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Abstract 
The prostanoid receptor EP1 is a G-protein-coupled receptor (GPCR) known to 
be involved in a variety of pathological disorders such as pain, fever and 
inflammation. These receptors are important drug targets, but design of subtype 
specific agonists and antagonists has been partially hampered by the absence 
of three-dimensional structures for these receptors. To understand the 
molecular interactions of the PGE2, an endogen ligand, with the EP1 receptor, 
a homology model of the human EP1 receptor (hEP1R) with all connecting 
loops was constructed from the 2.6 Å resolution crystal structure (PDB code: 
1L9H) of bovine rhodopsin. The initial model generated by MODELLER was 
subjected to molecular dynamics simulation to assess quality of the model. 
Also, a step by step ligand-supported model refinement was performed, 
including initial docking of PGE2 and iloprost in the putative binding site, 
followed by several rounds of energy minimizations and molecular dynamics 
simulations. Docking studies were performed for PGE2 and some other related 
compounds in the active site of the final hEP1 receptor model. The docking 
enabled us to identify key molecular interactions supported by the mutagenesis 
data. Also, the correlation of r2=0.81 was observed between the Ki values and 
the docking scores of 15 prostanoid compounds. The results obtained in this 
study may provide new insights toward understanding the active site 
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conformation of the hEP1 receptor and can be used for the structure-based 
design of novel specific ligands. 

Keywords 
Homology modeling • G-protein coupled receptors (GPCR) • Human prostanoid E1 
receptor • Flexible-ligand docking • Molecular dynamics simulation 

Introduction 
The prostanoids are the cyclooxygenase metabolites of arachidonic acid and include 
prostaglandin (PG) D2, PGE2, PGF2α, PGI2, and thromboxane A2. They are synthesized 
and excreted from the stimulated cells and play many important roles in a variety of 
physiological and pathophysiological processes in the body upon interacting with their 
specific receptors on the effector cells [1]. The prostanoid receptors consist of eight types, 
each encoded by different genes and the analyses of their primary structures demonstrate 
the presence of seven hydrophobic transmembrane (TM) regions which is common 
structural architecture for G-protein-coupled receptors (GPCRs) [2]. The existence of 
multiple PGE2 receptor subtypes, namely EP1, EP2, EP3 and EP4, has been confirmed by 
molecular cloning [3]. Each of these receptor subtypes encoded by different genes and is 
probably responsible for distinct effects of PGE2 [4]. The human EP1 receptor (hEP1R) 
was originally described as a smooth muscle constrictor, involved in pain sensitization, 
fever and inflammation [5]. There are selective agonists that bind to the hEP1R; however, 
they also show significant affinity to the other receptor subtypes. Therefore, the knowledge 
of the structural features of EP1R is essential for the understanding of its function and for 
its use in drug design. 

Structurally, a GPCR is characterized by the presence of a helical bundle consisting of 
seven hydrophobic transmembrane helices (TM1-TM7), which are connected through six 
alternating extracellular and intracellular loops [6]. The N-terminus is located on the 
extracellular side of the membrane, whereas the C-terminus occupies the intracellular 
side. The transmembrane domain is constituted by seven α-helices, which are known to 
adopt a common folding pattern, and thus, the 7TM domain represents the most 
conserved region among the GPCR family of proteins [7]. Several highly conserved 
functional microdomains and disulfide bridges are identified in the TM helices of the class 
A GPCRs. Some of these conserved regions include: the disulfide bond linking TM3 and 
extracellular loop 2 (EL2), the “Gx(3)N” motif in TM1, the ‘‘Lx(3)D’’ motif in TM2, the 
‘‘D/ERY’’ motif in TM3 and the ‘‘NPx(2)Y’’ motif in TM7 (Table 1). These regions are known 
to have an important role in the structural and functional integrity of the class A (or 
rhodopsin-like) GPCRs to which hEP1R belongs [8]. There are some crystal structures of 
members of GPCRs receptors available: Bovine rhodopsin (PDB code: 1L9H) [9], 
β2-adrenergic receptor (PDB code: 2RH1) [10], active β2-adrenergic receptor (PDB code: 
3P0G) [11] and CXCR4 chemokine receptor (PDB code: 3ODU) [12]. Rhodopsin is one of 
the GPCRs for which several three-dimensional (3D) structures have been determined by 
X-ray crystallography, and the coordinates are available through Protein Data Bank (PDB) 
[13]. Since the first high resolution structure of bovine rhodopsin became available in 2000, 
it has been frequently used as the template for the modeling of GPCRs [14]. 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1L9H
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Tab. 1.  Key residues conserved in the GPCR family. 
TM Pattern Bovine rhodopsin hEP1 
TM1 
TM2 
TM3 
TM4 
TM5 
TM6 
TM7 

Gxa(3)N 
Lx(3)Dx(7)P 

Sx(3)Lx(2)Ix(2)DRY 
Wx(7,8)P 

Fx(2)Px(7)Y 
Fx(2)CWxP 

Lx(5)NPx(2)Y 

+ 
Lx(3)D 

+ 
+ 
+ 
+ 

Kx(5)YNPx(2)Y 

+ 
Lx(3)D 

Px(3)Gx(2)Mx(2)ERC 
Ax(9)P 

P 
SX(2)CWxP 

Lx(7)DPx(2)Y 
a Any residue. 

