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Abstract 
The use of herbal medicinal preparations in dementia therapy has been studied 
based on experience from traditional medicine. A dichloromethane extract of 
gum ammoniacum, the gum-resin from Dorema ammoniacum D. Don had 
shown acetylcholinesterase (AChE) inhibitory activity in a previous study. The 
aim of this study was the isolation and characterization of the active compounds 
from this resin. The extract was investigated by a respective colorimetric 
microplate assay and the active zones were identified via TLC bioautography 
and isolated using several chromatographic techniques. The structures of the 
active components were characterized by one- and two-dimensional 1H and 13C 
NMR spectroscopy and mass spectrometry as (2'S,5'S)-2'-ethenyl-5'-(3-hy-
droxy-6-methyl-4-oxohept-5-en-2-yl)-7-methoxy-2'-methyl-4H-spiro[chromene-
3,1'-cyclopentane]-2,4-dione (1), which is an analogue of doremone A and a 
new natural compound, and as (2'S,5'R)-2'-ethenyl-5'-[(2R,4R)-4-hydroxy-6-
methyl-3-oxohept-5-en-2-yl]-7-methoxy-2'-methyl-4H-spiro[chromene-3,1'-cyclo-
pentane]-2,4-dione (2 = doremone A), (4E,8E)-1-(2,4-dihydroxyphenyl)-5,9,13-
trimethyltetradeca-4,8,12-trien-1-one (3 = dshamirone), and 4,7-dihydroxy-3-
[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-2H-chromen-2-one (4 = am-
moresinol). Dshamirone turned out to be the most active compound with an IC50 
value for AChE inhibitory activity of 23.5 µM, whereas the other substances 
showed weak activity. The concentrations of the analytes in the resin were 
determined by HPLC as 3.1%, 4.6%, 1.9%, and 9.9%, respectively. 
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Introduction 
It is commonly accepted that a cholinergic deficit correlates with the severity of Alzheimer's 
disease [1]. Thus, restoring cholinergic function is considered as a rational approach to 
slow down the progress of Alzheimer's disease. One therapeutic option is the use of 
acetylcholinesterase (AChE) inhibitors which block this key enzyme in the breakdown of 
acetylcholine [2]. 

During the last two decades, the use of herbal medicinal drugs in dementia therapy has 
been studied based on experience from traditional medicine [3]. Using this knowledge, e.g. 
galanthamine from Galanthus nivalis L. (snowdrop) has been identified as a reversible, 
competitive AChE inhibitor and allosteric potentiating ligand of nicotinic acetylcholine re-
ceptors and is today one therapeutic option in the treatment of Alzheimer's disease [4, 5]. 

Dorema ammoniacum D. Don (Apiaceae) is a perennial plant in Iran, Afghanistan, and 
northern India. The gum-resin, commonly known as gum ammoniacum, which is secreted 
from damaged stems and roots, has been traditionally used as an expectorant, stimulant, 
and antispasmodic drug in the Unani system of medicine [6]. It is also used as an 
anthelmintic and for gastrointestinal disorders in Iranian traditional medicine (ITM) [7]. 
Some biological activities such as antibacterial and vasodilatory effects have been 
reported for this resin [6, 8]. Recently, a low cytotoxic activity was shown for the essential 
oil from fruits of D. ammoniacum [9]. Additionally, it is listed in the British Herbal 
Pharmacopoeia as an antispasmodic and expectorant, and it is used occasionally for 
chronic bronchitis and persistent coughs [10, 11]. 

A previous screening study on selected medicinal plants and plant products used in ITM 
showed AChE inhibitory activity for a dichloromethane (DCM) extract of gum ammoniacum 
[12]. Although the bioactivity of the extract was not very high, distinct bands from 
compounds with AchE inhibitory activity were detected by TLC-bioautography. Thus, the 
aim of this study was the isolation and characterization of these active compounds from 
the gum-resin. 

