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Abstract 
This work evaluated the occlusive versus non-occlusive application of 
microemulsion (ME) for the transdermal delivery of progesterone. The 
mechanisms of enhanced skin penetration were investigated. ME comprised of 
oleic acid, Tween 80, propylene glycol, and water, was used neat or with 
ethanol as a volatile cosurfactant. The ME formulations enhanced progesterone 
transdermal flux compared to the saturated drug solution in 14% aqueous 
propylene glycol (control). Ethanol-containing ME (EME) was better than the 
ethanol-free system (EFME). Open application of EFME produced a marginal 
reduction in flux compared to occlusive application. For EME, open application 
reduced the flux by 26–28% with the flux remaining significantly higher than that 
obtained with EFME. The mechanistic studies revealed synergism between 
ethanol and EFME with EME, producing greater flux than the sum of fluxes 
obtained from 40% ethanol in water and EFME. Penetration enhancement and 
supersaturation played a role in enhanced transdermal delivery, but other 
mechanisms were also possible. This study thus introduced EME as a 
transdermal delivery system for progesterone with good potential for open 
application as a spray. 
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Introduction 
The use of microemulsions as skin drug delivery systems has recently gained interest. 
Microemulsions are thermodynamically stable, transparent, single-phase, optically 
isotropic liquid systems of water, oil, and surfactants [1]. They can be considered as ideal 
liquid vehicles for drug delivery as they have most of the requirements for this including the 
thermodynamic stability, ease of formulation, low viscosity, high drug-loading capacity, and 
small droplet size. The latter characteristic provides better chance for contact and 
adherence to skin, thereby transporting drugs in a controlled manner [2, 3]. In addition, the 
components of microemulsions can be selected to produce a penetration-enhancing effect, 
providing additional advantages for their application in transdermal drug delivery. 
Numerous reports have been published indicating the potential of microemulsions for the 
enhanced drug delivery of different drugs [4–6]. The efficacy of microemulsion depends on 
the components which comprise the oil, the surfactant, and the cosurfactant. Oils with a 
stronger penetration-enhancing effect were superior [7]. Cosurfactants were shown to 
have a significant effect with ethanol, being superior to other volatile or non-volatile 
cosurfactants [6, 8]. The mechanism of enhanced transdermal drug delivery from 
microemulsions is controversial, with alternative strategies being hypothesized. The 
suggested mechanisms include the high-solubilizing power of microemulsion and the 
absorption-enhancing effect of the microemulsion components [2, 9]. The ability of 
microemulsion ingredients to enter the skin with the result of increased drug partitioning 
into the skin, was reported as another possible strategy [2]. The possibility of direct drug 
transfer from the microemulsion droplet to the stratum corneum was also suggested [8]. 
The microstructure of the microemulsion system can create a very large surface area for 
drug transfer to skin. The very small droplet size and very low interfacial tension of 
microemulsion can provide excellent surface contact with the skin surface. This will allow 
the vehicle to fill even the microscopic gaps on the skin’s surface. This was considered to 
be an explanation for enhanced skin-drug transfer [6]. The last possible mechanism 
depends on the supersaturation process, which increases the thermodynamic activity and 
the driving force for transdermal drug transfer [10, 11]. It should be noted that the 
proposed mechanisms depend on the fluidity of the microemulsion system and may be 
influenced by the method of application.  

Despite encouraging reports on the use of microemulsions for enhanced transdermal drug 
delivery, none of the studies investigated the effect of the application method of micro-
emulsions on their efficacy. The investigators employed mainly occlusive application of the 
fluid system. This application protocol may not be easy for fluid systems in clinical practice. 
Alternatively, fluid systems are better employed by an open application protocol through 
the formulation of spray [12]. The open application is always associated with evaporation 
of the volatile components of the microemulsion, resulting in phase transition, which may 
create systems with varying thermodynamic activity and may lead to supersaturation, an 
effect which requires investigation. In addition, the volatile components may have 
penetration-enhancing effects which can be diminished upon evaporation. Accordingly, the 
objective of this work was to investigate the effect of the method of application on the 
efficacy of microemulsion as a skin drug delivery system. The study was extended to 
mechanistic investigations. The mechanistic studies probed the influence of super-
saturation and the penetration-enhancing effect of the volatile components. The synergistic 
effect of the formulation components was also monitored. To achieve these goals, 
progesterone was selected as the model drug. A formulation containing oleic acid with 
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Tween 80/propylene glycol and water was used as the basic ethanol-free microemulsion. 
This system was mixed with increasing concentrations of ethanol to produce ethanol-
containing microemulsions. Propylene glycol was included in the basic microemulsion to 
provide an antinucleant effect after evaporation of ethanol as a result of open application.  