 

Due to the lack of structural information, homology modeling has proven to be a valid 
alternative for constructing sound 3D models of proteins [15]. Although homology modeling 
was extensively performed in the case of GPCRs, the technique faces several limitations 
for these receptors, including poor sequence identity between target and template 
sequences, as well as availability of only some structural templates, namely bovine 
rhodopsin receptor [9], human β2-adrenoreceptor [10], turkey β1-adrenoceptor [16] and 
human A2A adenosine receptor [17]. This emphasizes the need for incorporating available 
experimental information such as site-directed mutagenesis and structure-activity 
relationship (SAR) data during the process of homology modeling and molecular dynamics 
refinement for developing an acceptable 3D model of a GPCR. A recent study 
demonstrated that this so-called dynamic homology modeling approach can reproduce 
structural and dynamic properties of the β2-adrenoreceptor, starting from the rhodopsin 
crystal structure as a template [18] and can be used to create reasonable models for the 
understanding of structure and dynamics of other rhodopsin-like GPCRs. 

In a previous study we constructed the hEP1R model using the hβ2-adrenoreceptor as 
template [19]. The model had a reasonable conformation and active site properties. 

In this study the structural model of full-length hEP1R was constructed via homology 
modeling using the crystal structure of bovine rhodopsin as the template because it will 
certainly keep serving the GPCR community as a prototypical receptor and a generator of 
ideas to be tested on other systems [20]. Also we used more methodologies based on 
hydrophylic and hydrophobic characteristics of membrane proteins for evaluation of the 
constructed models. From the three different sets of alignments, the stability of the best 
model was examined by molecular dynamics simulation. As a refinement process the 
pocket expansion method was applied to the constructed model by inserting a ligand 
inside the binding pocket in a position guided by the available mutagenesis data, during an 
extended simulated annealing MD simulation. Finally, in order to investigate binding 
modes, PGE2 and 15 other prostanoid hEP1R analogs with known binding affinity were 
docked into the final refined receptor model. 
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Methodology 
Molecular structures 
The human prostaglandin E2 receptor EP1 subtype (hEP1R, 402 amino acids) sequence 
was obtained from SWISS-PROT database (accession number P34995) [21]. Bovine 
rhodopsin crystal structure solved at 2.60 Å resolution (PDB code: 1L9H) was downloaded 
from Protein Data Bank (http://www.rcsb.org) and used as template for comparative 
modeling of hEP1R. 

TM helix prediction 
TM helices within bovine rhodopsin structure were assigned using DSSP [22]. The 
following helix prediction methods were used directly from their websites to assign putative 
TM helix segments of hEP1R: HMMTOP [23], MEMSAT 1.5 [24], PHD [25], TMHMM [26], 
TopPred II [27], PROF [28], JPRED [29], SAM-T98 [30], PORTER [31], PSIPRED [32], 
SABLE [33], SCRATCH [34]. A consensus prediction for each residue was calculated by 
counting the number of methods that predicted the residue as being in a helix. For 
example consensus 100% was assigned to a residue in the protein which was predicted 
as helix by all of the 12 methods. The same procedure was used to predict TM helices of 
bovine rhodopsin for comparing with the result of DSSP. 

 
Fig. 3.  Alignment of hEP1R and bovine rhodopsin receptor by three different methods. 

ALIGN-I extracted from global alignment of all proteins belong to the rhodopsin-
like family. ALIGN-II and III are between 41 prostanoid receptors from all 
species and hEP1R with bovine rhodopsin receptor, respectively (by ClustalW). 
ALIGN-III was modified manually in some regions (indicated by boxes) to 
protect conserved regions. Seven TMs are depicted by underlined letters. 

Multiple sequence alignment 
Sequence alignments were performed using three distinct methods. First, the TM 
segments of the hEP1R and those of bovine rhodopsin as indicated in the GPCR database 
(http://www.gpcr.org/7tm) were aligned [35]. For the extra-transmembrane regions, 

http://www.expasy.org/uniprot/P34995
http://www.rcsb.org/pdb/explore/explore.do?structureId=1L9H
http://www.rcsb.org/
http://www.gpcr.org/7tm
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ClustalW 1.83 [36] was utilized using a gap penalty of 10 and employing the BLOSUM62 
weight matrix. The obtained alignment was called ALIGN-I. Multiple sequence alignment 
between bovine rhodopsin and the 41 prostanoid receptors from all species was called 
ALIGN-II. The third alignment (ALIGN-III) was produced via manually modifying, by 
SEAVIEW [37], the sequence alignment of rhodopsin receptor and hEP1R using ClustalW. 
These three alignments are illustrated in Fig. 3. 

