors and substrate is its nicotinamide ribose moiety.
In inactive ternary complexes (P1, P157, and P169), the nicotinamide ribose of NADPH forms H-bonds
with Ala7 and Ile14 on βA and βP, respectively. Due to the occurrence of the hydrogen bond with
Ser49 on αC, the nicotinamide ribose moiety of an active ternary complex has DHF, which bends
outward from the binding site and moves closer to the αC helix (Figure 6d).
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Figure 6. NADPH (blue) and ligand (pink) binding sites on mtbDHFR (gray ribbon) for MD simulations
at 16 ns: (a) P1; (b) P157; (c) P169 and (d) DHF. Two water molecules (red spheres) are found in the
substrate DHF binding site.

3.5. Binding of Substrate and Inhibitor to Mycobacterium tuberculosis Dihydrofolate Reductase

Interactions of substrate or inhibitors with the binding site of mtbDHFR at 16-ns MD simulations
are shown in Figure 7. The substrate DHF, located at the active site on mtbDHFR, is directed by the
strong hydrogen bonds between hydrogen atoms from the amino groups of the substrate’s pteridine
ring with the carbonyl oxygen of Ile5 and the carboxylic group Asp27 residues. Pairwise energy
decomposition of the same selected interval as that used in the free binding energy calculation was
used to investigate the significance between the interaction of amino acid residues and the compounds
or the substrate in each system, as depicted in Figure 8. Two hydrogen bonds between the amine and
the backbone carbonyl groups of DHF and Gln28 residue on αB (Figure 7d, green lines) make the DHF
molecule stay in the pucker V shape, as seen in Figure 6d. Two water molecules, found in the active
site, form hydrogen bonds with the carbonyl oxygens of the pterin ring and the pABG groups of DHF
molecule (Figure 1). The pucker V shape of the DHF molecule is also stabilized by the π-π interactions
of its pteridine ring and its benzyl ring with the phenyl ring of the Phe31 residue (Figure 7d, yellow
lines). The strong hydrogen bonds between the O-carboxylate of DHF and the H-amine of Arg60
residues (Figures 7 and 8, gray bars) enhance the binding affinity between them.
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4. Conclusions 

From the MM/GBSA calculations, it was shown that changes in the electrostatic and van der 
Waals energy play a major role in the binding of potent compound P169 and substrate DHF. P169 
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Three inhibitors (P1, P157, and P169) are located at the same binding site of DHF on mtbDHFR
(Figure 6). The pyrimidine ring of inhibitors is held in the interior of a deep cleft through hydrogen
bonds and van der Waals interactions, as seen in Figure 7a–c. The 2,4-diamino groups interact with the
carbonyl groups of three amino acid residues: Ile5, Ile94, and Asp27, via hydrogen bonding. The π-π
interactions between the pyrimidine ring of inhibitors and the phenyl ring of Phe31 contribute to
stabilize the complex conformation (Figure 8). Van der Waal interactions between the substituent at C5
on the pyrimidine ring of inhibitors with amino acid residues 50–54 on mtbDHFR are present (Figure 7,
blue lines and Figure 8). These interactions result in the loss of the spiral conformation (αC’) of the
enzyme, which is in the mtbDHFR:NADPH:DHF configuration (as represented in Figure 3b), and cause
the P157 and P169 molecules to possess a pucker V shape (Figure 6b,c). The substitution at C5 on the



Sci. Pharm. 2017, 85, 31 9 of 11

pyrimidine ring of inhibitor molecules with the propoxy-(fluoro-methylquinolin) moiety in P157 and
with the propoxy-(carboxylatemethoxy-methylquinolin) moiety in P169 increases the stability of the
ternary complex systems and significantly improves their antifolate efficiency, as compared to P1 where
the parent molecule has a rigid chlorophenyl substituent at C5. Moreover, the hydrogen bonds between
the O-carboxylate of P169 with the H-amine of Arg32 and Arg60 residues (Figures 7c and 8, red bars)
enhance the binding between them, which explains the low value of ∆Gbind for this system as well as
the high antifolate efficiency of this compound.

The inhibitors bind preferentially to the binary form of the enzyme with NADPH, which is
the binding site of the substrate DHF [29,30]. The simulations indicate that P1, P157, and P169
are competitive substrate inhibitors, which bind to the same binding site of DHF in mtbDHFR.
The substitution at C5 on the diaminopyrimidine moiety of the molecule with different functional
groups yields significant changes for the antifolate affinity of compounds as well as their orientations
in the binding pocket.

4. Conclusions

From the MM/GBSA calculations, it was shown that changes in the electrostatic and van der
Waals energy play a major role in the binding of potent compound P169 and substrate DHF. P169 has
a strong binding with the enzyme, which is similar to the natural substrate DHF and decreases the
disorder of the system. Moreover, the enzyme mtbDHFR is preferred to adopt the closed conformation
of loop L1 when binding to P169 or DHF. L1 of mtbDHFR in non-potent compound P1 mostly has
an open conformation along the simulation, as a result of the lower binding affinity between the P1
and mtbDHFR. The active ternary complex of mtbDHFR:NADPH:DHF forms strong bonds to the
enzyme via many H-bonds and hydrophobic interactions. Because DHF is a natural substrate of DHFR,
this molecule therefore exhibits highly precise binding into the binding pocket of the enzyme via
hydrogen bonding to Asp27, Gln28, Arg32, and Arg60 of mtbDHFR. In inactive ternary complexes,
where the enzyme binds to the inhibitor, the amino groups (NH2) of all 2,4-diaminopyrimidine
compounds exhibit highly specific binding to the Ile5 and Ile94 amino acid residues via hydrogen
bonds. The different substitution at C5 of the compounds affects the binding affinities for the enzyme.
Non-potent compound P1 is rigid and short, while potent compound P157 and P169 have a flexible
and long substituent at C5 of the pyrimidine ring, which promotes the strong binding affinity for
the enzyme. Moreover, P169 has mimicked the ability of the binding of DHF through the amino
groups from 2,4-diaminopyrimidine and the carboxylate group from the substitution at C5. Therefore,
the P157 and P169 are potent and can be developed as inhibitors of mtbDHFR in the future.
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