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Abstract 
Many anti-tumor drugs function by intercalating into DNA. The xanthine alkaloid 
caffeine can also intercalate into DNA as well as form π-π molecular complexes 
with other planar alkaloids and anti-tumor drugs. The presence of caffeine could 
interfere with the intercalating anti-tumor drug by forming π-π molecular 
complexes with the drug, thereby blocking the planar aromatic drugs from 
intercalating into the DNA and ultimately lowering the toxicity of the drug to the 
cancer cells. The cytotoxic activities of several known DNA intercalators 
(berberine, camptothecin, chelerythrine, doxorubicin, ellipticine, and sanguinar-
ine) on MCF-7 breast cancer cells, both with and without caffeine present 
(200 μg/mL) were determined. Significant attenuation of the cytotoxicities by 
caffeine was found. Computational molecular modeling studies involving the 
intercalating anti-tumor drugs with caffeine were also carried out using density 
functional theory (DFT) and the recently developed M06 functional. Relatively 
strong π–π interaction energies between caffeine and the intercalators were 
found, suggesting an “interceptor” role of caffeine protecting the DNA from 
intercalation. 
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Introduction 
Caffeine is ingested by millions of people on a daily basis in tea, coffee, soft drinks, and 
various other foods. Because of its wide-spread usage, caffeine has been the focus of 
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many studies for their effects on the body [1]. Overuse of caffeine is associated with heart 
problems, addiction due to its stimulant qualities and reproductive problems. However, it 
acts as a vasodilator, and hence alleviates pain associated with migraines, and moderate 
use of caffeine is linked to prevention of some autoimmune diseases, diabetes, and it can 
act as an anti-oxidant [1]. The actual interaction between caffeine and DNA is a 
controversial subject; it is not fully understood, but a possible scenario is that it intercalates 
with DNA. 

Caffeine is a planar aromatic xanthine alkaloid which leads to the hypothesis that it could 
very easily form π–π complexes with other planar aromatic molecules such as 
nucleobases in DNA and several types of anticancer drugs known to intercalate DNA 
based on their planar structures [2, 3]. Caffeine has been shown to associate with the 
intercalators doxorubicin [4–6], mitoxantrone [5–7], topotecan [8], acridine orange [9], and 
with itself [10]. It has been previously confirmed that caffeine and theophylline can protect 
DNA by affecting the binding of toxic compounds [1, 11, 12]. However, in cancer patients 
undergoing chemotherapy, this property is not preferable. Several chemotherapy drugs 
such as doxorubicin and daunorubicin work by intercalating into DNA, and caffeine has 
been shown to reduce the toxicity of these drugs [1, 13]. Previous studies have shown that 
caffeine forms “stacking complexes” with these anti-cancer drugs which affects the binding 
of the drugs into the DNA and regulates the movement through cell membranes, and also 
that caffeine actually displaces drugs that have already been bound to DNA [1]. 

Two mechanisms have been proposed for the modulation of DNA intercalating drugs 
[14, 15], which involve equilibria of complexed drug and caffeine, caffeine and DNA, and 
drug and DNA. The mechanism proposed works within a system that consists of two 
ligands in the presence of DNA. X represents the first ligand, which is the anticancer drug, 
and Y represents the other binding molecule such as caffeine. The caffeine molecule (Y) 
can essentially do two things. It can either bind to the anticancer drug, acting as the 
“interceptor” molecule or it can bind to the DNA, acting as the “protector” molecule as it is 
“protecting” the DNA molecule from being bound by the anticancer drug (X) (Fig. 1). 

In order to provide additional insight into the molecular interactions of caffeine with 
intercalating natural products and with DNA, we have examined: (a) the cytotoxic activities 
of the antitumor agents chelerythrine, camptothecin, ellipticine, doxorubicin, berberine, and 
sanguinarine, both alone and in the presence of caffeine, on the MCF-7 human breast 
adenocarcinoma cell line; (b) molecular docking of caffeine and the antitumor agents with 
DNA; and (c) molecular modeling of π–π interactions between caffeine and the antitumor 
agents and between these compounds and the guanine-cytosine base pair using density 
functional theory. 

