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Abstract 
A novel, colloidal nanogold-based drug delivery system for phenytoin, a well-
known anti-epileptic drug with an enhanced efflux via P-glycoprotein, has been 
proposed in this study. The vital physical properties that would aid in predicting 
the biological interaction of this system were profiled using various techniques 
such as UV-Vis, DLS, and TEM in corroboration with theoretical calculations. It 
was significant to note that the binding of phenytoin to colloidal nanogold was 
strongly pH-dependent with the optimum at pH 5.5 and a consistently 
reproducible spectral shift. Analysis of the conjugate by FTIR revealed that the 
imide functional group of phenytoin mediated a dative coordinate bond to 
colloidal nanogold at the optimum pH. The amount of the drug bound to the gold 
was quantified to be 85.8±2.5% (w/v) by HPLC. Hypothetically, the surface 
charge of the conjugate could possibly imply charge-mediated uptake across 
the cell membrane. Further, the novel conjugate was screened for its 
cytotoxicity in two cell lines and the dosage range was identified. Subsequent 
development, thorough evaluations in suitable model systems, and the potential 
for bioimaging to track the payload would validate our hypothesis on the 
conjugate for better intracellular retention at the site of action, and thereby 
achieve the targeted delivery. 
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Introduction 
Nanoparticles are widely studied for biomedical applications such as drug delivery, 
diagnostics, and in vivo imaging. When nanoparticles are functionalized or linked to agents 
such as drugs, ligands, image contrast compounds through covalent linkages like amide or 
disulphide bonds, or through methods such as encapsulation, surface attachment or 
entrapment, they can be targeted towards a certain therapeutic application. For drug 
delivery through nanoparticles, advantages such as increased aqueous solubility, 
prolonged release, improved bioavailability, and decreased toxic side effects of the drug 
can be achieved [1]. Of the many nanoparticles emerging, gold nanoparticles have gained 
tremendous importance, especially in applications such as drug delivery, bioimaging, 
single molecule tracking, and biosensing due to some of its inherent properties [2]. 

The physicochemical properties of gold nanoparticles such as small size, large surface 
area to mass ratio, high surface reactivity, and the presence of surface plasmon 
resonance (SPR) bands along with their unique properties like their inert core, bio-
compatibility, and less toxicity makes them a suitable agent for drug delivery [3]. The ease 
of synthesizing gold nanoparticles in varying core sizes, ranging from 1 nm to 100 nm is an 
added advantage. An important aspect that needs to be considered and understood well 
for an effective drug delivery system is the optimization of the charge, size, and surface 
functionality of the nanoparticles, since these variables, in major part, will strongly 
influence not only the nature of their interaction with the receptor(s), but also their uptake 
across anatomical and/or physiological barriers [4]. 

Phenytoin (5',5'-diphenylhydantoin) is an anti-epileptic drug for the treatment of tonic clonic 
(grand mal) or partial seizures and for the acute treatment of generalized status epilepticus 
[5]. At the cellular level, the action of phenytoin prolongs the inactivation of voltage-
activated sodium ion channels and reduces the firing of neurons at high frequencies [6]. 
With a high melting point of 295 to 298°C, phenytoin is a crystalline compound having 
strong intermolecular hydrogen bonding. It has been reported to have poor bioavailability 
and is classified as a WHO essential drug of Biopharmaceutical Classification Class II 
which is practically insoluble with a calculated logP of 2.09 and logP of 2.14 (Hazardous 
Substances Data Bank) [7].  

In this study, phenytoin was conjugated to colloidal nanogold and its cytotoxicity was 
screened in two cell lines. This is the first study of its kind to bind phenytoin to colloidal 
nanogold (referred to as AuPht), to characterize its physicochemical parameters with a 
battery of techniques and to screen its cytotoxicity. AuPht, when sufficiently evaluated and 
validated in model biological systems, using an appropriate route of drug administration, 
can be aimed to enhance the poor bioavailability of phenytoin based on the advantages 
that nanotechnology provides for the advancement of therapeutic applications, especially 
to overcome the challenging drug resistance caused by the P-glycoprotein drug efflux. 

