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Abstract 
A novel series of imidazol-5-yl carbinols and their 4-chlorobenzoyl esters has 
been synthesized by the Grignard reaction and subsequent esterification. These 
compounds were screened for their antimicrobial activities in an agar diffusion 
assay. The compounds with C10 to C12-alkyl side chains displayed significant 
antimycotic activity.  
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Introduction 
Ergosterol biosynthesis is an important target for the development of novel antimycotic 
drugs [1–8]. Three classes of antimycotics, the azoles (e.g. fluconazole, clotrimazole, and 
miconazole), the allylamines (e.g. naftifine, terbinafine), and the morpholines (amorolfine) 
are used in the treatment of human mycoses caused by various species of fungi (Fig. 1). 
Diverse derivatives of these drug classes are also used in agrochemistry for crop 
protection or in technical chemistry (e.g. as additives in colourings). 

These drugs target enzymes in fungal ergosterol biosynthesis. While azoles target C-14 
demethylase [7], allylamines inhibit the enzyme squalene epoxidase, and the morpholines 
inhibit both Δ8,7-isomerase and Δ14-reductase. 
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Increasing fungal resistance against these antimycotics [2] and their often observed 
unfavourable pharmacokinetics call for the development of new antimycotics with new 
targets and better biopharmaceutical properties. 

It is well-established that a number of enzymatic transformations in the post-squalene part 
of ergosterol biosynthesis go through carbocationic intermediates (high-energy inter-
mediates, HEI), e.g. those catalyzed by the enzymes sterol Δ8,7-isomerase, C24-methyl-
transferase, Δ24,28-reductase, and Δ14-reductase [5]. Inhibition of these enzymes can be 
achieved effectively by imitation of the respective HEI, since mimics of HEI have a higher 
affinity for the active site than the substrate sterols have [4]. Synthetic drugs which imitate 
HEI have to be cationic in the cellular environment, which is most conveniently achieved 
by the presence of an aliphatic amino group or heteroaromatic ring (which are protonated 
to a significant extent at physiological pH). The allylamines and the morpholine antifungal 
amorolfine are the most prominent representatives of this type (Fig. 1). In the class of 
morpholines and related N-alkyl piperidines, the length of the aliphatic or arylaliphatic 
N-substituent significantly determines the potency and selectivity (Δ8,7-isomerase versus 
Δ14-reductase inhibition) of the compounds [9]. On the other hand, the azole-type 
antifungals (imidazoles like clotrimazole and miconazole, triazoles like fluconazole, as well 
as numerous related azoles used in agrochemistry [10]) are inhibitors of the enzyme sterol 
C14 demethylase. This enzyme, a member of the CYP family, catalyzes the oxidative 
demethylation of lanosterol, and inhibition is based on the complexation of its heme iron by 
one of the nitrogen atoms of the unprotonated azole ring. Most of the commercial azole 
antifungals contain a 1-(2-hydroxyethyl)azole subunit (see fluconazole, Fig. 1), but 
etherification (miconazole) and esterification [11] of the hydroxyl group is tolerated well. 
The azoles further inhibit another CYP-enzyme in ergosterol biosynthesis, namely 
Δ22-desaturase [12]. This enzyme, catalyzing the introduction of an olefinic double bond in 
the sterol side chain, has been poorly characterized until now, and its selective inhibitors 
are not yet known. Previously synthesized sterol derivatives containing imidazole groups in 
the side chain have not inhibited this enzyme, but the sterol C24-methyltransferase has, 
due to an imitation of a cationic HEI by the protonated imidazole [13]. 

In the investigations described here, we intended to prepare hybrids of the 
abovementioned types of established antifungals, aimed at the development of new 
inhibitors of ergosterol biosynthesis, probably with dual action. 