Results and Discussion 
Cytotoxic Activity 
In-vitro cytotoxicity assays on MCF-7 cells were carried out for six compounds (berberine, 
camptothecin, chelerythrine, doxorubicin, ellipticine, and sanguinarine) at various 
concentrations in order to determine their IC50 values. In a separate assay, the medium 
was supplemented with caffeine at a concentration of 200 μg/mL (previously determined to 
have little effect on the cells), and IC50 values of the compounds re-determined in the 
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presence of caffeine. The effects of caffeine on the cytotoxic activity of the intercalating 
antitumor agents are shown in Table 1.  

Tab. 1.  Cytotoxicity attenuation of intercalating antitumor agents by caffeine. 

Compound IC50 (μM)a 
no caffeine with caffeineb 

Berberine 50.0(4.3) 511(59) 
Camptothecin 9.21(1.41) 335(31) 
Chelerythrine 32.1(0.5) 37.4(0.8) 
Doxorubicin 11.4(2.2) 31.7(3.9) 
Ellipticine 12.8(0.5) 333(7) 
Sanguinarine 5.78(0.22) 6.66(0.16) 
a Standard deviations in parentheses. b Caffeine concentration = 1030 μM. 

 

Caffeine resulted in attenuation on the cytotoxic activities of all the intercalating drugs in 
the present study. Some of the intercalating drugs were more affected than others as 
shown in their IC50 calculation in Table 1. Significant attenuation (P < 0.001) was observed 
for all intercalating drugs in this study; large attenuations were observed for berberine, 
camptothecin, doxorubicin and ellipticine, while chelerythrine and sanguinarine were 
marginally attenuated. The increased in IC50 due to caffeine may be attributed to either 
caffeine competing for intercalation sites in DNA (the “protector” scheme), or that the 
caffeine has formed a π–π complex with the intercalating drug (the “interceptor” scheme, 
Fig. 1) [15]. 

  

“Interceptor” scheme “Protector” scheme 
Fig. 1.  Modulation of DNA intercalation by caffeine via “interceptor” (left) or “protector” 

(right) interactions [15]. 

X 

Y 
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The slight attenuation in the IC50 values of sanguinarine and chelerythrine from the system 
with no caffeine to the system with caffeine could indicate there is another mechanism of 
cytotoxic activity in addition to DNA intercalation. It has been reported that sanguinarine 
induces oxidation within the cell which causes double-stranded DNA breaks [16]. 
Additionally, in some cell lines, sanguinarine was found to induce caspase activation [17] 
or severe glutathione depletion [18, 19], leading to apoptosis. It has also been suggested 
that both sanguinarine and chelerythrine produce H2O2 and other reactive oxygen species, 
which cause oxidation and subsequent apoptosis [20]. 

Molecular Docking 
The Molegro Virtual Docker (MVD) [21, 22] was used to carry out a molecular docking 
analysis of the intercalating antitumor agents as well as caffeine with DNA in order to 
compare docking energies. The molecular docking studies were based on structures of 
various intercalators with DNA that are available in the Protein Data Bank (PDB). A total of 
nine different DNA structures with two intercalation sites each were modeled in this 
docking study. The docking energies are summarized in Table 2.  

Tab. 2.  Molegro Virtual Docker (MVD) docking energies (kcal/mol) of caffeine and 
intercalating antitumor agents with DNA. 