Experimental 
Materials 
Chloroauric acid was purchased from the Sisco Research Laboratories (India), 
diphenylhydantoin from Sigma Aldrich (India), trisodium citrate from Qualigens Fine Chem 
(Mumbai, India), sodium hydroxide from SD Fine, India, and potassium dihydrogen 
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phosphate from HiMedia. Phenazine methosulfate (N-methylphenazonium methosulfate), 
fetal bovine serum, L-15 (Leibovitz) cell culture medium (with L-glutamine) and MEM 
(minimal essential medium) with Earle’s salt, NEAA, and L-glutamine were purchased from 
HiMedia Laboratories Pvt. Ltd. (India). XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-
[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) was bought from Sigma Chemical Co. 
(St. Louis, MO, USA). HPLC grade methanol and water were used as procured; 0.45 μm 
and 0.2 µm nitrocellulose membranes from Sartorius were used for filtration. 

Synthesis of Colloidal Gold 
The classical citrate reduction method was adapted to synthesize the colloidal gold based 
on the procedure described in [8]. Fifty (50 ml) 0.01% chloroauric acid was brought to boil 
in a round-bottom flask fitted with a condenser under continuous stirring. One and three-
fourths of a ml (1.75 ml) of freshly prepared 1% trisodium citrate solution was rapidly 
added. When a final ruby red color appeared, boiling was continued for 15 min after which 
the stirring continued for another 15 min. After cooling to room temperature, it was stored 
in a brown bottle at 4°C. 

Theoretical Size and Concentration Determination of Colloidal Gold 

The surface plasmon resonance (SPR) of the colloid was verified by a UV-visible spectrum 
obtained in the Cary 50 UV-visible Spectrophotometer (Varian Inc., Australia). Since the 
optical properties of colloidal gold are dependent on size and wavelength, the information 
derived from its surface plasmon can be used to identify its size. Based on the good 
agreement presented by the mean free path corrected Mie theory and experimental data, 
equations to calculate the size and concentration of colloidal gold were given by Haiss et 
al [9]. Following are the equations used for determining the size and concentration: 
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Where Aspr is the absorbance at the peak SPR, cAu (moles/l) is the amount of gold used in 
the synthesis, C1 = -4.75, and C2 = 0.314. The error calculated by Haiss is ~ 6%. 

The concentration of the colloid using equation (2) in nps/ml (nanoparticles per ml) is first 
calculated using the known absorbance at 450 nm based on which further concentration 
calculations can be done.  

Subsequently, the concentration in µg/ml was calculated. 

Eq. 2. 
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Where N is the number density of colloidal gold in nps/ml, A450 is the absorbance at 450 
nm, and d is the diameter (in nm) of colloidal gold.  
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Using N, the concentration (Wt. con) in µg/ml (ppm) was calculated as follows: 
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Where r is the radius of AuNPs in nm. 

Percentage Yield of Colloidal Nanogold 

In order to experimentally determine the concentration of the synthesized colloidal 
nanogold, a known volume of the colloid was acid-digested with 7% conc. HNO3. After 
complete dissolution, the resulting solution was analyzed with atomic absorption 
spectroscopy (Varian 240) at the emission wavelength of 267 nm (N=3). A calibration 
curve from 0 ppm to 60 ppm was used to calculate the colloidal nanogold yield obtained 
based on the following formula: 

Eq. 4. 100% x
ppmAuInitial
ppmAuFinalYield =   

Formulation of the Colloidal Nanogold-Phenytoin Conjugate  
A known amount of phenytoin (1 mg) was added to 10 ml of colloidal nanogold and the 
suspension was stirred vigorously at room temperature. The color changed from red to 
blue in about 8 hours. The SPR changes observed with time, implying the conjugation, 
were monitored through a UV-visible spectrum. The conjugate, AuPht thus formed, was 
characterized by dynamic light scattering (DLS) and high resolution transmission electron 
microscopy (HRTEM). 

Binding Kinetics of Phenytoin to Colloidal Nanogold with Respect to Time and pH 

The binding of phenytoin to colloidal gold was studied with respect to time and pH. The 
changes observed in the SPR were used to study the time dependence of the conjugation 
process by taking spectral measurements every hour. Also, by varying the pH in the range 
of 5 to 7, the binding was studied in the first hour. 