Results and Discussion 
The gum-resin of Dorema ammoniacum has been used in ITM for centuries for different 
indications. There are several herbal mixtures for which a use in memory enhancement or 
treatment of memory loss is described in ITM. As most of these herbal preparations 
contain one or more gum-resins, gum ammoniacum had been included in a screening 
study for AChE inhibition [12]. Based on the detection of several active bands in TLC 
bioautography in the mentioned study, the DCM extract of gum ammoniacum was 
fractionated and four active compounds from this gum-resin were isolated and their 
structures characterized. 
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Isolation of Active Compounds 
By VLC a very fast enrichment of the active fractions from the extract was achieved. 
Subsequent column chromatography resulted in thirteen fractions of which C10 and C13 
contained two and one active compounds, respectively, as monitored in TLC bio-
autography. For the final step in the isolation of compounds 1 and 2, HPCCC was 
performed on C10 using the solvent system hexane-ethylacetate-methanol-water 
(5+1+5+1) in normal phase elution, which yielded two oily components. Compound 3 was 
isolated from C13 by SPE on a C18 stationary phase under elution with MeOH–H2O (see 
“Experimental”). Compound 4 was purified as a single substance from fraction A10 from 
the first VLC via an HPCCC separation by normal phase elution and the use of the solvent 
system hexane-ethylacetate-methanol-water (5+2+5+2). Compound 4 was obtained in 
pure form after a final SPE step.  

Structure Elucidation of Active Compounds 
ESI-MS measurements yielded a molecular weight of 426.0 Da for both 1 and 2, and HR-
ESI-MS showed an [M+H]+ ion at m/z 427.2125 for compound 1, which is in agreement 
with the molecular formula C25H30O6 (calc'd for C25H30O6, [M+H]+, 427.2115, Δ = 2.4 ppm). 
In the positive ion mode ESI-MS3 spectra, major fragment ions were obtained at m/z 326.7 
and 258.7 for 1 and 2, respectively. 

 
Fig. 1.  Structures of compounds 1–4 

The detailed 1H and 13C NMR analyses of 2, together with numerous connectivities derived 
from 2D NMR spectra like COSY, TOCSY-NOESY, HSQC, as well as HMBC, resulted in 
the structure of a spiro-sesquiterpenoidic chromane-2,4-dione derivative, namely (2'S,5'R)-
2'-ethenyl-5'-[(2R,4R)-4-hydroxy-6-methyl-3-oxohept-5-en-2-yl]-7-methoxy-2'-methyl-4H-
spiro[chromene-3,1'-cyclopentane]-2,4-dione which is known as doremone A (Figure 1). All 
1H as well as 13C chemical shifts match exactly with the published data [13]. The relative 
stereochemistry at carbon 3' and 6' could be confirmed by a NOESY crosspeak from H-6' 
to the methyl group 13'. The configuration of the stereocentres 7' and 9' were proven by 
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comparing the NMR data with those of the acetylated doremone A given by Appendino et 
al. [14] who in addition published an X-ray structure of the 3' racemic mixture of 
acetyldoremone A [14].  

The NMR spectra of 1 revealed a lot of similarities to those of 2. All 1H and 13C NMR 
signals for the 7-methoxychromane-2,4-dione part showed almost the same chemical 
shifts including the spirane carbon with its very characteristic downfield shift to about 72 
ppm. All other NMR signals varied from 2, most predominantly in the sidechain. The 13C 
ppm value of the ketone shifts from 215 ppm in doremon A for almost 14 ppm to 201.4 
ppm in 1 was indicative of a conjugation with the double bond. The corresponding olefinic 
proton 10' in 1 was deshielded 1 ppm in the 1H NMR as compared to 2, showing a septett 
multiplicity due to the allylic coupling with only two of the methyl groups. The vicinal 
coupling as in 2 was lost. The methyl protons 14' in 1 gave an HMBC correlation to C-8', 
which is a CH signal bearing an alcohol functionality due to a carbon shift of 79.8 ppm and 
a 1H shift of the attached proton of 3.90 ppm. As a result, these differences in the NMR 
spectra of the two compounds prove that the ketone at 8' and the alcohol at 9' in doremon 
A switched their positions in 1, so that the carbonyl 9' became conjugated with the double 
bond and the alcohol moved to 8'. The stereochemistry of these two centers remains 
undefined. The small shift variations in the cyclopentane part are not only due to the 
altered sidechain; a NOESY crosspeak between H-6' and the olefinic H-2' reveals a 
change in the relative configuration of the stereocentres 3' and 6' compared to doremone 
A. Based on these data, 1 was unambiguously identified as (2'S,5'S)-2'-ethenyl-5'- 
(3hydroxy-6-methyl-4-oxohept-5-en-2-yl)-7-methoxy-2'-methyl-4H-spiro[chromene-3,1'-
cyclopentane]-2,4-dione (Figure 1).  