Ligand 1AL9a 1K9G 1KCI 1P20 1Z3F 
1b 2b 1 2 1 2 1 2 1 2 

Caffeine −14.9 −15.0 −16.5 −16.4 −16.3 −16.5 −16.0 −16.0 −16.4 −16.5 
Berberine −18.5 −18.8 −22.9 −22.3 −23.2 −22.7 −17.7 −18.1 −20.0 −21.6 
Camptothecin −18.5 −18.6 −22.0 −22.0 −22.2 −22.6 −19.4 −19.3 −22.1 −22.4 
Chelerythrine −19.7 −20.4 −21.1 −21.4 −22.8 −22.2 −20.2 −20.2 −21.6 −21.9 
Doxorubicin −26.7 −26.0 −25.3 −25.3 −26.1 −26.1 −25.7 −25.3 −23.7 −23.5 
Ellipticine −18.1 −17.8 −20.8 −20.8 −20.8 −20.8 −18.8 −18.6 −21.3 −21.4 
Sanguinarine −20.1 −20.1 −21.6 −21.5 −22.7 −23.2 −20.3 −20.1 −22.1 −22.5 

Ligand 1DL8 367D 452D 465D Avec 1 2 1 2 1 2 1 2 
Caffeine −16.4 −16.5 −16.4 −16.7 −16.5 −16.7 −16.5 −16.7 −16.3 
Berberine −23.1 −23.3 −22.9 −20.1 −23.2 −23.4 −19.1 −20.1 −21.2 
Camptothecin −22.2 −22.6 −22.4 −22.8 −22.1 −23.3 −21.6 −22.9 −21.6 
Chelerythrine −22.6 −21.6 −22.9 −22.4 −23.1 −23.1 −21.9 −22.6 −21.8 
Doxorubicin −25.7 −25.3 −25.4 −27.3 −26.5 −26.7 −23.9 −26.4 −25.6 
Ellipticine −20.9 −21.0 −21.0 −21.0 −20.7 −20.9 −20.5 −20.5 −20.3 
Sanguinarine −22.4 −22.9 −22.7 −23.3 −23.0 −23.8 −21.8 −23.3 −22.1 
a Protein Data Bank identification number. b Intercalation site number in the DNA structure. c Average 
intercalation docking energy for all structures. 

 

Caffeine is the worst binding ligand according to the docking studies and averaged 
4 kcal/mol weaker binding than the worst intercalating drug (ellipticine). The ligand with the 
strongest docking energy was doxorubicin, which docked, on average, 9.3 kcal/mol more 
strongly than caffeine. These docking data would suggest that displacement of 
intercalating antitumor agents is not a thermodynamically favorable process. Previous 
spectroscopic [23, 24] and theoretical [25] studies have suggested that intercalation is not 
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the predominant mechanism for interaction of caffeine with DNA. Likewise, de-intercalation 
of ethidium bromide from DNA by caffeine has been attributed to caffeine–ethidium 
bromide stacking aggregation and not intercalation of caffeine into DNA [26]. 

Density Functional Theory Calculations 
In order to probe π–π complexation between caffeine and the intercalators, DFT modeling 
studies were carried out using Spartan ’08 for Windows [27] with the M06 functional [28] 
and the 6-31G* basis set. The recently developed M06 suite of density functionals [28] has 
been shown to give generally superior performance for non-covalent interactions such as 
hydrogen bonding, dipole-dipole, and π–π stacking interactions, unlike widely used B3LYP 
and BLYP methods [29–32]. In this work we have chosen to use the M06 hybrid functional 
because of its previously reported performance with π–π stacking interactions [28]. A 
number of different orientations were constructed and full geometry optimization was 
carried out. The π–π interaction energies for the lowest-energy orientations of the six 
intercalating compounds with caffeine are summarized in Table 3. 

The M06 calculations all indicate relatively strong π–π interactions between caffeine and 
the antitumor drugs with gas-phase exothermic interaction energies ranging from −16.8 to 
−21.6 kcal/mol and aqueous energies of −11.0 to −16.5 kcal/mol. Interactions that likely 
contribute to these favorable π–π complexes include dipole-dipole interactions [33, 34], 
electrostatic interactions [35, 36] and van der Waals interactions [37], as well as frontier 
molecular orbital interactions [38, 39]. Frontier molecular orbital theory [40] suggests that 
the important interactions of caffeine with the intercalating drugs will be the HOMO of 
caffeine and the LUMO of the antitumor agents. 