Dynamic Light Scattering 

The particle size and the polydispersity index of the colloidal nanogold and AuPht were 
determined (N=2). The dynamic light scattering experiments were performed in the 
Brookhaven 90Plus Particle Size Analyzer (software ver. 5.31) (Brookhaven Instruments 
Corporation, UK). This method provides an accurate measure of the size and the 
monodisperse condition of AuPht  

Zeta Potential Analysis 

The stability of the colloidal nanogold phenytoin conjugate was studied by determining its 
zeta potential at different pHs. Further, in order to gain an understanding of its behaviour in 
more physiologically relevant conditions, its zeta potential in PBS, L-15, and MEM cell 
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culture media (without serum) was determined at 25°C (N=2). In all the three scenarios, 
the pH was maintained at 7.4 

High-Resolution Transmission Electron Microscopy (HRTEM) 

The exact size and morphology of the synthesized colloidal gold and AuPht were 
determined by the transmission electron microscope (TEM) analysis. The samples were 
dropped onto the carbon-coated copper grids and vacuum dried. They were then observed 
under a JEOL 3010 TEM at 300 kV.  

FTIR 

Pure phenytoin and lyophilized AuPht were prepared into pellets by mixing with KBr. They 
were then analyzed by the Perkin Elmer Spectrum1 FTIR spectrometer at a resolution of 1 
cm−1 at a scan range of 450 to 4000 cm−1. The FTIR of the conjugate suspended in the 
above-mentioned physiologically relevant media incubated at 37°C for 24 hours at pH 7.4, 
was also performed to verify the interaction of phenytoin with the colloidal nanogold. 

Phenytoin Binding Efficiency to Colloidal Nanogold 

The HPLC method was adapted based on Varaprasad et al. [10]. The samples were 
analyzed in an isocratic HPLC (Waters Corp.) with a C18 column (Symmetry 5 µm, 4.6 x 
150 mm). Twenty (20 μl) of the sample was injected using a Rheodyne injection syringe at 
a flow rate of 0.7 ml/min, maintaining the column at 25°C. Freshly prepared methanol: 0.05 
M and phosphate buffer (pH 2.8) (60:40 v/v) were used after degassing and filtering 
through a 0.45 μM filter. The UV detection wavelength was identified to be 258 nm (Waters 
2487 Dual Absorbance Detector). Based on these conditions, the amount of phenytoin 
bound to the colloidal nanogold was quantified. AuPht (10 ml) was centrifuged and the 
pellet obtained was resuspended in the mobile phase. Standards in the range of 0.1 mg/ml 
to 0.3 mg/ml were prepared with the mobile phase as diluents (N=2). Colloidal nanogold 
was used as a control and analysed under the same conditions. In order to cross-verify the 
amount of unbound phenytoin, the supernatant was also analysed. 

Cell Lines and Maintenance 

Caco-2 (human colorectal adenocarcinoma) and MDA-MB-435s (human breast 
carcinoma) were purchased from the National Centre for Cell Science (Pune, India). Caco-
2 cells were maintained in minimum essential medium (MEM) (Eagle) with non-essential 
amino acids (with 5% CO2) [11] and MDA-MB-435s cells in L-15 (Leibovitz’s) medium [12]. 
Both the cell lines were maintained with 10% fetal bovine serum in a humidified 
atmosphere at 37°C. The cells were maintained in their growing phase at 70% confluency 
with regular passaging.  

Cytotoxicity Assessment 

Phenytoin, colloidal nanogold, and AuPht were tested for cytotoxicity by the XTT-formazan 
dye formation assay [12, 13]. Caco-2 and MDA-MB-435s were seeded in their respective 
culture media (200 µl, 2 x 104 cells/well and 1 x 104 cells/well, respectively) in 96-well 
plates and incubated at 37°C for 24 hours without/with CO2. After incubation, the control 
wells were replenished with fresh medium and the test wells were treated with different 
phenytoin concentrations (20, 10, and 5 µg/ml). The cells were further incubated for 24 
hours under the same conditions. After the treatment, the medium in each well was 
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replenished with 200 µl of fresh medium followed by 50 µl of XTT (0.6 mg/ml containing 25 
µM phenazine methosulphate). The plate was then incubated for another 4 hours under 
the same conditions after which the absorbance was measured at 450 nm (with a 630 nm 
reference filter) in a Dynex Opsys MRTM Microplate Reader (Dynex Technologies, VA, 
USA). 