The molecular weights of 356.1 and 382.1 Da were determined by ESI-MS for 3 and 4, 
respectively, which are in agreement with the molecular formulae C23H32O3 and C24H30O4. 
The NMR data approved 3 as (4E,8E)-1-(2,4-dihydroxyphenyl)-5,9,13-trimethyltetradeca-
4,8,12-trien-1-one (dshamirone) and 4 as 4,7-dihydroxy-3-[(2E,6E)-3,7,11-trimethyldo-
deca-2,6,10-trien-1-yl]-2H-chromen-2-one (ammoresinol) (Figure 1). The NMR data of 3 
were in agreement with an earlier publication [15]. However, this is the first report of this 
compound in the genus Dorema. Ammoresinol is a known compound from gum ammonia-
cum, but there were no complete NMR data available for this substance until now [16, 17]. 
Thus, the detailed assignments for all 1H and 13C shifts for this compound are given in this 
study for the first time. 

Tab. 1.  Inhibition of AchE by the DCM extract, compounds 1–4 and the positive control 
physostigmine (n=3) 

Substance IC50 (µg/mL) IC50 (µM) 
1  77.14 ±  3.75 181.08 
2 100.82 ±  5.14 236.66 
3   8.36 ±  0.41 23.50 
4  76.84 ±  3.86 200.90 
DCM extract 668.00 ± 17.80 – 
Physostigmine   0.80 ±  0.04 2.91 

 



 An Acetylcholinesterase Inhibitor from Gum Ammoniacum 797 

Sci Pharm. 2013; 81: 793–805 

AChEIinhibition 
The AChE inhibitory activities of the DCM extract and the isolated compounds were 
determined for the first time in a microplate assay. The tested concentrations of the 
samples ranged from 1.56 to 200 µg/mL. Based on the resulting curves, the IC50 values for 
AChE inhibition were calculated using the respective curves' equations (Table 1). 
Compounds 1, 2, and 4 showed only low activities, while compound 3 was about 10 times 
more active. 

Quantification of the Active Compounds 
HPLC analyses were performed for the quantification of the isolated components in the 
tested extract and gum ammoniacum. Several HPLC conditions under variation of the 
mobile phase, flow rate, and elution gradient were tested to optimize the separation of 
compounds 1–4 in the DCM extract (Figure 2).  

 
Fig. 2.  HPLC of the DCM extract; conditions see “Experimental”  

The concentrations of the active compounds were determined by external standardization. 
The peak areas of all compounds were linearly dependent of the concentration over the 
selected range. The concentrations of the active compounds in the DCM extract and gum 
ammoniacum as well as the correlation coefficients of the linear regressions in external 
standardization are summarized in Table 2.  
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Tab 2.  Content of compounds 1 to 4 in the DCM extract and in gum ammoniacum and 
correlation coefficients for external standardization 

Substance % in DCM 
extract 

% in gum  
ammonicum 

Correlation  
coefficients 

1 5.8 3.1 R2 = 0.9869 
2 8.4 4.6 R2 = 0.9837 
3 3.1 1.9 R2 = 0.9959 
4 15.9 9.9 R2 = 0.9854 

 

Conclusion 
A new compound and three known compounds were isolated from gum ammoniacum and 
their AChE inhibitory activities were determined for the first time. From the correlation of 
their IC50 values with their concentrations in gum ammoniacum, it can be concluded that 
compounds 1 to 4 are contributing to the AChE inhibition of this drug. Due to these results, 
the use of this drug in ITM in mixtures improving cognitive functions seems plausible.  