Results and Discussion 
Pseudo-ternary phase diagrams  
The current study investigated the transdermal delivery of progesterone from oleic acid-
based microemulsions (ME). Tween 80 was used as the surfactant and propylene glycol 
(PG) was the cosurfactant. To investigate the influence of volatile components on 
transdermal delivery from ME after occlusive and open application, ethanol-containing ME 
was employed. The presence of ethanol and/or PG can affect the phase behaviour of the 
system [6]. Accordingly, pseudo-ternary phase diagrams were constructed in the absence 
and presence of PG with and without increasing concentrations of ethanol. These phase 
diagrams are shown in Fig. 1. The simplest phase diagram (Fig. 1a) was constructed using 
oleic acid as the oil, Tween 80 as surfactant, and water. This system produced a phase 
diagram in which the ME zone occupied approximately 15% of the total area of the phase 
diagram. Moving towards the border between the ME and other phases, the system tends 
to be more viscous and transforms to a gel or coarse emulsion. The gel phase occupied 
approximately 20% of the total area of the phase diagram (Fig. 1a).  

The incorporation of cosurfactants increased the area occupied by the ME zone. 
Incorporation of PG as a cosurfactant (4:1; Tween/PG) increased the area occupied by the 
ME zone to 17%, and reduced the gel phase to approximately 12% (Fig. 1b). Addition of 
ethanol to this system to provide a surfactant-cosurfactant mixture of Tween 80, PG, and 
ethanol (4:1:1.8) resulted in a further increase in the area occupied by the ME zone to 
reach 21%. This effect was accompanied with a significant reduction in the gel phase to 
occupy only 5% of the total area of the phase diagram. Increasing ethanol concentration in 
the surfactant-cosurfactant to produce a system of Tween 80, PG, and ethanol (4:1:5) 
increased the area occupied by the ME zone to reach approximately 27%. This effect was 
associated with abolishing the gel phase. 

The presence of PG or ethanol in the ternary systems was previously shown to increase 
the existence of ME and break the gel and liquid crystalline structures [6, 13]. The 
presence of PG and/or low concentration of ethanol in the current study increased the ME 
zone, but failed to completely break the gel structure. The latter can be explained on the 
basis of the low concentration of PG, and that the ethanol was not sufficient to destroy the 
gel structure. A higher concentration of ethanol abolished the gel structure. These results 
indicate that the concentration of cosurfactant is a determining factor in the phase 
behaviour of the ternary system. 

The formation and range of the microemulsion zone depend on the physicochemical 
properties of the oil phase, aqueous phase, and surfactant. The very low interfacial 
tension, the presence of the highly fluid interfacial film of surfactant, and the association of 
oil molecules with the interfacial surfactant film are other essential parameters affecting the 
formation of ME [14]. The mechanism of action of cosurfactants can be attributed to the 
reduction of the surface tension and fluidization of the interfacial surfactant film [15, 16].  
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Fig. 1.  Pseudo-ternary phase diagrams of oleic acid in the presence of different 
surfactant/cosurfactant systems. (a) is a Tween 80-based system, (b) is Tween 
80 – propylene glycol (4:1), (c) is Tween 80 – propylene glycol – ethanol 
(4:1:1.8) and (d) is Tween 80 – propylene glycol – ethanol (4:1:5). ME = 
microemulsion and EM = coarse emulsion. 

Characterization of the tested formulations 
Table 1 presents the characterization of the tested formulations. The saturation solubility of 
progesterone in ME formulations revealed high-solubilizing power of the ME systems, 
compared to that of the simple hydroalcoholic or aqueous propylene glycol systems. The 
solubilizing power of ME increased significantly after incorporation of ethanol (Table 1). 
The high-solubilizing power can be due to the cosolvency of the ME components with a 
significant contribution to the small droplet size, which provides a massive surface area for 
drug incorporation. This explains the increased solubilizing power of ME in the presence of 
ethanol, which is believed to reduce further surface tension and decrease the droplet size. 
The recorded solubility of the drug in 14% PG in water (PGW) can be correlated to the 
previously recorded data [17].  
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Tab. 1.  The composition of the tested formulations and drug solubility in each 
formulation.  