Tab. 3.  π–π Interaction energies of intercalating antitumor agents and caffeine. 

Compounds Evac (kcal/mol)a Eaq (kcal/mol)b 

Caffeine + Berberine −19.34 −12.60 
Caffeine + Camptothecin −18.04 −13.05 
Caffeine + Chelerythrine −20.54 −14.12 
Caffeine + Doxorubicin −19.16 −15.86 
Caffeine + Ellipticine −16.83 −11.02 
Caffeine + Sanguinarine −21.60 −16.47 
a Calculated interaction energies in the gas phase. 
b Calculated interaction energies using an aqueous solvation model (SM5.4 [41]). 

 

Of the different caffeine-berberine orientations, the lowest energy orientation (Fig. 2) is 
such that there are favorable dipole-dipole and electrostatic interactions. Frontier 
molecular orbital overlap, however, is not favorable. The lowest-energy π–π orientation for 
caffeine with camptothecin (Fig. 3) has the molecular dipoles of the caffeine and 
camptothecin aligned rather than opposed and the electrostatic interactions are also 
unfavorable. They do, however, have favorable frontier molecular orbital alignments. In the 
lowest-energy π–π complex between chelerythrine and caffeine the molecular dipoles are 
perpendicular, frontier molecular orbital overlap is not evident, but electrostatic interactions 
are generally favorable (Fig. 4). The molecular dipoles for caffeine and doxorubicin are 
nearly perpendicular in the lowest energy orientation (Fig. 5), but there do seem to be 
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favorable electrostatic and frontier molecular orbital interactions. In the ellipticine-caffeine 
complex (Fig. 6), the dipole moments unfavorably aligned, but HOMO-LUMO interactions 
as well as electrostatic interactions are favorable for this orientation. Sanguinarine, 
structurally very similar to chelerythrine, shares the same lowest-energy orientation (Fig. 7) 
with the same interactions: perpendicular molecular dipole moments, poor FMO overlap, 
but good electrostatic interactions. 

Tab. 4.  π–π Interaction energies for intercalators with guanine-cytosine base pair. 

Compounds E (kcal/mol) 
Orientation 1 Orientation 2 Average 

Caffeine −17.3 −22.1 −19.7 
Berberine −30.9 −29.4 −30.2 
Camptothecin −25.4 −22.3 −23.9 
Chelerythrine −25.5 −30.6 −28.0 
Doxorubicin −29.1 −31.6 −30.3 
Ellipticine −20.3 −20.8 −20.5 
Sanguinarine −28.3 −30.3 −29.3 

 

The π–π interactions between caffeine and the guanine-cytosine (G-C) base pair as well 
as the interactions between the intercalating drugs and the G-C base pair have been 
modeled using DFT at the M06/6-31G* level. The starting orientations for each calculation 
were the two orientations of the intercalator with G-C from the X-ray crystal structure (in 
the case of doxorubicin [42]) or the lowest-energy docked poses from the molecular 
docking analyses (see above). The π–π interaction energies for the intercalators and G-C 
are summarized in Table 4. For this discussion, an “intercalation energy” can be defined 
as the average of the π–π interaction energies for each complex between intercalator and 
G-C. The DFT calculated “intercalation energies” closely mirror the molecular docking 
energies above. That is, doxorubicin is calculated to release the most amount of energy 
upon intercalation, while caffeine is expected to release the least. Ellipticine is also 
predicted to be a weaker intercalator than the other drugs, consistent with the molecular 
docking results. 