Experimental 
Chemicals  
AChE from electric eel, 1-naphthyl acetate, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), 
Tris-HCl, bovine serum albumin (BSA), and physostigmine were purchased from Sigma 
(St. Louis, USA). Acetylthiocholine iodide (ATCI) and chelidonine were obtained from 
Fluka (Buchs, Switzerland). Fast Blue B salt (FBS) and silica gel 60 were from Merck 
(Darmstadt, Germany). The solvents MeOH, EtOAc, CH2Cl2, and CHCl3 were purchased 
from VWR (Vienna, Austria). Two different buffer systems were used (buffer A: 50 mM 
Tris-HCl, pH 7.9 containing 0.1% BSA; buffer B: 50 mM Tris-HCl, pH 7.9 containing 0.1 M 
NaCl and 0.02 M MgCl2·6H2O). 

General 
A Genios microplate reader (Tecan, Salzburg, Austria) was used to measure the 
absorbance. The extraction was performed by sonification in a Branson 3150 ultrasonic 
bath (Dumbury, USA). The silica gel 60 F254 TLC plates were obtained from Merck 
(Darmstadt, Germany) and 96-well microplates PS F-bottom from Greiner Bio-One 
(Frickenhausen, Germany). For solid-phase extraction (SPE), Mega Bond Elut-C18 
cartridges from Varian (Santa Clara, USA) were used. In the LC-MS analyses the 
separation was performed on an Acclaim 120 C18 column, 2.1 × 150 mm, 3 µm (Dionex, 
Germering, Germany) using an UltiMate 3000 RSLC-series system (Dionex, Germering, 
Germany) coupled to a 3D quadrupole ion trap mass spectrometer via an orthogonal ESI 
source (HCT, Bruker Daltonics, Bremen, Germany). The HR-ESI-MS spectra were 
recorded on an ESI-Qq-TOF mass spectrometer (micrOTOF-Q II; Bruker, Daltonics) in 
positive ion mode by direct infusion. The UV-VIS spectra and CD spectra were measured 
on the Spectropolarimeter Jasco J-810 (QS 1 mm; Cremella, Italy). The infrared spectra 
were measured on the Perkin Elmer FT-IR 2000 instrument (Waltham, USA) in attenuated 
total reflection mode using a Golden Gate ATR unit. All NMR spectra were recorded on the 
Bruker Avance DRX 600 spectrometer (Bruker BioSpin, Rheinstetten, Germany). The 
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Spectrum HPCCC instrument (Dynamic Extractions, Berkshire, UK) was used for high-
performance counter current-chromatography (HPCCC). HPLC was performed on the 
Shimadzu instrument with LC-20AD pump, SPD M20A diode array detector and SIL 20AC 
HT autosampler (Kyoto, Japan). The EZ-2plus evaporator from Genevac (New York, USA) 
was used to evaporate the solvents. 

Drug Material  
The dry gum-resin of Dorema ammoniacum D. Don was purchased from an herbal shop in 
Tehran, Iran, and identified by Dr. Gholamreza Amin at the herbarium of the Faculty of 
Pharmacy, Tehran University of Medical Sciences, Tehran, Iran (voucher number PMP-
804). 

Extraction  
Twenty grams of the resin were ground and extracted twice by sonification with 200 mL 
DCM at 40°C for 1 hour. The extracts were combined and concentrated under reduced 
pressure at 40° C to yield 12.98 g of the DCM extract. 