Based on the known therapeutic index of phenytoin of 10–20 µg/ml [6], concentrations of 
phenytoin were set at 20, 10, and 5 µg/ml for initial dose-finding experiments. Similarly, 
range-finding experiments (2.5 µg/ml to 40 µg/ml; N=3) were performed for the selection of 
non-cytotoxic doses of colloidal nanogold. Since concentrations higher than 10 µg/ml were 
extraordinarily toxic, they weren’t chosen. Based on phenytoin concentrations determined 
from HPLC for AuPht, 20, 10, and 5 µg/ml were calculated and used for treating the cells. 

The percentage of cytotoxicity was calculated by the following formula:  

100% ×
−

=
C

TC

A
AAtycytotoxici  

Where Ac is the absorbance of the control wells and AT is that of the treated wells. Data 
were expressed as the mean±SD from three determinations. Statistical analysis was 
performed using Student’s t-test (two-tailed), with P < 0.05 as the criterion of significance.  

Results and Discussion 
Synthesized Colloidal Gold 
The wine red color along with the single absorption peak at 521 nm in the UV-visible 
spectrum indicated the presence of spherical gold particles in the colloid (Fig. 1a). The 
theoretical size was calculated to be 12.9 nm using the absorbance maxima in equation 1. 
The DLS experiments gave an average particle size of 15±2 nm with a polydispersity index 
of 0.32±0.03. The HRTEM analysis confirmed the presence of spherical particles having 
the nano-size range of 13 nm in the colloid (Fig. 2a). Based on this, the surface area-to-
volume ratio was calculated to be 0.46. Further, the yield of colloidal gold was calculated 
to be 87.9% and the concentration was 46.6±0.40 ppm, based on AAS data. This 
information was further validated by theoretical calculations using equations 2 and 3 and 
the concentration was calculated to be 47.1 ppm. The zeta potential of the colloidal 
nanogold was identified to be −73.0 mV, implying its high stability. 

In order to achieve efficient delivery at the target site, the primary and equal importance 
should be given to the identification and characterization of the physical parameters of the 
system such as the surface-to-volume ratio, size, shape, and charge [14]. Alongside 
achieving size and shape control, the in-house synthesized colloidal nanogold was also 
uniformly dispersed in addition to obtaining a good yield and concentration. Next, the 
phenytoin conjugation was carried out. 
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Fig. 1.  (a) The UV-visible spectrum of colloidal nanogold (red) and the blue shift 

observed due to the conjugation of phenytoin with colloidal nanogold (blue);  
(b) The colour changes observed in the conjugation process 

 
Fig. 2.  HRTEM images showing (a) the spherical shape of colloidal nanogold having a 

of diameter 13 nm and (b) the almost spherical shaped AuPht of diameter 
40 nm; Scale bar – 5 nm 

Colloidal Gold Phenytoin Conjugate 
After phenytoin addition to the colloidal nanogold, the wine red color changed to blue, 
which was also indicated by a blue shift to a longer wavelength of 618 nm in the UV-visible 
spectrum (Fig. 1a). The visually observed color change was correlated with a shift in the 
λmax, and this, in turn, was correlated with the observed aggregation in the AFM images 
(data not shown).  
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Based on the intercoupling effect [15], the second peak arising at longer wavelengths can 
be attributed to the dipole plasmon resonance of the colloidal nanogold. The shift to the 
longer wavelengths was also accompanied by the weakening of the first peak implying a 
reduced interparticle spacing, thereby indicating conjugation and thus, the blue color. 
Some of our preliminary experiments with the cyclic voltammetry (data not shown) have 
verified the binding of phenytoin to the bare gold electrode: there was a reduction in the 
redox current conducted when standard potassium ferricyanide solution was used as the 
electrolyte. 