Based on the data in this study and on previous studies [23–25], we conclude that caffeine 
modulates the activities of intercalating cytotoxic drugs by π–π interactions (“interceptor”) 
rather than intercalation of caffeine directly into DNA (“protector”) and that either frontier 
molecular orbital interactions, dipole-dipole interactions, and/or electrostatic interactions 
play important roles in the π–π orientations of caffeine with the intercalators. 
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Fig. 2.  Lowest-energy orientation of the π–π complex between berberine and caffeine. 
(A) Face-to face orientation of caffeine (ball and spoke model) in its lowest-
energy orientation with berberine (tube model). (B) Molecular dipoles of 
berberine (top) and caffeine (bottom). (C) LUMO of berberine (top) and HOMO 
of caffeine (bottom). (D) Frontier molecular orbital overlap of caffeine with 
berberine in the lowest-energy orientation. (E) Electrostatic potential maps of 
berberine (top) and caffeine (bottom). (F) Electrostatic potential map of the 
lowest-energy π–π complex between berberine and caffeine. 
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Fig. 3.  Lowest-energy orientation of the π–π complex between camptothecin and 
caffeine. (A) Face-to face orientation of caffeine (ball and spoke model) in its 
lowest-energy orientation with camptothecin (tube model). (B) Molecular dipoles 
of camptothecin (top) and caffeine (bottom). (C) LUMO of camptothecin (top) 
and HOMO of caffeine (bottom). (D) Frontier molecular orbital overlap of 
caffeine with camptothecin in the lowest-energy orientation. (E) Electrostatic 
potential maps of camptothecin (top) and caffeine (bottom). (F) Electrostatic 
potential map of the lowest-energy π–π complex between camptothecin and 
caffeine. 
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Fig. 4.  Lowest-energy orientation of the π–π complex between chelerythrine and 
caffeine. (A) Face-to face orientation of caffeine (ball and spoke model) in its 
lowest-energy orientation with chelerythrine (tube model). (B) Molecular dipoles 
of chelerythrine (top) and caffeine (bottom). (C) LUMO of chelerythrine (top) and 
HOMO of caffeine (bottom). (D) Frontier molecular orbital overlap of caffeine 
with chelerythrine in the lowest-energy orientation. (E) Electrostatic potential 
maps of chelerythrine (top) and caffeine (bottom). (F) Electrostatic potential 
map of the lowest-energy π–π complex between chelerythrine and caffeine. 
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Fig. 5.  Lowest-energy orientation of the π–π complex between doxorubicin and 
caffeine. (A) Face-to face orientation of caffeine (ball and spoke model) in its 
lowest-energy orientation with doxorubicin (tube model). (B) Molecular dipoles 
of doxorubicin (top) and caffeine (bottom). (C) LUMO of doxorubicin (top) and 
HOMO of caffeine (bottom). (D) Frontier molecular orbital overlap of caffeine 
with doxorubicin in the lowest-energy orientation. (E) Electrostatic potential 
maps of doxorubicin (top) and caffeine (bottom). (F) Electrostatic potential map 
of the lowest-energy π–π complex between doxorubicin and caffeine. 
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Fig. 6.  Lowest-energy orientation of the π–π complex between ellipticine and caffeine. 
(A) Face-to face orientation of caffeine (ball and spoke model) in its lowest-
energy orientation with ellipticine (tube model). (B) Molecular dipoles of 
ellipticine (top) and caffeine (bottom). (C) LUMO of ellipticine (top) and HOMO 
of caffeine (bottom). (D) Frontier molecular orbital overlap of caffeine with 
ellipticine in the lowest-energy orientation. (E) Electrostatic potential maps of 
ellipticine (top) and caffeine (bottom). (F) Electrostatic potential map of the 
lowest-energy π–π complex between ellipticine and caffeine. 
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Fig. 7.  Lowest-energy orientation of the π–π complex between sanguinarine and 
caffeine. (A) Face-to face orientation of caffeine (ball and spoke model) in its 
lowest-energy orientation with sanguinarine (tube model). (B) Molecular dipoles 
of sanguinarine (top) and caffeine (bottom). (C) LUMO of sanguinarine (top) and 
HOMO of caffeine (bottom). (D) Frontier molecular orbital overlap of caffeine 
with sanguinarine in the lowest-energy orientation. (E) Electrostatic potential 
maps of sanguinarine (top) and caffeine (bottom). (F) Electrostatic potential 
map of the lowest-energy π–π complex between sanguinarine and caffeine. 
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Experimental 
Cytotoxicity Assay 
Human MCF-7 breast adenocarcinoma cells (ATCC No. HTB-22) [43] were grown in a 5% 
CO2 environment at 37°C in RPMI-1640 medium, supplemented with 10% fetal bovine 
serum, 100,000 units penicillin and 10.0 mg streptomycin per liter of medium, 15 mM of 
Hepes, and buffered with 26.7 mM NaHCO3, pH 7.35. 