TLC Bioautography Assay  
The DCM extract of gum ammoniacum was examined by TLC on silica plates using the 
mobile phase chloroform-ethylacetate-methanol (90+7+3). Anisaldehyde-sulfuric acid was 
used as the detection reagent to determine the chemical composition of the extract [18]. In 
parallel, a TLC bioautography assay was performed for the AChE inhibitory activity 
according to a published method [19, 20]. The mobile phase was completely removed 
under airstream before detection. Chelidonine served as a positive control in TLC showing 
RF 0.42 in this TLC system. 

Isolation of Active Compounds 
Fractionation of 12.0 g DCM extract of gum ammoniacum was performed by vacuum liquid 
chromatography (VLC) with silica gel 60 and chloroform as the stationary and mobile 
phase, respectively. Fractions (500 mL/10 min) with similar chemical composition 
according to TLC were combined. Twelve collective fractions (A1-A12) were examined by 
TLC bioautography for their AChE inhibitory activity. The active compounds were isolated 
from these fractions. 

Compounds 1 and 2: Further purification of the active fraction A4 (4.25 g) using VLC on a 
silica gel column under gradient elution with 100–50% petroleum ether in chloroform 
yielded five fractions (B1–B5). Then 2.85 g of the active fraction B5 was eluted with 50% 
petroleum ether in chloroform. Two grams of B5 were loaded on a silica gel column and 
eluted with chloroform (10 mL/30 min). From the resulting 13 collective fractions (C1–C13), 
the two active ones were fractions C10 (468 mg; combined from subfractions 175 to 179) 
and C13 (94 mg; combined from subfractions 185 to 189). An HPCCC under normal phase 
elution applying the solvent system hexane–ethylacetate–methanol–water (5+1+5+1) was 
carried out for 360 mg of C10 to obtain the two oily active compounds 1 (6.7 mg; eluting 
from 107 to 118 min) and 2 (119 mg; eluting from 147 to 175 min). The rotation speed of 
HPCCC was 1620 rpm and the fraction size 6 mL/min.  
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Compound 3 was isolated by solid phase extraction of 90 mg of fraction C13 (on a Mega 
Bond Elut C-18 cartridge (volume 12 mL). The mobile phase consisted of methanol-water 
and a flow rate of 2.5 mL/min was applied. The methanol concentration was increased 
stepwise from 40% to 90% in 10% steps. For each concentration, five bed volumes were 
used for elution. In the elution step with 80% MeOH, 9.6 mg of compound 3 were obtained. 

Compound 4: 1.7 g of fraction A10 was further fractionated by HPCCC using normal phase 
elution to obtain 9 collective fractions (M1–M9). The solvent mixture consisted of hexane–
ethylacetate–methanol–water (5+2+5+2). A solid phase extraction was performed for 
100 mg of fraction M9 (eluted in HPCCC from 45 to 63 min) on a Mega Bond Elut C-18 
cartridge under elution with 40–90% methanol at a flow rate of 2.5 mL/min as described 
above. Finally, 4.1 mg of compound 4 were obtained under elution with 80% MeOH.  

Structure Characterization of Active Compounds 
The separation in the LC-MS analysis was carried out at 25°C and a flow rate of 0.5 
mL/min. A solution of 0.1% aqueous formic acid and acetonitrile were used as mobile 
phase A and B, respectively. Compounds 1 and 2 were eluted by gradient elution: 40% B 
(0 min), 40% B (2 min), and 70% B (32 min), while the following gradient program was 
used for compounds 3 and 4: 75% B to 82% B in 14 min. The eluent flow was split roughly 
1:8 before the ESI ion source, which was operated as follows: capillary voltage: ‒3.7/+3.5 
kV, nebulizer: 26 psi (N2), dry gas flow: 9 L/min (N2), and dry temperature: 340°C. 
Collision-induced dissociation (CID) spectra were obtained in automated data-dependent 
acquisition (DDA) mode with helium as the collision gas, an isolation window of 4 Th, and 
a fragmentation amplitude of 1.0 V.  