Homology modeling 
MODELLER 9v2 [38] was used to build homology models of hEP1R from the bovine 
rhodopsin crystallographic structure in the inactive state (PDB code: 1L9H), based on the 
three different sequence alignments described above. From the alignments, 3D models 
containing all nonhydrogen atoms were obtained automatically using the method 
implemented in MODELLER. Of the 10000 models generated with MODELLER for each 
alignment, the one corresponding to the lowest value of the probability density function 
(pdf) and fewest restraints violations was used for further analysis and named as MODEL-
I, II and III depending on the type of alignment (ALIGN-I, II and III), respectively. An ab 
initio method implemented in MODELLER that has been demonstrated to predict the 
conformations of loop regions was used to build some loops of the best model. 
Stereochemical quality assessment of the models and the generation of the 
Ramachandran plot were carried out using PROCHECK [39]. The root mean square 
deviations (RMSDs) of the models relative to 1L9H were calculated using MODELLER. 
The lipid compatibility scores for helix bundles and for entire models were calculated using 
REPIMPS method [40]. This method, which is an adaptation of the Profiles-3D program 
[41, 42], an inverse-folding methodology, takes into account the fact that exposed areas of 
side chains for many residues in integral membrane proteins (IMPs) are in contact with 
lipid and not the aqueous phase. REPIMPS was tested [40] and showed useful for 
determining structural properties of IMPs, particularly for GPCRs [14]. 

Based on the π lipid propensity scale, rotational orientation angles (α), which determine 
the sidedness of the helices along the axis of the helical bundle, for the TM helices of the 
three model structures of hEP1R were predicted using the HTMSRAP method [43]. Then 
the percentages of the accessible surface area of the helices exposed to the lipid bilayer 
were measured. 

Molecular dynamics simulations 
All Molecular Dynamics (MD) simulations were carried out with the GROMACS 3.3 
package [44 using the ffgmx force field (GMX force field of Gromos87) at constant 
temperature (300 K), pressure (1 bar) and number of particles [45]. Solvent (i.e. water and 
ions), lipid and protein were coupled separately to a temperature bath, with a coupling 
constant of T=0.1 picosecond (ps). The previously equilibrated lipid bilayer by Tieleman et 
al. was used (available from http://moose.bio.ucalgary.ca) [46]. The best model from 
homology modeling (MODEL-III) was inserted at the center of the POPE (palmitoyl-
oleoylphosphatidylethanolamine) bilayer with its long axis normal to the membrane-water 
interface. The α-helical domain of the receptor was placed at the same level as the lipid 
bilayer, and the eighth short helix was placed at the polar interface of the membrane. 
Overlapping lipid and water molecules were discarded to avoid strong repulsive van der 
Waals interactions. Thirty chloride ions were added to the solution in order to ensure 
neutrality of the entire system that comprised the hEP1R, 250 POPEs, and 14217 water 

http://moose.bio.ucalgary.ca/
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molecules (a total of 59695 atoms). In this simulation His88 was in positively charged form 
(protonated state at NE2). Periodic boundary conditions were applied in all three directions 
of space. Energy minimizations were performed using a steepest descent algorithm. 

Membrane equilibration was performed for 1 ns. With all protein atoms restrained, 
membrane and water molecules were given sufficient time to adapt to the inserted protein 
as described previously [47]. Temperature and pressure of the system were controlled by 
coupling them to the reference values of 300 K and 1 bar using time constants of 0.1 and 
1.0 ps respectively. Then, the restraints were removed stepwise with two times 100 ps MD 
simulation. Finally a 10 ns molecular dynamics production phase was carried out on the 
entire system. The run parameters were the same as above. 

Ligand-supported model refinement with PGE2 and iloprost 
A vacuum minimal energy structure of PGE2 prepared as described in the docking 
procedure section below was inserted into the selected cavity of MODEL-III as proposed 
by the known SAR information reported previously [18, 48]. PRODRG server [49] was 
used to assign atomic charges of PGE2 and generating the necessary topology file for 
GROMACS. The receptor-PGE2 complex was first minimized to relieve bad contacts 
between the non-bonded atoms. The minimization protocol for all calculations was an 
initial phase involving 1000 steps of steepest descent, followed by conjugate gradient 
algorithm, up to a gradient of 100 kJ/mol−1nm−1. The entire protein was relaxed during 
these simulations, except for a mild positional restraint of 10.0 kJ/Å/mol−2 on the backbone 
atoms, in order to preserve the 3D fold of the TM helices. A simulated annealing protocol 
was used, where the complex was ‘‘heated’’ gradually from a temperature of 100 to 600 K, 
in steps of 100 K, with 10 ps simulation at each stage. At 600 K, the complex was 
simulated for another 50 ps, followed by a gradual ‘‘cooling’’ to 300 K, in steps of 100 K, 
with 10 ps of simulation at each stage. Finally, a production phase was carried out 
involving a 50 ps simulation using an NVT ensemble at 300 K [50]. The complex was 
minimized as mentioned earlier. This helped to significantly open the binding site of the 
hEP1R model (MODEL-IV). Additional refinement was performed to achieve a more 
expanded binding site using iloprost, an EP1R agonist, by running the same protocol as 
mentioned for PGE2. An average structure was calculated from the final 20 ps of the 
production phase of the MD simulation and after being subjected to the minimization 
protocol as described above, the obtained model was named MODEL-V. 