As the central functionality, we selected the imidazole ring (pKa value about 7), which 
should exist in protonated and unprotonated forms in about equal amounts in cells. In its 
neutral form it can inhibit the relevant CYP enzymes, whereas the protonated form might 
imitate carbocationic HEI in sterol biosynthesis [13]. In contrast to established azole 
antifungals [10], in which the hydroxyalkyl residue is attached to N-1, our target 
compounds contain side chains (derived from the alkyl chains of morpholine antifungals 
[9]) at C-5 of the imidazole ring. 
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Fig. 1.  Antimycotic drugs 

Results and Discussion 
Chemistry 
In order to achieve a hydroxyalkylimidazole structural element, we selected a Grignard 
reaction as the crucial step. Commercially available 1-methyl-1H-imidazole-5-carb-
aldehyde (1) was reacted with a series of alkyl and arylalkyl magnesium bromides to give 
the racemic carbinols 2a–g in moderate-to-good yields. In order to investigate the hitherto 
only poorly investigated influence of esterification of antifungal hydroxyalkyl-imidazoles 
[11] and to introduce a chlorophenyl ring (cf. clotrimazole, Fig. 1) into the molecule, 
selected carbinols (2b and 2c) were esterified with 4-chlorobenzoyl chloride [14] to give 
the esters 3b and 3c. We also intended to achieve etherification of 2a–g with 2,4-dichloro-
benzyl chloride (cf. miconazole, Fig. 1) by the use of a standard protocol with the bases 
sodium hydride or sodium ethoxide, but unfortunately did not observe any conversion. 

Biological Activity 
The antifungal and antibacterial activities of the resulting compounds were determined in 
an agar diffusion assay against four strains of bacteria (Gram-negative and Gram-positive) 
and four strains of fungi (two yeasts, mould, dermatophyte) [15]. Except for 2c, the 
compounds showed no or only weak activities against the bacteria, when compared to 
tetracycline, but especially compounds 2c, 2d, and 2e, which contain C10 to C12-alkyl 
chains, show remarkable activity against fungi when compared to clotrimazole. The 
corresponding esters 3b/3c did not show significant antimicrobial activities. The MIC 
(minimum inhibitory concentration) against the opportunistic pathogen Candida glabrata, 
which is often associated with resistance to fluconazole therapy [16, 17], was determined 
to be 25 µg/mL (2c), 10 µg/mL (2d), and 5 µg/mL (2e) (clotrimazole: 2.5 µg/mL) [11].  
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Sch. 1. Synthetic preparation of the title compounds 

To determinate the mechanism of action, the carbinols 2c, 2d, and 2e were evaluated in 
an ergosterol biosynthesis assay [18]. Only 2c showed a moderate accumulation of 
episterol (ergosta-7,24(28)-dien-3β-ol) in this assay. This indicates that 2c is a moderate 
inhibitor of C5 desaturase, a hitherto poorly characterized, putatively non-heme iron-
containing oxidase [19]. But since the even more potent analogues 2d and 2e do not show 
signs of accumulation of episterol, the high antimycotic activity of the imidazolyl carbinols 
must be due to another mechanism of action. 

Tab. 1. Agar diffusion assay (Te: tetracycline, Cl: clotrimazole, 50 µg/disc, inhibition 
diameter in [mm], 0: no inhibition) 

 2a 2b 2c 2d 2e 2f 2g 3b 3c Te Cl 
Escherichia coli 0 0 0 0 0 0 0 0 0 30 0 
Pseudomonas marginalis 9 0 15 0 0 0 0 0 7 28 15 
Staphylococcus equorum 15 0 20 18 13 10 0 7 0 37 20 
Streptococcus entericus 0 0 7 10 8 7 0 7 0 20 8 
Candida glabrata 0 0 10 15 9 7 0 10 6 0 19 
Aspergillus niger 0 0 7 11 0 0 0 0 0 0 15 
Yarrowia lipolytica 0 0 13 11 0 0 0 0 0 0 22 
Hyphopichia burtonii 0 0 15 16 10 6 0 12 7 0 23 

 

Conclusion 
The novel alkyl imidazolyl carbinols 2c, 2d, and 2e produced in this study show interesting 
antifungal activities. The investigation of a series of homologs indicated that the length of 
the alkyl chain is of critical importance, with an optimum length of C10 to C12. This parallels 
findings on N-alkylimidazoles, where the same chain length was found to lead to the 
highest antibacterial and antifungal activity [20], and also on antifungal N-alkylmorpholines 
and -piperidines [9]. 
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Although the main mechanism of action does not seem to be an inhibition of the ergosterol 
biosynthesis pathway (as initially intended), the pronounced antifungal activity of the 
compounds 2c, 2d, and 2e warrants them to be the starting point for the development of 
new antimycotics. The rather simple chemical structures of the novel compounds 
presented here is particularly interesting as they enable a quick, economical, and effortless 
synthesis approach to further analogues. 