Formulation code Composition Solubility (mg/ml) 
EFME 
 
20% EME 
40% EME 
ETW 
ETPGW 
PGW 

Tween 80 : PG : oleic acid : water  
(56 : 14 : 15 : 15) 
20% ethanol in EFME 
40% ethanol in EFME 
40% ethanol in water 
Ethanol : PG : water (40 : 14 : 46) 
14% PG in water 

21.7 (0.8) 
 
48.7 (1.3) 
72.2 (2.6) 
1.43 (0.08) 
4.33 (0.23) 
0.176 (0.006) 

Values between brackets are SD, n = 3. PG is propylene glycol and ND means not determined. 

 

Ethanol evaporation 
The ethanol evaporation profile from the 40% EME was monitored after incubation in a 
Petri-dish at 32 °C. This can approximately predict the evaporation profile of ethanol from 
the EME after open application to skin. The weight loss from the EFME was monitored and 
was used as the control. These profiles are shown in Fig. 2.  

 
Fig. 2.  Evaporation profiles of ethanol-free (EFME) and ethanol-containing 40% EME) 

formulations. The evaporation profile of pure ethanol was calculated from the 
weight loss of 40% EME considering that the weight loss is due to evaporation 
of ethanol. 

The ethanol-free formulation showed marginal loss after incubation at 32 °C, with the 
formulation losing about 2% in the first 3 hours (Fig. 2). The EME formulation lost about 
37% in the first 2 hours, with the loss approaching 40% after 3 hours. Considering this with 
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the marginal loss from EFME, the loss from 40% EME can be considered mainly due to 
ethanol evaporation. This indicates that most ethanol was evaporated from the formulation 
in the first 2-3 hours. Complete evaporation of ethanol was previously recorded after 2 
hours [18]. This study indicated that open application of EME will lead to a loss of the 
ethanol content in the first 2–3 hours. However, it should be emphasized that this study is 
just an approximation of the skin permeation study, as in the real skin application part of 
ethanol will diffuse into and through the skin within the same period. This means that part 
of the ethanol can affect the natural barrier that the skin provides and influence the 
permeation process with the other part being evaporated after open application.  

Transdermal delivery of progesterone from ME: Occlusive versus open application  
The tested ME formulations were comprised of oleic acid as the oil, Tween 80 as the main 
surfactant, with PG as the cosurfactant alone or with ethanol, as the volatile component. 
The concentration of PG in the ethanol-free ME (EFME) was 14% w/w. Accordingly, it was 
decided to employ a saturated drug solution in 14% PG in water as the control. Excess 
drug was included in this solution to maintain saturation throughout the permeation study. 
The occlusive application of this control provided the transdermal flux value of 
1.09 μg cm−2 h−1 (Table 2). This flux is similar to that recorded from the saturated solution 
in 40% PG in water, but using porcine skin [17]. Open application of the control produced 
only a trend of increased transdermal progesterone flux (P > 0.05; Table 2). Occlusive 
application of EFME increased the transdermal progesterone flux by 2.5-fold, compared 
with the control. This increase is expected and complies with published findings [2, 6, 11]. 
Open application of EFME produced a marginal reduction in the transdermal drug flux 
(only 12% reduction). 

Incorporation of ethanol in the ME formulations resulted in a significant increase in the 
transdermal progesterone flux, with the flux increasing upon increasing the ethanol 
concentration in the ME. Thus, occlusive application of 20% EME increased the 
transdermal flux by 5.7-fold compared to the control, and by 2.3-fold compared to the 
EFME (Table 2). Occlusive application of 40% EME further increased the transdermal 
progesterone flux, with the values being 9-fold compared to the control, and 3.7-fold 
compared to EFME (Table 2). The recorded increase in drug flux after application of 
ethanol-containing ME was accompanied by a reduction in the lag time compared to the 
EFME or control. This indicates an increased diffusivity of the drug after application of 
ethanol-containing ME.  