Docking procedure 
Three-dimensional structures of PGE2 and 15 other prostanoid analogues, including all 
hydrogen atoms, were constructed and optimized in vacuum using Polak-Ribiere 
conjugate gradient algorithm and AMBER95 force field implemented in HyperChem 
(HyperCube Inc., Gainesville, FL). Docking calculations with GOLD (Genetic Optimization 
of Ligand Docking) version 3.0.1 were performed using default parameters. The binding 
site was defined based on the known SAR data and site-directed mutagenesis information. 
All amino acid residues within 10 Å from the center constituted the binding site. Visual 
inspection was done to confirm that all important amino acids were included in the defined 
binding site. Each molecule was docked 100 times, and the top-ranked pose was retained 
for further analysis. 
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Molecular images and animations 
All the molecular images and animations were produced using VMD [51] and rendered by 
Tachyon ray tracer. Schematic two-dimensional representations of the docking results 
were produced using LigPlot [52]. 

Results and Discussion 
Helix prediction, multiple sequence alignment and homology modeling 
GPCRs are major targets for drug development. The most common way to construct the 
structural model of their inactive/ground state is homology modeling using the crystal 
structure of bovine rhodopsin as template. Modeling quality is also correlated with 
sequence identity: the higher the similarity, the better the modeling, a fact which has been 
noted previously [53]. Human EP1R shares 18.6% and 32.6% of identity and similarity with 
visual rhodopsin respectively. The higher conservation seen in TM regions however is 
responsible for the similar overall folding of the members of GPCRs. Different strategies 
were used to carefully generate a set of feasible alignments between the sequences of our 
target protein and the template (Fig. 1).  

Helix prediction in hEP1 receptor and bovine 
Rhodopsin by 12 different methods 

Sequence Alignment of hEP1 receptor and 
bovine Rhodopsin by 8 different methods

 

1. Alignment of hEP1 sequence with class A GPCRs 

2. Alignment of hEP1 sequence with the 41 prostanoid receptors from all species.   Sequence Alignment   

3. Alignment of hEP1 sequence with bovine Rhodopsin sequence                                                                  

 ALIGN-I, ALIGN-II, ALIGN-III 

Based on 3 different sequence alignments using MODELLER                 Homology Modeling 

           MODEL-I, MODEL-II, MODEL-III 

RMSD, PROCHECK, REPIMPS, HTMSRAP, DOPE profile   Model Evaluation 

      MODEL-III  MD Simulations 

     Ligand       Manual Docking 

Iterative    Refinement                         hEP1-Ligand complex         

     Molecular Dynamics Simulations                      Ligand supported hEP1 refinement 

     Refined hEP1-Ligand complex 

          Ligand   Extracted 

         Refined hEP1 receptor Model (MODEL-V) 

         GOLD    Docking 

               Docking Studies 

1.PGE2 (MODEL-IV) 

2. Iloprost (MODEL-V) 

 
Fig. 1.  Flowchart of procedures for homology modeling of the hEP1R based on the 

known 3D structure of bovine rhodopsin as template. 
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The prediction of TM helices plays an important role in the study of membrane proteins, 
given the relatively small number (0.5% of the PDB) of high resolution structures available 
for such proteins. Here the prediction methods were assessed by bovine rhodopsin with 
known 3D structure and hEP1R. The distributions of helix lengths in the two proteins were 
examined (Table 2) and consensus 8%, 16%, 25%, 50%, 75%, 90% and 100% of methods 
which predicted α-helices for each sequences were assigned (Fig. 2). All of these methods 
work with different algorithm and predict different lengths and sizes of helices. As shown in 
Table 2 all methods predicted seven TM helices except TMHMM, MEMSAT and TopPred 
II which predicted 6 TM helices for hEP1R. Also TM regions of bovine rhodopsin predicted 
by using these methods were somehow different from DSSP result (data not shown). The 
50% consensus for rhodopsin was almost compatible with DSSP assignment (data not 
shown) and hence was chosen for assessment of helices predicted in the constructed 
models. 