Experimental 
General 
Elemental analyses: Heraeus CHN–Rapid; IR-spectra: Perkin-Elmer FT-IR Paragon 1000; 
MS: Hewlett Packard MS-Engine; electron ionisation (EI) 70 eV, chemical ionisation (CI) 
with CH4 (300 eV); NMR: Jeol GSX 400 (1H: 400 MHz, 13C: 100 MHz); melting points: 
Büchi Melting Point B-540 (not corrected); flash column chromatography (FCC): silica gel 
60 (230–400 mesh, E. Merck, Darmstadt); GLC-MS: Shimadzu GC-17 A (carrier: He, oven 
temperature program: 100–280 °C, 10 °C / min, capillary column: Varian VF-5ms 30 m × 
0.25, split injector T = 250 °C, detector T = 260 °C).  

General Procedure 1 (Grignard Reaction) 
550 mg (5.0 mmol) of 1-methyl-1H-imidazole-5-carbaldehyde (1) were dissolved in 20 mL 
dry THF and 7.5 mmol of the Grignard reagent (solution in 50 mL anhydrous THF, freshly 
prepared from 7.5 mmol of the corresponding alkyl or arylalkyl bromide, two crystals of 
iodine and 230 mg (10 mmol) magnesium) were added dropwise. The mixture was stirred 
for 12 h at room temperature, then quenched with 30 mL of aqueous ammonia buffer pH 
9.25, and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were 
dried over Na2SO4 and the solvent was evaporated. The residue was purified by flash 
column chromatography (n-hexane/ethyl acetate/dimethyl ethylamine 1:1:0.005). 

General Procedure 2 (Esterification) 
About 1.0 mmol of carbinol 2b/2c was dissolved in 25 mL 1,2-dimethoxyethane and 
4-chlorobenzoyl chloride (see amounts below) and 3 mL triethylamine (or pyridine) were 
added. The mixture was stirred for 12 h at room temperature. Then the solvent was 
evaporated, the residue dissolved in 25 mL 10% aqueous NaOH solution, and extracted 
with ethyl acetate (3 × 30 mL). The combined organic layers were dried over Na2SO4 and 
the solvent was evaporated. The residue was purified by flash column chromatography (n-
hexane/ethyl acetate 1:1). 

1-(1-Methyl-1H-imidazol-5-yl)hexan-1-ol (2a) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde (1) and the Grignard reagent prepared from 1.13 g 
(7.5 mmol) 1-bromopentane to give 850 mg (93%) of 2a as a white solid. M.p. 65 °C. 
1H-NMR (d6-acetone): δ 0.88 (t, J = 7.3 Hz, 3 H, CH3), 1.32 (m, 6 H, 3 CH2), 1.83 (m, 2 H, 
CH2), 3.70 (s, 3 H, CH3), 4.62 (t, J = 6.7 Hz, 1 H, CH), 6.75 (s, 1 H, aromat. CH), 7.36 (s, 1 
H, aromat. CH). 13C-NMR (d6-acetone): δ 14.3 (CH3), 23.3 (CH2), 26.6 (CH2), 31.9 (CH2) 
31.9 (CH3), 32.4 (CH2), 65.1 (CH), 126.6 (aromat. CH), 135.6 (quart. C), 139.2 (aromat. 
CH). MS (CI) (m/z, %): 183 (M++1, 90), 165 (100). MS (EI) (m/z, %): 182 (M+, 10), 111 
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(100). HR-MS Calcd. for C10H18N2O: 182.1419. Found: 182.1428. IR (KBr), ν, cm−1: 3262, 
2951, 2854, 1508, 1416, 1237, 1072, 914. 