The size of AuPht determined in the DLS experiments was 55 nm, while in HRTEM, it was 
40 nm (Fig 2b). This size difference, albeit negligible, can be attributed to the fact that DLS 
measures suspended particles that are in continuous motion and therefore, possess an 
outer hydration shell. This shell contributes to the additional diameter that was obtained in 
DLS. Thus, we could confirm the conjugate as being irregular to spherically-shaped 
aggregates sized around 40 nm (Fig 2b). After 72 hours, it was observed that the 
aggregates agglomerated and they settled to the bottom.  

The zeta potential for AuPht was found to be −44.6±1.56 mV (in water). By varying the pH, 
it was observed that the zeta potential attained zero at pH 1.2. Further from Table 1, the 
zeta potentials for the conjugate under physiologically relevant conditions in different 
media are reported. These values tend to be less negative or become positive when they 
are in circulation and interact with the serum albumin proteins that are present in the blood 
[16]. In regard to the fact that cellular surfaces are negatively charged due to the presence 
of glycosaminoglycans, it can be hypothesized that the uptake of AuPht could possibly be 
charge-mediated across the membrane [17]. 

Tab. 1.  Zeta potential of the colloidal gold phenytoin conjugate in different 
physiologically relevant media 

Medium pH Zeta potential (mV) 
PBS 7.4 −9.95±2.05 
L15 7.4 −5.7±0.57 
MEM 7.4 −7.9±1.27 
AuPht (water) 7.4 −50.55±0.21 
AuPht (water) 6.7 −44.6±1.56 

 

Kinetics of Phenytoin Binding with Respect to Time and pH 

A kinetic experiment was performed to identify the effect of time on phenytoin conjugation 
with the colloidal nanogold at pH 5.5. In the spectrum (Fig 3a), the color changes at 
intervals of 60 min were recorded and with time a distinct, reproducible, blue shift from 521 
nm to 618 nm was noted. It was observed that there was no further increase in absorption 
at 618 nm after 8 hours. This indicates that the Pht-binding process was finished, which 
may be due to saturation of the particle surface at this time point. The change in λmax 
(Δλmax) was plotted as a function of time to know the changes in the peak shift and this is 
represented in Fig 3b. It can be seen that there is no further increase in the shift and the 
λmax (i.e., 618 nm) does not change after 8 hours. 
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Fig. 3. (a) Time-dependent binding kinetics of phenytoin to colloidal nanogold taken 

every hour for a period of 12 hours (N=3). The peak at 521 nm decreases as 
the new peak at 618 nm gradually appears. The absorbance of the peak at 618 
nm shows no further increase beyond 8 hours, implying the conjugation process 
to be finished. (The numerals in the legend correspond to the time interval in 
hours and their respective colored spectral line);  
(b) A plot of the change in λmax (Δλmax) with respect to time. The Δλmax can be 
observed to become constant beyond 8 hours indicating that the final λmax is 
618 nm;  
(c) Spectrum for pH-dependent binding of phenytoin to colloidal nanogold. The 
spectrum for pH 5.5 (labeled as AuPht5.5 and in green colour) shows the 
growth of an extra peak around the 600 nm region indicating the conjugation 
process to have started. The spectral lines of other pH values do not show this 
extra peak 

AuPht formation was also identified to be dependent on the initial pH of the colloid 
nanogold. The Fig. 3C shows the spectra at 1 hour after the addition of phenytoin at 
various pHs ranging from 5.0 to 7. No change can be seen in the absorbance maxima at 
pH 5.0, 6.0, 6.5, and 7.0, implying the dependency on the initial pH 5.5 of the colloidal 
nanogold.  
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This phenomenon can be reasoned based on one or more of the groups available for 
binding in the colloid. It has been identified that [Au+Cl−OH−]− is the predominant gold 
species present in the pH range of 5.4 to 6.4 [18] of the synthesized colloidal nanogold. 
These species are formed in the mild acidic medium as a result of the citrate reduction of 
gold ions. Thus, it is these species that would be the most likely ones to interact with the 
functional groups of phenytoin. 