Tab. 2.  Locations of helical TM segments of hEP1R predicted by 12 different commonly 
used methods. 

Helix PHD PROF JPRED SAM–
T99 Porter PSIPRED 

Bovine 
rhodopsin 

Crystal 
structure 
(DSSP) 

I 39–56 34–46 45–66 30–62 38–66 34–63 34–64 
II 79–96 75–88 77–86 72–101 69–100 70–100 71–100 
III 114–131 111–138 124–138 99–140 99–138 98–139 106–139 
IV 157–174 153–167 147–170 144–174 146–173 151–174 150–172 
V 205–227 202–237 200–237 199–243 197–237 200–236 196–223 
VI 299–318 290–306 290–300 287–322 287–321 290–321 243–277 
VII 339–356 332–340 331–341 330–369 327–365 332–367 285–321 
Helix SABLE2.0 SCRATCH HMMTOP TMHMM MEMSAT TopPred II  
I 35–62 35–64 34–58 40–62 37–58 38–58  
II 73–100 71–101 71–95 74–96 73–96 68–88  
III 97–140 98–140 112–133 111–133 112–140 112–139  
IV 151–175 151–174 156–174 154–176 156–174 154–174  
V 200–237 198–241 201–225 208–230 206–230 201–221  
VI 286–320 290–321 299–320 299–321 299–323 299–319  
VII 332–365 331–369 333–354 — — —  

 

The basic information from multiple alignments of the protein sequences are the position 
and nature of the conserved regions. All three alignments employed in the protocol have 
covered some of these conserved residues (Fig. 3). For ALIGN-III a manual adjustment 
was done to keep Gx(3)N conserved region (Table 1) in the right position and moving a 
gap from TM3 to EL1. Table 3 shows the alignment of hEP1R and bovine rhodopsin, 
identified in the GPCR database (ALIGN-I) was rather unique, particularly in TM5, and 
there was less similarity in TM regions between ALIGN-I and 50% consensus than the two 
other alignments. According to Table 3, ALIGN-II and III were more compatible with 50% 
consensus in the helix prediction. 
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Fig. 2.  Consensus of 8, 16, 25, 50, 75, 90 and 100% of each residue in hEP1R 

predicted as helix by 12 different helix prediction methods. Each residue has a 
score from 1 to 12 based on how many methods predicted it as helix. A, B and 
C in scoring scale are equal to 10, 11 and 12. Consensus 50% comprises 
residues which have 6 or more scores. 

 

Tab. 3.  TM segments predicted by different alignment strategies compared to TM 
segments identified by 50% consensus of TM prediction. 

TM 50% 
consensus ALIGN–Ia ALIGN–IIb ALIGN–IIIc 

TM1 
TM2 
TM3 
TM4 
TM5 
TM6 
TM7 

35–62 
72–99 

111–138 
151–174 
200–237 
290–321 
332–354 

29–58 
72–100 

107–140 
146–169 
183–209 
292–321 
330–354 

37–59 
72–98 

108–139 
151–173 
199–227 
290–321 
330–354 

34–62 
69–98 

111–139 
151–173 
197–224 
287–321 
330–354 

a Rhodopsin–like GPCR family; b Prostanoid receptors/rhodopsin;  
c hEP1R/rhodopsin. 
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Based on the sequence alignments, MODELLER extracts a large number of spatial 
restraints from the template structures and builds a molecular model of the query protein. 
The restraints are generally obtained by assuming that the corresponding distances and 
angles between aligned residues in the template and the target structures are similar. The 
resulting output was a homology model of hEP1R. 

Three criteria were considered to distinguish the best model: RMSD of the transmembrane 
regions relative to rhodopsin, stereochemical quality of the models and REPIMPS scores 
as summarized in Table 4. 

Tab. 4.  Comparison of the model fitness criteria among the three models. 

Model 
RMSD of the  
TM Cα from 

rhodopsin (Å) 

Procheck analysis Lipid 
compatibility 

score 
(REPIMP) 

Allowed  
regions 

Disallowed  
regions 

MODEL–Ia 0.95 99.0% 0.9% 121.37 
MODEL–IIb 0.88 99.0% 0.9% 135.32 
MODEL–IIIc 0.63 98.8% 1.2% 140.50 
a Based on the rhodopsin-like GPCR alignment; b Based on prostanoid receptors/rhodopsin 
aligment; c Based on hEP1/rhod alignment. 

 

To examine the orientation of the helices of hEP1R, we superposed the transmembrane 
regions of the models with the template. From the RMSD values for hEP1R and rhodopsin, 
we can conclude there is a good agreement between the helices especially in MODEL-III. 

Also, evaluation of the stereochemical quality of the models with PROCHECK showed that 
only a few residues are in disallowed regions in the Ramachandran plot, and most of them 
correspond to the structurally non-conserved regions. As it is evident from Table 4, all 
models have a very close and good stereochemical quality. 