Tab. 2.  The transdermal permeation parameters of progesterone obtained after 
occlusive and non-occlusive application of various formulations.  

Formulation Occlusive application Open application 
Flux 

(μg cm−2 h−1) 
Lag time 

(h) 
Flux 

(μg cm−2 h−1) 
Lag time 

(h) 
EFME 
20% EME 
40% EME 
ETW 
PGW 

2.69 (0.24) 
6.20 (0.68) 
9.83 (2.77) 
2.22 (0.28) 
1.09 (0.18) 

3.22 (0.34) 
1.47 (0.64) 
0.91 (0.41) 
1.88 (0.31) 
2.45 (0.07) 

2.36 (0.08) 
4.48 (1.44) 
7.25 (2.01) 
1.75 (0.25) 
1.34 (0.33) 

3.41 (0.64) 
1.50 (0.14) 
0.28 (0.22) 
0.29 (0.09) 
3.62 (0.75) 

Values between brackets are SEM, n = 3. 
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The positive effect obtained after incorporation of ethanol in ME complies with the 
previously recorded findings [6]. Open application of ethanol-containing ME reduced the 
transdermal progesterone flux by 28 and 26% in cases of 20% EME and 40% EME, 
respectively. However, it should be emphasized that the recorded flux values remained 
higher than that obtained from EFME. Considering the ethanol evaporation profile after 
open application, which is approximately derived from Fig. 2, open application will lead to 
loss of the ethanol content within the first 2-3 hours after application. Nevertheless, the flux 
recorded after open application of ethanol-based ME was higher than that recorded after 
occlusive or open application of EFME. This may be explained on the basis of ethanol-
induced penetration enhancement, which could have been performed before evaporation. 
Other explanations may include the effect of ethanol on the ME structure (resulting in 
reduced droplet size and lower surface tension) or the possible supersaturation, which can 
result from the evaporation of ethanol which increased the solubilizing power of ME. These 
explanations will be verified in the proceeding sections.  

Mechanisms of enhanced skin delivery of progesterone from ME after occlusive and 
open application  
This section was conducted with the goal of explaining the findings recorded in the 
previous section. The main findings included the significant increase in the efficacy of ME 
after incorporation of ethanol, and the 26–28% reduction in transdermal flux obtained from 
ethanol-containing ME after open application compared to occlusive application of the 
corresponding formulation, with the flux obtained after open application remaining well 
higher than that obtained after application of the ethanol-free formulation. 

To explain the first finding, the transdermal delivery of progesterone was studied from 
saturated aqueous solutions containing the ethanol (ETW) at the highest concentration 
included in ME (40%). Occlusive application of ETW produced a 2-fold increase in the 
transdermal flux of progesterone compared to the control (Table 2). This effect can be 
explained on the basis that ethanol can rapidly diffuse into and through the skin, perturbing 
its barrier nature and increasing both the partitioning and diffusion of the drug into and 
through the skin [19]. Open application of the same ethanolic solution (ETW) reduced the 
flux by 21% compared to occlusive application, but the flux remained higher than that 
obtained from the control (Table 2). This means that ethanol was able to produce some 
enhancing effect due to rapid diffusion before evaporation in the first 2–3 hours. 
Considering the flux obtained from 40% EME (9.83 μg cm−2 h−1), it was found to be higher 
than the sum of the flux values obtained from EFME (2.69 μg cm−2 h−1) and that obtained 
from 40% ethanol (2.22 μg cm−2 h−1). This means that the penetration-enhancing effect of 
ethanol is not the main factor responsible for the significant increase in the efficiency of 
ME after incorporation of ethanol. Thus, other factors must be considered in ethanol-
enhanced efficacy of ME. These factors include the reduced droplet size, increased 
surface area, higher solubilizing power, reduced surface tension, and subsequently 
increasing the intimate contact between ME and skin. These factors can promote better 
drug permeation [2, 6]. 