Nature and Efficiency of Phenytoin Binding to Colloidal Gold  

The FTIR spectrum of AuPht was studied at the 8 hour time point. The spectrum (Fig. 4) of 
pure phenytoin shows sharp stretching vibrations at 3271 and 3208 cm−1 for the NH group 
and at 3068 cm−1 for the aromatic C-H. Stretching vibrations for the carbonyl group of the 
hydantoin were observed at 1719 and 1740 cm−1. The peaks at 1402 cm−1 indicate the C-
N stretch and those at wave numbers 746, 697, and 655 cm−1 indicate the C-H out of 
plane vibrations of the phenyl ring. This spectrum, when compared to that of AuPht, shows 
an overlap with the C-H (aromatic 2926 and phenyl ring 760 and 698.23 cm−1), C-N (1396 
cm−1), and C=O (1722 cm−1) vibrations while only the NH stretching vibrations shifted to 
3172.90 and 3138 cm−1 [19]. With reference to the FTIR of colloidal nanogold, the C=O 
vibrations (1602 cm−1) formed due to the citrate layer show a small difference in the 
corresponding wave number (1610 cm−1) in AuPht. This implies the presence of citrate in 
the conjugate which results in the negative charge. 

 
Fig. 4. FTIR spectrum showing the possible interaction of phenytoin with colloidal 

nanogold. The AuPht spectrum shows the shifted wave numbers in the NH 
stretch region in comparison to pure phenytoin (Pht). The spectrum of colloidal 
nanogold (Au) as well as that of unconjugated phenytoin is also shown as a 
reference. The corresponding spectral wave numbers are indicated in their 
respective colours along with each functional group 
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This implies that the imide functional group of phenytoin mediates the interaction with the 
colloidal nanogold. Based on the existing reports of the nature of the colloidal gold 
[Au+Cl−OH−]− [18] and from the interaction seen in our studies, it can be said that the lone 
pair of electrons from the nitrogen in phenytoin could possibly form a coordinate bond with 
the positively charged gold atom in the colloid. The above interaction was found to prevail 
when the conjugate was incubated with cell culture media and PBS at pH 7.4 at 37°C 
(Fig. 5). This implies the stability of the conjugate in the physiological media. 

 
Fig. 5. FTIR spectrum of AuPht in different biological media taken after a 24-hour 

incubation period at pH 7.4, in comparison with pure phenytoin (Pht). L15, 
MEM, and PBS are the three different media studied. The prevalence of the NH 
shift (3000–3250 cm−1) in AuPht after the 24 hours incubation indicates the 
conjugate’s stability in different media 

Based on the mentioned HPLC conditions, phenytoin from AuPht was eluted at approxi-
mately 7 min. With reference to the standard pure phenytoin concentrations, it was identi-
fied that 85.8±2.5% of the added drug was bound to the colloidal nanogold.  

Earlier studies have shown that the nitrogen atom from the functional group of the drug 
mediates the binding between the drug and the gold nanoparticles. In the case of 
Ciprofloxacin [20], a hydrophilic drug, the nitrogen atom from its imino moiety was bound 
to gold nanoparticles. Similarly, the amino groups of streptomycin, gentamycin, and 
neomycin [21] aided binding to gold nanoparticles. Doxorubicin, a hydrophobic drug, with 
broad antitumor activity, also binds to negatively charged gold nanoparticles in the acidic 
conditions through the amine groups [22].  
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Cytotoxicity Assessment 
Using the XTT-cytotoxicity assay, the effect of AuPht on cell viability was studied on 
Caco-2 and MDA-MB-435s cells. It was observed that phenytoin, at 20 µg/ml, showed a 
cytotoxicity of 31.88±3.2% and 59.75±3.8% in MDA-MB-435s and Caco-2 cells, respec-
tively (Fig. 6). The corresponding cytotoxicity of AuPht for the same phenytoin concentra-
tion was 57.43±3.9% and 68.4±4.9% in the MDA-MB-435s and Caco-2 cells, respectively, 
as seen in Fig. 6. The colloidal nanogold at 10 µg/ml showed high cytotoxicity of 
66.18±4.5% and 72.35±6.4% in MDA-MB-435s and Caco-2 cells, respectively.  