Tab. 5.  Rotational orientation angles (α) of transmembrane helices for three different 
models of hEP1R predicted using HTMSRAP method based on the π 
propensity scale, and percentages of the accessible surface area of the helices 
exposed to the lipid bilayer. 

 MODEL-I MODEL-II MODEL-III 
 α angle a % b α angle a % b α angle a % b 
TM1 139.19 100 243.02 40 18.91 60 
TM2 17.1 45 33.64 30 327.2 85 
TM3 49.17 30 204.8 50 47.45 60 
TM4 32.28 60 302.7 20 302.7 20 
TM5 218.68 30 295.11 80 295.11 80 
TM6 302.26 71 302.26 71 146.03 85 
TM7 104.82 71 104.82 71 104.82 71 
a Based on π scale on HTMSRAP; b Percent of amino acids on the lipid side of each helix 
compared with the ideal helix 
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To assess the quality of the models, the residue environment compatibility scores were 
calculated for the generated hEP1R models using the REPIMPS method [40]. Also 
rotational orientation angles (α) for the TM helices were calculated for each of the 7 TM 
segments after idealizing them in terms of secondary structure. The results of the 
predictions for all the TM helices using HTMSRAP are summarized in Table 5. It shows 
that most of the helices, especially in MODEL-III, are acceptably faced to the lipid bilayer. 

MODEL-III was chosen for further refinement steps because it had the highest lipid 
compatibility score, its helices were better oriented against each other and against 
hydrophobic area, and its RMS deviation relative to rhodopsin was the least one. 

DOPE (Discrete Optimized Protein Energy) [54] which is implemented in MODELLER was 
used to assess the energy and the quality of the MODEL-III as a whole. The problematic 
regions in the MODEL-III were EL2, IL3 and the C-terminus, which were subjected to an 
ab initio loop modeling procedure implemented in MODELLER (data not shown). 

Prostanoid receptors have several of the key residues and motifs characteristic of GPCRs. 
The extracellular domain of the hEP1R includes two NXS/T (Asn-X-Ser/Thr) consensus 
sequences for N-linked (Asn-linked) glycosylation. These motifs are located at Asn8 and 
Asn25 on the N-terminus. Investigations of the functional role of prostanoid receptor 
glycosylation revealed effects on ligand binding, receptor activation, and membrane 
localization [55]. 

A conserved disulfide bond, found in most GPCRs, is formed in the extracellular domain of 
the hEP1R between cysteine residues Cys110 (at the top of TM3) and Cys188 (EL2). A 
highly conserved (100% across prostanoid receptors) Arg338 is located in the middle of 
TM7, and thought to be analogous to Lys296 of rhodopsin, which is crucial for anchoring 
the ligand within the binding domain. Also located within TM7 of the hEP1R, and 100% 
conserved across all prostanoid receptors, is a DPWXY (Asp-Pro-Trp-X-Tyr) motif, which 
has been shown to be important for receptor activation. 

Molecular dynamics simulation and ligand-supported hEP1R model refinement 
During 10 ns unrestrained MD simulation of MDDEL-III, the total system energy (Etot) and 
the total energy of the protein (Eprot) approached their minimum values after 6 ns and 8 ns, 
respectively. The seven TM helices remained within a Cα atom RMSD of 2.0 Å from the 
starting structure during this period. The maximum RMSD value for all Cα atoms was 4.5 Å 
(Fig. 4), indicating sufficient stability of the model. The protein appears to be equilibrated 
after 5 ns where RMSD approached the maximum. We also analyzed the evolution of the 
secondary structure of the hEP1R (Fig. 5). Overall, the seven TM segments conserved 
their α-helical secondary structure during the entire simulation. Fig. 6 shows change of the 
number of hydrogen bonds for the whole hEP1R structure and the transmembrane helices, 
respectively, during the simulation. As can be seen, the average number of hydrogen 
bonds increases from 240 to 275 (Fig. 6A) while the average number of hydrogen bonds in 
the seven transmembrane helices remains nearly constant (decrease from 165 to 159, Fig. 
6B). Also, the rotational orientation angles measured by HTMSRAP before and after 10 ns 
simulation are almost unchanged (data not shown). 
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Fig. 4.  RMSD of alpha carbons vs. simulation time for 10 ns free molecular dynamics 

simulation on MODEL-III. 

 
Fig. 5.  Evolution of the secondary structure of MODEL-III during 10 ns molecular 

dynamics simulation. 
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Fig. 6.  Number of hydrogen bonds during 10 ns MD simulation. (A) Number of all 

hydrogen bonds. (B) Number of hydrogen bonds for transmembrane helices. 

Together, these results indicate that the hEP1R structure was stable during the course of 
the MD simulation. Fig. 7 shows the structure of the hEP1R incorporated into lipid bilayer 
after 10 ns of simulation. 