To explain the data obtained after open application of ethanol-containing ME, after open 
application where the flux remained higher than that obtained after application of the 
ethanol-free formulation, two possibilities were investigated. The first is the penetration 
enhancement obtained from the rapid diffusion of ethanol, which can take place before 
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complete evaporation. The second is the possibility of the in-situ supersaturation process, 
which can take place upon ethanol evaporation. The first possibility was tested by open 
skin pre-treatment with 40% ethanol before open application of EFME. The results are 
presented in Table 3. The data revealed a marginal increase in the transdermal 
progesterone flux after application of EFME to pre-treated skin, compared to that obtained 
after open application of the same formulation to non-treated skin. The flux was increased 
from 2.36 to 2.85 μg cm−2 h−1 after application to pre-treated skin. This was associated 
with a decrease in the lag time to reach 1.79 hours in the case of pre-treated skin 
compared to 3.41 in case of non-treated skin (Table 3). The flux recorded in the case of 
pre-treated skin was significantly lower than that obtained after application of ethanol-
containing ME (40% EME, Table 2). This finding indicates that ethanol-induced penetration 
enhancement is not the main factor responsible for the superiority of open application of 
ethanolic ME over EFME.  

To investigate the influence of supersaturation on the enhanced transdermal delivery of 
progesterone after open application of ethanol-containing ME, the transdermal delivery of 
the drug from ME containing the drug at 2 degrees of saturation (DS) was monitored. ME 
containing progesterone at 2 DS was prepared by formulating 40% EME containing 
43.4 mg/ml of progesterone. This concentration is 60% of the saturation solubility of the 
progesterone in 40% EME, and double the saturation solubility of the drug in EFME. This 
formulation is assumed to supersaturate upon evaporation of ethanol after topical 
application (in-situ supersaturation). Based on the composition of this formulation, if 
supersaturation is not operating, we shall obtain a flux value equivalent to 60% of the flux 
recorded after open application of fully saturated 40% EME. A flux higher than expected 
can suggest the role of supersaturation. If supersaturation is the main mechanism, the 
recorded flux from ME containing 2 DS should be double that of the flux recorded after 
open application of EFME. The same principle was adopted previously for the enhanced 
transdermal delivery of lipophilic drug from the PG/ethanol mixture [18]. Open application 
of 40% EME-containing drug at 43.4 mg/ml produced a flux value of 5.85 μg cm−2 h−1. This 
flux is 80% of that recorded after open application of the formulation with the drug being 
included at saturation (Tables 3).  

Tab. 3.  The transdermal permeation parameters of progesterone obtained after non-
occlusive (open) application of various formulations.  

Formulation  Open application  
without skin pretreatment 

Open application after skin  
pretreatment with 40% ethanol 

 Flux 
(μg cm−2 h−1) 

Lag time 
(h) 

Flux 
(μg cm−2 h−1) 

Lag time 
(h) 

EFME 2.36 (0.08) 3.41 (0.64) 2.85 (0.20) 1.79 (0.12) 
 Open application of fully  

saturated formulation 
Open application of formulation  

containing drug at 2 degrees  
of saturation (DS)* 

Flux 
(μg cm−2 h−1) 

Lag time 
(h) 

Flux 
(μg cm−2 h−1) 

Lag time 
(h) 

40% EME 7.25 (2.01) 0.28 (0.22) 5.85 (0.12) 0.81 (0.19) 
Values between brackets are SEM, n = 3. * DS of 2 was prepared by dissolving 43.4 mg/ml of drug in 
40% EME. Open application of this formulation will create ME with 2 DS after evaporation of ethanol. 
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This finding indicates that supersaturation plays a role in the enhanced transdermal 
delivery of the progesterone after open application. Comparing this flux recorded after 
open application of 40% EME containing 2DS with that obtained after open application of 
EFME, the former was 2.48-fold higher compared to the latter (Table 3). This means that 
supersaturation is not the only mechanism operating.  