Compound 1: (+)ESIMS m/z 427.0 [M+H]+; ESIMS2 (427.0 ) m/z 408.8 (100), 326.7 (14); 
ESIMS3 (427.0  408.8 ) m/z 326.7 (100), 298.7 (12), 284.7 (51), 204.6 (19), 150.7 
(13); (−)ESIMS m/z 425.0 [M-H]−; ESIMS2 (425.0 ) m/z 380.8 (11), 362.8 (16), 204.6 
(100); HR-ESI-MS m/z 427.2125 [M+H]+ (calcd for C25H30O6, [M+H]+, 427.2115, Δ = 
2.4 ppm); CD (CHCl3) Δε253 +1.92, Δε275 −4.24, Δε297 +0.24, Δε320 −2.59; UV λmax (CHCl3) 
240.1, 275.0, 308.2 (sh) nm; IR νmax 3184, 2359, 1626, 1550, 1296, 1037, 663 cm−1. 

Compound 2: (+)ESIMS m/z 427.0 [M+H]+; ESIMS2 (427.0 ) m/z 408.8 (100), 258.7 (11); 
ESIMS3 (427.0  408.8 ) m/z 390.8 (57), 352.7 (38), 334.7 (25), 326.7 (63), 310.6 (21), 
298.7 (14), 284.7 (27), 270.6 (17), 258.6 (100), 240.6 (11), 230.7 (11), 218.6 (18), 216.7 
(15), 204.6 (63), 192.7 (22), 174.8 (11), 150.7 (18); (−)ESIMS m/z 425.0 [M-H]−; ESIMS2 
(425.0 ) m/z 380.8 (28), 362.8 (15), 256.7 (100), 166.6 (20), 150.7 (24).  

Compound 3: (+)ESIMS m/z 357.1 [M+H]+; ESIMS2 (357.1 ) m/z 339.1 (100), 229.1 (16), 
203.1 (22), 165.0 (11), 149.0 (20), 147.1 (10), 137.0 (11), 123.1 (29); (−)ESIMS m/z 355.1 
[M-H]−; ESIMS2 (355.1 ) m/z 217.9 (10), 149.9 (100), 135.9 (12), 122.0 (26); ESIMS3 
(355.1  149.9 ) m/z 122.0 (100). 

Compound 4: (+)ESIMS m/z 383.1 [M+H]+; ESIMS2 (383.1 ) m/z 190.9 (100); ESIMS3 
(383.1  190.9 ) m/z 162.9 (17), 123.0 (100); (−)ESIMS m/z 381.1 [M-H]−; ESIMS2 
(381.1 ) m/z 254.9 (17), 243.9 (34), 242.9 (33), 228.9 (16), 202.9 (11), 189.9 (51), 188.9 
(100), 175.9 (62). 
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Tab. 3.  1H (600 MHz) and 13C NMR (150 MHz) of compounds 1 and 2 (CDCl3) 

 

  

 Compound 1 Compound 2 
Atoma δC (dept) δH δC (dept) δH 
2 169.8 (s) – 168.4 (s) – 
3  70.8 (s) –  72.1 (s) – 
4 191.4 (s) – 189.2 (s) – 
5 127.9 (d) 7.85 (1H, d, J= 8.8 Hz) 128.6 (d) 7.80 (1H, d, J= 8.8 Hz) 

6 111.7 (d) 6.76 (1H, dd, J= 8.8, 2.4 Hz) 112.2 (d) 6.75 (1H, dd, J= 8.8, 2.4 
Hz) 

7 165.5 (s) – 166.2 (s) – 
8 100.7 (d) 6.58 (1H, d, J= 2.4 Hz) 100.8 (d) 6.57 (1H, d, J= 2.4 Hz) 
9 156.5 (s) – 156.3 (s) – 
10 115.4 (s) – 113.8 (s) – 
11  55.8 (q) 3.86 (3H, s)  55.6 (q) 3.88 (3H, s) 