1-(1-Methyl-1H-imidazol-5-yl)heptan-1-ol (2b) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde (1) and the Grignard reagent prepared from 1.24 g 
(7.5 mmol) 1-bromohexane to give 820 mg (84%) of 2a as a pale brown solid. M.p. 92 °C. 
1H-NMR (d4-methanol): δ 0.90 (t, J = 6.8 Hz, 3 H, CH3), 1.32 (m, 8 H, 4 CH2), 1.86 (m, 2 H, 
CH2), 3.72 (s, 3 H, CH3), 4.64 (t, J = 6.9 Hz, 1 H, CH), 6.86 (s, 1 H, aromat. CH), 7.55 (s, 1 
H, aromat. CH). 13C-NMR (d4-methanol): δ 14.4 (CH3), 23.7 (CH2), 27.1 (CH2), 30.2 (CH2), 
32.2 (CH3), 33.0 (CH2), 36.8 (CH2), 65.5 (CH), 126.3 (aromat. CH), 136.1 (quart. C), 139.8 
(aromat. CH). MS (CI) (m/z, %): 197 (M++1, 100), 111 (21). HR-MS Calcd.: 196.1576. 
Found: 196.1580. IR (KBr), ν, cm−1: 3107, 2952, 1508, 1467, 1413, 1233, 1113, 1072, 
1006, 930, 853, 825, 799, 701, 663. 

1-(1-Methyl-1H-imidazol-5-yl)decan-1-ol (2c) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde and the Grignard reagent prepared from 1.55 g 
(7.5 mmol) 1-bromononane to give 0.840 g (71%) of 2c as a white solid. 1H-NMR (CDCl3): 
δ 0.88 (t, J = 6.7 Hz, 3 H, CH3), 1.27 (m, 14 H, 7 CH2), 1.86 (m, 2 H, CH2), 3.69 (s, 3 H, 
CH3), 4.61 (t, J = 6.9 Hz, 1 H, CH), 6.80 (s, 1 H, aromat. CH), 7.30 (s, 1 H, aromat. CH). 
13C-NMR (CDCl3): δ 14.2 (CH3), 22.7 (CH2), 26.2 (CH2), 26.2 (CH2), 29.4 (CH2), 29.5 
(CH2), 29.7 (CH2), 32.0 (CH3), 32.1 (CH2), 35.9 (CH2), 65.1 (CH), 126.3 (aromat. CH), 
134.5 (quart. C), 138.7 (aromat. CH). MS (CI) (m/z, %): 239 (M++1, 100), 111 (21). HR-MS 
Calcd. for C14H26N2O: 238.2045. Found: 238.2045. IR (KBr), ν, cm−1: 3265, 2921, 2852, 
1512, 1473, 1083, 920, 668. 

1-(1-Methyl-1H-imidazol-5-yl)undecan-1-ol (2d) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde and the Grignard reagent prepared from 1.66 g 
(7.5 mmol) 1-bromodecane to give 658 mg (52%) of 2d as a white solid. M.p. 97 °C. 1H-
NMR (CDCl3): δ 0.88 (t, J = 7.0 Hz, 3 H, CH3), 1.27 (m, 16 H, 8 CH2), 1.89 (m, 2 H, CH2), 
3.70 (s, 3 H, CH3), 4.63 (t, J = 7.1 Hz, 1 H, CH), 6.90 (s, 1 H, aromat. CH), 7.37 (s, 1 H, 
aromat. CH). 13C-NMR (d4-methanol): δ 14.1 (CH3), 22.7 (CH2), 26.1 (CH2), 29.3 (CH2), 
29.4 (CH2), 29.5 (CH2), 29.6 (2 CH2), 31.9 (CH2), 31.9 (CH3), 35.7 (CH2), 65.4 (CH), 126.5 
(aromat. CH), 134.1 (quart. C), 138.9 (aromat. CH). MS (EI) (m/z, %): 252 (M+, 17), 111 
(100). HR-MS Calcd. for C15H28N2O: 252.2202. Found: 252.2199. IR (KBr), ν, cm−1: 3103, 
2917, 2851, 1509, 1467, 1112, 1083, 823, 661. 