 
Fig. 6. XTT-cytotoxicity results of phenytoin (Pht), AuPht, and colloidal nanogold (Au) 

in Caco-2 (red) and MDA-MB-435s (blue) cells at different concentrations over a 
time period of 24 hours. Results are represented as the mean ± SD. Asterisks 
indicate significant differences (p ≤ 0.05, N = 3) 

AuPht showed higher cytotoxicity than pure phenytoin, which might be due to the citrate as 
well as other ions that the colloid is composed of, which aid in providing stability to the 
colloidal nanogold. This aspect notwithstanding, pure phenytoin, colloidal nanogold, and 
AuPht expressed relatively higher cytotoxicity in the Caco-2 cell line when compared with 
the results obtained in the MDA-MB-435s cell line. This may be attributed to the 
differences in the receptors they possess and whether P-gp could be a possible reason, 
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which needs further studies. Caco-2 is an intestinal carcinoma cell line which is known to 
highly express P-gp and MDA-MB-435s is a cell line that does not express P-gp, even 
though it is permeable to the tested nanoconjugate. Caco-2 is the well-known cell line 
which is used to screen compounds for their intestinal permeability. 

From previous studies reported by other groups worldwide, surface charge affects the 
biodistribution of colloidal nanogold such that positively charged particles accumulate more 
in the kidneys, while negative and non-charged particles show a higher accumulation in 
the liver [23], thereby providing corroborative data for the plausible electrostatic 
interaction-mediated uptake in our cell-based system. It was also shown that the toxicity of 
nanogold is influenced by the surface charge. Anionic nanogold demonstrated non-toxicity, 
while cationic nanogold showed moderate toxicity, which resulted from its interaction with 
the cell membrane [24, 25].  

Based on the different reported studies, we can say that the size [26] and surface charge 
of colloidal nanogold and the novel AuPht will play a major role in their biodistribution and 
subsequently their mode of intracellular trafficking, as well as clearance mechanisms, 
subsequent to their pharmacological actions at the target site. Moreover, our results 
warrant a thorough evaluation of its uptake (relative contributions of diffusion/concentration 
gradient-dependent mechanism vs. charge-mediated uptake) in cell-based model systems 
to better delineate the mechanism(s). This would also help in studying the nature of AuPht 
in the dispersed medium. 

Further, in the future evaluations of the conjugate in suitable model systems as a possible 
means to achieve better retention of phenytoin at the target site of action, this approach 
would provide an added advantage of tracking the movement of AuPht, due to the inherent 
fluorescent properties of colloidal nanogold. More studies focusing on the in situ 
conjugation methods may serve to further validate our approach for colloidal gold-based 
drug delivery. Moreover, our results warrant a thorough evaluation of its uptake (relative 
contributions of the diffusion/concentration gradient-dependent mechanism vs. charge-
mediated uptake) in cell-based model systems to better delineate the mechanism(s). This 
would also help in studying the nature of the conjugate in the dispersed medium. These 
studies will help in making further improvements in the design and delivery of phenytoin, 
incorporating cleavable linkers in the AuPht conjugate.  

Conclusion 
In this study, we have formulated the novel colloidal nanogold phenytoin conjugate. With 
the aid of various analytical techniques corroborated with theoretical calculations, major 
physical properties such as size, shape, and charge of the colloidal nanogold and the 
conjugate were evaluated. The lone pair of electrons of the nitrogen in the imide functional 
group of phenytoin mediated a coordinate bond with the positively charged gold atoms in 
the colloid. A good amount of the drug, 86%, was identified to bind with the colloidal 
nanogold. The zeta potential in the physiological conditions, hypothetically, implies that the 
uptake of the conjugate would be charge-mediated across the cell membrane. Further, the 
novel conjugate was screened for its cytotoxicity in two cell lines and a dose range was 
identified that has to be optimized in future applications. When combined with the ability to 
track the payload, the colloidal nano-gold phenytoin conjugate can have potential 
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applications in the field of targeted drug delivery after thorough evaluation of its safety and 
biocompatibility.  
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