Overall, this study suggested a combination of mechanisms. These mechanisms include 
the penetration-enhancing effect, increased drug partitioning, and possible supersaturation 
arising from evaporation of volatile components of ME, or phase change due to dilution 
[2, 6, 9–11]. In addition, the nano-structure and low surface tension can provide a large 
surface area, and provide excellent contact with the skin surface and its microscopic gaps. 
This should enhance the vehicle skin-drug transfer [6]. It is clear that these mechanisms 
can maximally operate in the fluid state of microemulsion. The current study provided an 
additional finding, highlighting the feasibility of open application. This opens the gate for 
the introduction of topical sprays in microemulsion transdermal delivery. This mode of 
application will provide a simpler formulation protocol compared to other strategies, which 
include the addition of a thickening agent which may alter the efficacy of ME. Carbopol 940 
was used to increase the viscosity of ME, but the recorded estradiol transdermal flux was 
higher in the case of fluid microemulsion compared with the corresponding gelled system 
[8]. Carrageenan was used to increase the viscosity of microemulsion [20]. Ethyl oleate-
based ME was shown to increase the transdermal delivery of ibuprofen. The authors 
employed xanthan gum to construct the microemulsion-based hydrogel for topical 
administration. However, the study presented data on the stability of the gel system, but no 
skin permeation data was presented for the gelled ME [21]. Carbomer-thickened ME 
enhanced skin permeation, with the enhancement being increased further after 
incorporation of 1% menthol [22]. Isopropyl myristate-based ME was stabilized with 
gelatine, which improved skin permeation of cyclosporine [23]. These gel-based systems 
utilized mainly non-volatile components. This line of research requires further investigation 
before drawing a final conclusion, as the open application of fluid ME may provide an 
additional advantage. 

In conclusion, the study introduced microemulsion as a potential transdermal delivery 
system for progesterone. Incorporation of ethanol in the microemulsion system is 
beneficial. Open application of the microemulsion formulation is possible with the ethanol-
containing system, because it retains its advantage even after ethanol evaporation. The 
enhanced transdermal delivery can be achieved by a combination of mechanisms which 
include penetration-enhancement, supersaturation, better skin contact, high surface area 
for drug transfer, and high loading. 

Experimental 
Materials 
Progesterone was obtained from E. Merck, Darmstadt. Prednisolone acetate was 
purchased from Sigma Chemical Co. (St. Louis, MO, USA). Oleic acid was obtained from 
LOBA Chemie, PVT. LTD, Mumbai, India. Tween 80, acetonitrile (HPLCgrade), ethanol 
(96%), and propylene glycol were purchased from BDH, England. 
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Construction of pseudo-ternary phase diagrams 
Oleic acid, a known skin penetration enhancer, was selected as the oily phase. Tween 80 
and propylene glycol (4:1) were included as the surfactant and cosurfactant, respectively. 
These components were used to construct the phase diagram for the basic microemulsion 
in the absence of ethanol. Propylene glycol (PG) was included to provide an antinucleant 
effect for the drug after evaporation of ethanol from the ethanol-containing microemulsion. 
In addition, PG is known to have a synergistic penetration-enhancing effect with oleic acid 
[19]. To investigate the effect of ethanol on the phase behaviour of the system, pseudo-
ternary phase diagrams were also constructed in the presence of different concentrations 
of ethanol, with ethanol being included as a part of the surfactant-cosurfactant mixture.  

The pseudo-ternary phase diagrams were constructed using the water titration method at 
ambient temperature [6, 24]. “Oil and surfactant/cosurfactant mixtures were prepared at 
weight ratios of 0.5:9.5, 1:9, 1.5:8.5, 2:8, 2.5:7.5, 3:7, 3.5:6.5, 4:6, 5:5, 6:4, 7:3, 8:2, and 
9:1. These were titrated with water under gentile magnetic stirring. The systems were 
visually characterized after equilibration.” Transparent fluid systems were characterized as 
microemulsions, but viscous systems that did not show a change in the meniscus after 
being tilted to an angle of 90° were considered a gel. 

Preparation of tested formulations 
The composition of the tested formulations is presented in Table 1. The basic ethanol-free 
microemulsion formulation (EFME) was comprised of Tween 80, PG, oleic acid, and water 
(56 : 14 : 15 : 15). This was mixed with ethanol to produce microemulsions containing 20% 
w/w ethanol (20% EME) or 40% w/w ethanol (40% EME). The microemulsion was 
prepared by mixing the oil with the surfactant/cosurfactant mixture, before adding the 
required amount of water under magnetic stirring. Excess progesterone drug was added 
and equilibrated by continuous mixing in a water bath maintained at 32 °C for 72 hours. 
This produced saturated drug solutions with excess crystals to maintain saturation. These 
formulations were used to investigate the effect of the method of application on trans-
dermal drug delivery. To investigate the effect of supersaturation, 40% EME was also 
prepared with 50 mg/ml of the drug. In addition, saturated solutions of the drug were 
similarly prepared in 40% ethanol/water (ETW) and in 14% PG/water (PGW). The latter 
was used as the control. No phase change was noted after addition of the drug or after 
equilibration in the water bath.  