By analyzing the secondary structure (Fig. 5) and the hydrogen bonds of helices (Fig. 6) it 
can be seen that the structural changes during the MD simulation are very subtle. After 10 
ns MD simulation, the seventh transmembrane helix was positioned in a better orientation 
with respect to the lipid bilayer (80%), while other helices nearly retained their orientations 
prior to the simulation. 
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Fig. 7.  Molecular dynamics simulation box of hEP1R (MODEL-III) with lipid bilayer 

(yellow), chlorides (green) and waters (blue). Structure after 10 ns of simulation. 
The EC region is at the top. Phosphate atoms of lipids are shown as orange 
balls. The front half of the bilayer and two thirds of waters are not shown for the 
sake of clarity. 

There are three important interhelical hydrogen bonds in the structure that are all 
maintained during the 10 ns MD simulation. In TM1 there is a conserved G(x3)N motif that 
in bovine rhodopsin participates in a hydrogen bond. In our model this hydrogen bond 
between Gly46 and Asn50 exists and remains during 10 ns MD simulation. Also in the 
conserved DP(x2)Y motif of TM7 there is a hydrogen bond between Asp347 and Tyr351 
which is maintained after 10 ns MD simulation. Arg338 in TM7, the key residue in the 
binding site, forms a hydrogen bond with Ser341 which is maintained during the 10 ns MD 
simulation. 

All of these findings showed that the hEP1R structure was stable during the course of the 
MD simulation and is structurally feasible. 

In most cases, homology models of GPCRs derived from bovine rhodopsin are not directly 
suitable for use in structure-based drug design and require targeted iterative refinement of 
the receptor binding site. It has been suggested that the binding sites of GPCR homology 
models are often too small to accommodate known ligands [50, 56]. The narrow binding 
pocket is possibly the result of the flat nature of 11-cis retinal in the binding pocket of the 
bovine rhodopsin crystal structure and the misplacement of side-chains of binding site 
residues during homology modeling [50]. 

To address this problem, a balloon potential involving a systematic MD-based 
methodology to expand and refine the binding sites of models has been reported and 
applied successfully to several GPCR receptors [50, 56]. In the current work, the hEP1R 
model (MODEL-III) was subjected to the similar ligand-supported homology model 
refinement protocols described previously [50]. 
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Fig. 8.  Ramachandran plot analysis of the final hEP1R model (MODEL-V). 

It was performed in two steps. First the refinement was employed with PGE2, and then the 
resulting model (MODEL-IV) was subjected to another refinement processes with iloprost 
docked to the binding pocket. After calculating the average structure achieved in the final 
MD simulation this structure was subjected to a series of minimization steps (MODEL-V). 
MODEL-V can now explain ligand–receptor interactions for some prostanoid compounds. 
Appropriate care was taken throughout the refinement protocol to maintain the conserved 
α-helical geometry of the TM helices. Evaluation of the stereochemical quality of MODEL-
V with PROCHECK showed that only a few residues are in disallowed regions in the 
Ramachandran plot and all of them correspond to the structurally non-conserved regions 
(Fig. 8). The six non-glycine residues, Trp198, Ala228, Ser69, Arg280, Asp387 and Trp386 
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were observed lying outside the allowed regions. These residues in the extracellular and 
intracellular loop regions do not belong to the binding site. 

In order to investigate the validity as well as the characteristics of the binding site of our 
model and to facilitate the rational design of novel and more selective prostanoid receptor 
ligands, docking analysis was performed with PGE2, a potent analogue of hEP1R and 
some other prostanoid ligands. PGs have two structural features, a cyclopentane ring and 
two side chains, and the receptors are supposed to recognize all these moieties and 
stabilize the ligand binding (Fig. 9). 
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Fig. 9.  Structure of PGE2. Carbon atoms are numbered from 1 to 20 starting from the 

C-1 carboxyl group. 

Docking analysis revealed that the putative binding domain of the prostanoid receptors lie 
within the upper half of the transmembrane-spanning region. This pocket is formed mainly 
by the first, second and seventh transmembrane segments, of which the former two are 
involved in the recognition of the ring structure and the latter in that of the side chains (Fig. 
10). Also EL2 covers the binding site and could construct a hydrogen bond with the 
cyclopentane ring of the ligand via Thr186. The key interactions of PGE2 with the hEP1R 
have been highlighted by site-direct mutagenesis experiments as follows: 