1' 112.9 (t) 5.07 (1H, dd, J= 17.3, 0.8 Hz) 
5.13 (1H, dd, J= 10.8, 0.8 Hz) 115.9 (t) 

4.90 (1H, dd, J= 10.8, 0.7 
Hz) 

4.89 (1H, dd, J= 17.3, 0.7 
Hz) 

2' 142.7 (d)  5.96 (1H, dd, J= 17.3, 10.8 Hz) 140.2 (d)  5.60 (1H, dd, J= 17.3, 10.8 
Hz) 

3'  56.1 (s)  –  56.2 (s)  – 

4'  34.2 (t)  1.86 (2H, m)  35.9 (t)  
2.36 (1H, m) 

1.54 (1H, ddd, J= 12.9, 5.5, 
2.7 Hz) 

5'  29.6 (t)  2.21 (1H, m) 
1.93 (1H, m)  28.4 (t) 2.25 (1H, m) 

1.87 (1H, m) 

6'  49.4 (d)  3.03 (1H, ddd, J= 9.0, 10.5, 
10.5 Hz)  46.1 (d) 3.44 (1H, ddd, J= 8.0, 10.4,  

10.4 Hz) 

7'  39.7 (d)  1.93 (1H, m)  44.7 (d)  3.03 (1H, qd, J= 7.0, 10.4 
Hz) 

8'  79.8 (d)  3.90 (1H, dd, J= 7.8, 9.6 Hz) 
2.77 (1H: OH, d, J= 7.8 Hz) 215.0 (s) – 

9' 201.4 (s)  –  73.9 (d)  4.69 (1H, br d, J= 9.8 Hz) 
3.41 (1H: OH, br) 

10' 122.7 (d)  6.01 (1H, sep, J= 1.1 Hz) 120.0 (d) 4.99 (1H, sep d, J= 1.4, 9.8 
Hz) 

11' 158.7 (s) – 140.3 (s) – 
12'  28.1 (q) 1.90 (3H, d, J= 1.1 Hz)  26.0 (q) 1.80 (3H, d, J= 1.4 Hz) 
13'  22.2 (q) 0.90 (3H, s)  23.2 (q) 0.98 (3H, d, J= 0.6 Hz) 
14'  16.1 (q) 0.92 (3H, d, J= 6.9 Hz)  15.7 (q) 1.21 (3H, d, J= 7.0 Hz) 
15'  21.4 (q) 2.10 (3H, d, J= 1.1 Hz)  18.5 (q) 2.10 (3H, d, J= 1.4 Hz) 
a for numbering see figure 1. 
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Table 4.  1H (600 MHz) and 13C NMR (150 MHz) of compounds 3 and 4 (CDCl3) 
 Compound 3  Compound 4 
Atoma δC (dept) δH Atoma δC (dept) δH 
1 204.7 (s) – 1  23.7 (t) 3.41 (2H, dq, J= 7.6, 0.6 Hz) 
2  38.1 (t) 2.92 (2H, m) 2 120.2 (d) 5.45 (1H, tq, J= 7.6, 1,4 Hz) 
3  23.2 (d) 2.42 (1H, m) 3 142.8 (s) – 

4 122.3 (d) 5.17 (1H, tqt, J= 7.2, 
1.4, 1.2 Hz) 4  39.7 (t) 2.17 (2H, m) 

5 136.8 (s) – 5  26.0 (s) 2.17 (2H, m) 
6  39.6 (t) 1,99 (2H, m) 6 123.0 (d) 5.01 (1H, m) 
7  26.5 (t) 2,06 (2H, m) 7 136.4 (s) – 
8 124.0 (d) 5,09 (1H, m) 8  39.7 (t) 2,01 (2H, m) 
9 135.1 (s) – 9  26.6 (t) 2.07 (2H, m) 
10  39.7 (t) 1.97 (2H, m) 10 124.2 (d) 5.08 (1H, m) 
11  26.7 (t) 2.06 (2H, m) 11 131.4 (s) – 
12 124.4 (d) 5.09 (1H, m) 12  25.7 (q) 1.67 (3H, m) 
13 131.3 (s) – 13  17.7 (q) 1.58 (3H, m) 
14  25.7 (q) 1.68 (3H, m) 14  16.4 (q) 1.62 (3H, m) 
15  17.7 (q) 1.60 (3H, m) 15  16.4 (q) 1.84 (3H, m) 
16  16.0 (q) 1.59 (3H, m) 2' 164.9 (s) – 
17  16.0 (q) 1.66 (3H, m) 3'  99.7 (s) – 
1' 113.9 (s) – 4' 162.4 (s) – 