1-(1-Methyl-1H-imidazol-5-yl)dodecan-1-ol (2e) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde and the Grignard reagent prepared from 1.76 g 
(7.5 mmol) 1-bromoundecane to give 927 mg (70%) of 2e as a white solid. M.p. 98 °C. 1H-
NMR (CDCl3): δ 0.88 (t, J = 6.7 Hz, 3 H, CH3), 1.35 (m, 18 H, 9 CH2), 1.89 (m, 2 H, CH2), 
3.70 (s, 3 H, CH3), 4.63 (t, J = 7.0 Hz, 1 H, CH), 6.87 (s, 1 H, aromat. CH), 7.36 (s, 1 H, 
aromat. CH). 13C-NMR (CDCl3): δ 14.1 (CH3), 22.7 (CH2), 26.1 (CH2), 29.3 (CH2), 29.4 
(CH2), 29.5 (CH2), 29.6 (3 CH2), 31.9 (CH2), 31.9 (CH3), 35.7 (CH2), 65.2 (CH), 126.4 
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(aromat. CH), 134.1 (quart. C), 138.8 (aromat. CH). MS (EI) (m/z, %): 248 (M+ -18, 20), 
219 (10), 135 (15), 121 (100), 108 (30). HR-MS Calcd. for C16H30N2O: 266.2358. Found: 
266.2347. IR (KBr), ν, cm−1: 3269, 2918, 2851, 1513, 1472, 1236, 1111, 1089, 1068, 904, 
668. 

1-(1-Methyl-1H-imidazol-5-yl)tridecan-1-ol (2f) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde and the Grignard reagent prepared from 1.87 g 
(7.5 mmol) 1-bromododecane to give 895 mg (64%) of 2f as a white solid. M.p. 86 °C. 1H-
NMR (d4-methanol): δ 0.90 (t, J = 7.0 Hz, 3 H, CH3), 1.32 (m, 16 H, 8 CH2), 1.86 (m, 2 H, 
CH2), 3.72 (s, 3 H, CH3), 4.64 (t, J = 7.0 Hz, 1 H, CH), 6.86 (s, 1 H, aromat. CH), 7.55 (s, 1 
H, aromat. CH). 13C-NMR (d4-methanol): δ 14.4 (CH3), 23.8 (CH2), 27.2 (CH2), 30.5 (CH2), 
30.6 (CH2), 30.7 (2 CH2), 30.8 (3 CH2), 32.2 (CH), 33.1 (CH2), 36.8 (CH2), 65.5 (CH), 
126.3 (aromat. CH), 136.1 (quart. C), 139.8 (aromat. CH). MS (CI) (m/z, %): 281 (M++1, 
100), 263 (26). HR-MS Calcd. for C17H32N2O: 280.2515. Found: 280.2516. IR (KBr), ν, 
cm−1: 3103, 2921, 2850, 1510, 1470, 1270, 1111, 1070, 941, 823, 717, 664. 

1-(1-Methyl-1H-imidazol-5-yl)-3-phenyl-propan-1-ol (2g) 
The compound was prepared according “General Procedure 1” from 550 mg (5 mmol) 
1-methyl-1H-imidazole-5-carbaldehyde and the Grignard reagent prepared from 1.39 g 
(7.5 mmol) 1-bromo-2-phenylethane to give 455 mg (42%) of 2g as a viscous oil. 1H-NMR 
(CDCl3): δ 2.21 (m, 2 H, CH2), 2.75 (m, 1 H, CH2), 2.86 (m, 1 H, CH2), 4.62 (dd, J = 5.8 Hz, 
J = 8.2 Hz, 1 H, CH), 6.90 (s, 1 H, aromat. CH), 7.20 (m, 3 H, 3 aromat. CH), 7.28 (m, 2 H, 
2 aromat. CH), 7.44 (s, 1 H, aromat. CH). 13C-NMR (CDCl3): δ 32.1 (CH3), 32.2 (CH2), 
37.2 (CH2), 64.1 (CH), 125.4 (aromat. CH), 126.1 (aromat. CH), 128.5 (2 aromat. CH), 
128.5 (2 aromat. CH), 134.2 (quart. C), 138.5 (aromat. CH), 141.2 (quart. C). MS (EI) (m/z, 
%): 216 (M+, 10), 111 (100), 83 (35). MS (CI) (m/z, %): 217 (M++1, 100), 199 (23). HR-MS 
Calcd. for C13H16N2O: 216.1263. Found: 216.1262. 