Characterization of the tested formulations 
The saturation solubility of the drug in different formulations was determined after being 
equilibrated at 32 °C for 72 hours. The excess drug was removed by centrifugation and the 
supernatant was suitably diluted with ethanol before HPLC analysis. 

Ethanol evaporation rate 
This test was conducted to approximately predict the rate of ethanol evaporation after 
open application of the ethanol-containing formulation. The procedures reported by Moser 
and coworkers were adopted [18]. The microemulsion formulation (40% ETME) was 
loaded in a glass Petri dish. The amount of formulation was equivalent to that loaded in the 
donor compartment (volume/area). The weight of the formulation was determined before 
incubation in an oven maintained at 32 °C. The weight loss was determined periodically. 
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The evaporation profile of the ethanol-free formulation (EFME) was similarly determined 
and taken as the control. 

Preparation of skin samples 
Animal treatment followed the principles in the Declaration of Helsinki. Full-thickness skin 
obtained from the inner side of freshly excised rabbit ears was used in this study. This 
model was employed due to the difficulty of obtaining human skin samples, and was found 
to be successful in monitoring the transdermal delivery of a steroidal drug from ME [6]. The 
study employed 15 male rabbits, weighing 3.1 ± 0.4 Kg. The skin was peeled from the 
underlying cartilage after cutting along the tips of the ears. The skin samples were 
mounted immediately on the diffusion cells. 

Skin permeation studies 
The FDC-6 Transdermal Diffusion Cell Drive Console (Logan Instrument Corp., NJ, USA), 
which was equipped with vertical glass diffusion cells having a diffusional area of 1.7 cm2, 
was used. The skin was mounted with the uppermost side, the stratum corneal [6, 11]. The 
receptor compartments (12 ml) were filled with 40% v/v propylene glycol in water, which 
was used as the receptor fluid to ensure sink condition. The same receptor was used to 
monitor skin delivery of progesterone from microemulsion [25]. The mounted skin was 
equilibrated overnight with the skin surface being maintained at 32 ± 1 °C. The tested 
formulations (400 μl) were applied to the surface of the skin, which was left open to the 
atmosphere (non-occlusive application) or occluded with a parafilm plug lined with 
aluminum foil (occlusive application). Receptor samples were taken periodically and 
replaced with fresh receptor fluid. These samples were analyzed for the drug content by 
HPLC. 

To investigate the effect of skin pre-treatment with 40% ethanol in water on transdermal 
delivery of progesterone from EFME, the equilibrated skin was treated with non-medicated 
40% ethanol for 3 hours, at the end of which the donor compartments were dried with a 
tissue paper. The medicated EFME was loaded into the donor, and the experiment was 
completed as before. 

Chromatography 
The drug content of each sample was determined using a high-pressure liquid 
chromatograph (WatersTM 600 controller, USA) equipped with an automatic sampling 
system (WatersTM 717 Plus Autosampler, USA). Detection was performed at 240 nm, 
using a variable wavelength UV-Vis detector (SPD-10 AV, Shimadzu, Kyoto, Japan). The 
whole system was controlled by acomputer. Separation employed a reversed-phase 
column 15 cm X 3.9 mm (i.d.) C18, μ BondapakTM, Waters, with an average particle size 
of 10 μm. The mobile phase was comprised of acetonitril and water (60:40) flowing at 
1 ml/min. Prednisolone acetate was used as the internal standard. The chromatographic 
data analysis was performed with the MilliniumTM Program (Waters, USA). 

The receptor samples were transferred to test tubes spiked with the internal standard in an 
amount sufficient to produce a concentration of 2 μg/ml. These were vortex-mixed for 
2 minutes before being loading into HPLC vials and injecting 30 μl into the HPLC. 
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Data analysis 
The cumulative amounts of the drug permeated with time produced the permeation 
profiles. These profiles were used to calculate the transdermal drug flux from the slope of 
the regression line fitted to the linear portion of the profile. Extrapolation of this line will 
intercept with the x axis at a time equal to the lag time [6, 11]. 

Student's t-test was used for statistical analysis. 
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