2' 165.2 (s) –12.83 (1H,breit) 4a' 108.9 (s) – 
5' 124.2 (d) 7.63 (1H, d, J= 8.7 Hz) 

3' 103.5 (d) 6.38 (1H, m) 6' 113.2 (d) 6.82 (1H, dd, J= 8.7, 2.4 Hz) 
4' 162.5 (s) – 7' 160.0 (s) – 
5' 107.6 (d) 6.37 (1H, m) 8' 102.6 (d) 6.97 (1H,d, J= 2,4 Hz) 
6' 132.4 (d) 7.65 (1H, d, J= 9.3 Hz) 8a' 153.9 (s) – 
a for numbering see figure 1. 

 

All NMR spectra were recorded on a Bruker Avance DRX 600 NMR spectrometer using a 
5 mm switchable quadruple probe (QNP, 1H, 13C, 19F, 31P) with z axis gradients and 
automatic tuning and a matching accessory. The resonance frequency for 1H NMR was 
600.13 MHz, for 13C NMR 150.92 MHz. All measurements were performed on a solution in 
CDCl3 at 298K. Standard 1D and gradient-enhanced (ge) 2D experiments, like double-
quantum filtered (DQF) COSY, TOCSY, NOESY, HSQC, and HMBC, were used as 
supplied by the manufacturer. Chemical shifts are referenced internally to the residual, 
non-deuterated solvent signal for 1H (δ = 7.26 ppm) or to the carbon signal of the solvent 
for 13C (δ = 77.0 ppm). The 1H and 13C NMR data are summarized in Tables 3 and 4.  

Microplate Assay 
A quantitative colorimetric assay based on Ellman's method was used to measure the 
AChE inhibitory activities of the substances [20, 21]. Briefly, in a 96-well plate, 25 µL of 
15 mM ATCI, 125 µL of 3 mM DTNB in buffer B, 50 µL of buffer A, and 25 µL of the extract 
or the isolated substances (from 15.6 µg/mL to 2.0 mg/mL in 10% DMSO) were thoroughly 
mixed and the absorbance was read at 405 nm five times every 15 s. Finally, 25 µL of 
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AChE (0.22 U/mL in buffer A) were added and the plate was incubated at 25°C for 
10 minutes. Then the absorbance was measured again eight times every 15 s. A 10% 
DMSO solution was used as the negative control. To compensate for any increase in 
absorbance due to the color of the extracts or spontaneous hydrolysis of the substrate, the 
absorbance before the addition of the enzyme was subtracted from the absorbance after 
adding the enzyme. The assay was repeated three times for every concentration. 
Physostigmine at different concentrations (0.12–15 µg/mL) served as the positive control. 
The IC50 value of physostigmine was determined as 0.80 ± 0.04 μg/mL (2.91 μM). 

HPLC 
The DCM extract of gum ammoniacum and the isolated compounds were analyzed by 
HPLC using gradient elution on the Hypersil BDS-C18 column (250×4 mm id) at 35°C. The 
mobile phase consisted of acetonitrile (A) and 0.05% formic acid in water (B) at a flow rate 
of 0.75 mL/min. After an isocratic step at 50% A for 10 min, the concentration of solvent A 
increased up to 75% in 25 min. The mobile phase was kept at this concentration for 10 
min, increased to 90% A in 10 min, and was kept again at 90% for a further 5 min. Elution 
was monitored at 260 nm. 
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