MCF-7 cells were plated into 96-well cell culture plates at 1.0 × 104 cells per well, with the 
volume in each well of 100 μL. After 48 h, the supernatant fluid was removed by suction 
and replaced with 100 μL growth medium containing test compounds at different 
concentrations; with or without caffeine (200 μg/mL). Solutions were added to wells in 
eight replicates. Medium alone was used as a negative control and tingenone (100 μg/mL) 
was used as a positive control [44]. After the addition of compounds, plates were 
incubated for 48 hr at 37°C; medium was then removed by suction and the MTT assay for 
cell viability was carried out [45]. The plates were then incubated for fifteen minutes and 
colorimetric readings were recorded (using a Molecular Devices SpectraMAX Plus 384 
microplate reader, 570 nm). Average absorbances, standard deviations, and percent kill 
ratios (%killcmpd/%killcontrol) were calculated. 

Molecular Docking 
Molecular structures for the compounds were built using SPARTAN ’08 for Windows [27], 
and geometries optimized using the MMFF 94 force field [46]. Docking studies of caffeine 
and the intercalating drugs were carried out based on the structures of DNA complexed 
with bis-daunorubicin (PDB: 1AL9) [47], doxorubicin (PDB: 1P20) [42], ellipticine (PDB: 
1Z3F) [48], cryptolepine (PDB: 1K9G) [49], 9-amino-N-[2-(4-morpholinyl)ethyl]-4-
acridinecarboxamide (PDB: 1KCI) [50], 5-fluoro-9-amino-(N-(2-dimethylamino)ethyl)-
acridine-4-carboxamide (PDB: 1DL8) [51], 5-bromo-9-amino-(N-(2-dimethylamino)ethyl)-
acridine-4-carboxamide (PDB: 367D) [52], 9-amino-(N-(2-dimethylamino)ethyl)acridine-4-
carboxamide (PDB: 452D [52] and 465D [53]). The structures were downloaded from the 
Protein Data Bank (PDB) using Molegro Virtual Docker v. 4.3 [21]. These PDB structures 
provide a selection of DNA structures with known planar aromatic intercalators. All solvent 
molecules and the co-crystallized inhibitor were removed from the structures to provide 
sterically unimpeded cavities for ligand docking. Molecular docking calculations for the 
ligands at the intercalation sites of DNA were undertaken using the MolDock docking 
algorithm of MVD v. 4.3 [22]. A sphere with a 10 Å radius (large enough to completely 
encompass the cavity/intercalation site) was centered on the intercalation site in order to 
allow each ligand to explore potential binding poses. The lowest-energy docking poses are 
summarized in Table 2. 

Density Functional Molecular Structures and Energies 
The calculations were carried out using SPARTAN ’08 for Windows [27]. The recently 
developed M06 [28] functional was used together with the 6-31G* basis set [54] for the 
optimization of all stationary points in the gas phase. Several different orientations of the 
drugs (berberine, camptothecin, chelerythrine, doxorubicin, ellipticine, and sanguinarine) 
and caffeine (3.4 Ǻ separation) were carried out with complete geometry optimization. 
Interaction energies using the SM5.4 aqueous solvation model [41] were determined using 
the gas-phase geometries. Interactions between intercalators and G-C were carried out 
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starting with the two orientations of the intercalator with G-C from the X-ray crystal 
structure in the case of doxorubicin [42], or the lowest-energy docked poses from the 
molecular docking analyses (see above) and starting with a π–π separation of 3.4 Ǻ. The 
geometries of each complex were completely optimized at the M06/6-31G* level of theory. 
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