Arg338 in TM7 is supposed to form a salt bridge with the carboxylic acid moiety on the α 
chain of PGE2. Strong evidence in support of this interaction is that the mutation of the 
corresponding Arg in prostaglandin I [57], EP2 [58], EP3 [59], prostaglandin F [60], and 
thromboxane [61] receptors leads to significant loss of binding. Such mutation experiments 
have not yet been carried out for the hEP1R. However, as Arg338 is conserved in all 
prostanoid receptors, the proposed interaction between 1-COOH of PGE2 and Arg338 is 
obvious. Mutation of Tyr99 into Ala in the human prostacyclin receptor, corresponding to 
Tyr75 (TM2) of hEP1R, leads to a significant change of the binding affinity of iloprost [55]. 
It has been suggested that Tyr75 interacts with 11-OH of the cyclopentane ring of hIP. 
Tyr99 may participate in hydrogen binding with 9-OH of the cyclopentane moiety and 
hydrophobic interaction with the ring. Some mutation studies also revealed the role of EL2 
on hydrogen bonding with the ligand and the participation of TMs 1-3 in hydrophobic 
interactions with the α and ω chains of PGE2 in hEP3R and IPR [55, 62]. 
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Fig. 10.  Schematic two-dimensional representations of the binding interactions between 

PGE2 and hEP1R 

In our model, the binding site has a hydrophobic pocket consisting of several residues. 
This hydrophobic pocket surrounds the α and ω chains and is involved in PGE2 binding. In 
some studies substitution of His81 of rat prostaglandin F and thromboxane receptors, 
corresponding to His88 in hEP1R, with a number of different amino acids, led either to a 
loss of ligand binding or to alterations in the optimum pH for ligand-receptor interaction 
[63]. Therefore, these interactions are likely important for PGE2 binding with hEP1R. 

Table 6 shows a comparison of the receptor affinity, obtained previously by Ungrin et al. 
[48], with the docking score, using GOLDscore, for all compounds docked to the hEP1R. 

Ungrin et al. described SAR of prostanoids and prostanoid analogues at the hEP1R [48]. 
They obtained experimental binding affinities for PGE2 and related compounds. The data 
revealed that 11α and 15(S) configuration of the hydroxyl groups as well as the presence 
of the carboxylic acid moiety of the prostanoid structure are crucial for hEP1R binding and 
activation. Here we used 15 prostanoid compounds which have covered some structural 
changes to achieve different binding affinity. Each of these compounds was docked into 
the binding site of the hEP1R for 100 runs. The structures were scored with GOLDscore, 
and correlation analysis of receptor binding affinities (Ki) and docking scores was 
performed for evaluation of the ligand-receptor complexes modeled in this study. 
Compounds in the first half of Table 6 are potent agonists with sub-micromolar Ki values, 
while the others are weak agonists. A squared correlation coefficient of r2=0.81 between 
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the Ki values and the GOLDscores was observed. The docking study was performed on 
the homology-derived MODEL-V, and for such a study this correlation is quite reasonable 
and indicates an acceptable quality of the model. Comparison of the best docking modes 
of various compounds suggests common binding characteristics very similar to that 
depicted for PGE2 in Fig. 11. 

Tab. 6.  Docking scores and Ki values for prostanoid compounds. 
Compound Kia (µM) Docking Scoreb 
9-Deoxy-9-methylene-prostaglandin E2 0.007425 64.9779 
17-Phenyl-v-trinor-prostaglandin E2 0.004257 61.8478 
17-Phenyl-v-trinor-prostaglandin F2a 0.05346 62.2498 
Prostaglandin E3 0.0792 61.346 
Prostaglandin F2a 0.3762 62.3059 
15-Cyclohexyl-pentanorprostaglandin F2a 0.8613 63.3909 
Latanoprost free acid 1.188 64.6217 
11-Deoxy-prostaglandin E2 1.188 64.0851 
8-iso-Prostaglandin E2 1.188 61.6362 
15-keto-Prostaglandin E2 2.376 62.1678 
Misoprostol free acid 14.85 54.8817 
15(R)-Prostaglandin E1 16.83 53.8978 
8-iso-Prostaglandin F2a 8.91 59.8972 
Prostaglandin E2 ethanolamide 9.603 58.7369 
Misoprostol methyl ester 46.53 50.5039 
a Experimental Ki values by Ungrin et al. [48], b The structures were docked with GOLD and 
scored by GOLDscore. 

 

 
Fig. 11.  Stereoview of the predicted binding site of PGE2 in MODEL-V. Five important 

residues in the pocket are indicated by different colors. 
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Conclusions 
We have provided a homology model of the human prostanoid receptor, hEP1R, based on 
the structure of bovine rhodopsin (1L9H). Models of ligand–protein complexes have been 
derived by docking studies. The predicted binding site was in the cavity inside the receptor 
between TMs 1,2,3 and 7 and the EL2 region of the hEP1R. Arg338 in TM7 is a key 
residue for ligand binding and receptor activation. Thr186 in EL2 as well has an important 
role. Hydrogen bonds and hydrophobic interactions with other residues further contribute 
to ligand binding. The identified key residues involved in ligand-receptor interactions are in 
agreement with results from in vitro mutagenesis. Since the prostanoid receptors are 
interesting therapeutic targets, the results of the current study provide information which 
can be used in structure-based drug design and may initiate further biological experiments. 
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