4-Chlorobenzoic acid 1-(1-methyl-1H-imidazol-5-yl)heptyl ester (3b) 
The compound was prepared according “General Procedure 2” from 232 mg (1.18 mmol) 
2b and 964 mg (5.5 mmol) 4-chlorobenzoyl chloride to give 113 mg (29%) of 3b as a pale 
yellow oil. 1H-NMR (CDCl3): δ 0.87 (t, J = 6.9 Hz, 3 H, CH3), 1.31 (m, 8 H, 4 CH2), 1.90 (m, 
2 H, CH2), 6.10 (t, J = 7.5 Hz, 1 H, CH), 7.14 (s, 1 H, aromat. CH), 7.41 (s, 1 H, aromat. 
CH), 7.41 (d, J = 8.6 Hz, 2 H, 2 aromat. CH), 7.95 (d, J = 8.6 Hz, 2 H, 2 aromat. CH). 13C-
NMR (CDCl3): δ 14.0 (CH3), 22.5 (CH2), 25.7 (CH2), 28.9 (CH2), 31.6 (CH2), 32.0 (CH3); 
33.8 (CH2), 67.3 (CH), 1283 (quart. C), 128.8 (aromat. CH), 128.9 (2 aromat. CH); 130.6 
(quart. C), 131.1 (2 aromat. CH); 138.9 (aromat. CH), 139.7 (quart. C). 165.2 (CO). MS 
(EI) (m/z, %): 335 (M++1, 28), 239 (31), 179 (100). HR-MS Calcd. for C18H23ClN2O2: 
334.1448. Found: 334.1450. IR (KBr), ν, cm−1: 2954, 2928, 2857, 1716, 1593, 1502, 1487, 
1466, 1401, 1334, 1268, 1098, 1014, 760. 

4-Chlorobenzoic acid 1-(1-methyl-1H-imidazol-5-yl)decyl ester (3c) 
The compound was prepared according “General Procedure 2” from 235 mg (0.99 mmol) 
2c and 310 mg (1.8 mmol) 4-chlorobenzoyl chloride to give 90 mg (24%) of 3c as a almost 
colourless oil. 1H-NMR (CDCl3): δ 0.84 (t, J = 7.2 Hz, 3 H, CH3), 1.21 (m, 14 H, 7 CH2), 
2.06 (m, 2 H, CH2), 3.65 (s, 3 H, CH3), 6.07 (t, J = 7.2 Hz, 1 H, CH), 7.12 (s, 1 H, aromat. 
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CH), 7.38 (d, J = 8.5 Hz, 2 H, 2 aromat. CH), 7.39 (s, 1 H, aromat. CH), 7.92 (d, J = 8.5 
Hz, 2 H, 2 aromat. CH). 13C-NMR (CDCl3): δ 14.0 (CH3), 22.5 (CH2), 25.7 (CH2), 29.1 (2 
CH2), 29.3 (2 CH2), 31.7 (CH2), 31.9 (CH3), 33.7 (CH2), 67.2 (CH), 128.2 (quart. C), 128.7 
(2 aromat. CH), 128.8 (aromat. CH), 130.5 (quart. C), 130.9 (2 aromat. CH), 138.8 (quart. 
C), 139.6 (aromat. CH), 165.0 (CO). MS (EI) (m/z, %): 377 (M++1, 70), 221 (100). HR-MS 
Calcd. for C21H29ClN2O2: 376.1918. Found: 376.1917. IR (KBr), ν, cm−1: 2926, 2854, 1716, 
1594, 1496, 1458, 1398, 1275, 1171, 1095, 1017, 920, 852, 830, 767. 

Agar Diffusion Assay (DIN Method) 
The bacteria and fungi were cultivated on AC agar (Sigma). The substances were placed 
on 6 mm paper discs on the agar, each impregnated with 50 µg of the tested compound or 
50 µg of the reference drugs. The bacteria media were incubated for 24 h at 32 °C; the 
fungi media for 48 h at 28 °C, and the diameter of the zone of inhibition [mm] was then 
registered [15]. 

Determination of MIC (DIN Method) 
99 µL of a suspension of Candida glabrata (1 × 103 CFU/ml) in All Culture media (AC 
Agar, Aldrich) were incubated with 1 µL ethanolic test solution for 36 h at 28 °C in a 96 
well plate. After 36 h, the turbidity was measured at 590 nm and compared to the cell 
suspensions without the substance and AC agar media [15]. 
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