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Abstract 
The chemiluminescence of stimulated cells with phorbol myristate acetate and 
the production of nitric oxide after stimulation with lipopolisaccharide in the 
presence of the parent compounds FAA (flavone-8-acetic acid = (4-oxo-2-
phenyl-4H-chromen-8-yl)acetic acid), XAA (xanthone-4-acetic acid = (9-oxo-9H-
xanthen-4-yl)acetic acid), and appropriate xanthone derivatives (1–7) was 
determined. Also the toxicity of the FAA, MFAA ((6-methyl-4-oxo-2-aryl-4H-
chromen-8-yl)acetic acid), XAA and 1–7 against J-774A.1 cultured cells was 
evaluated. Compound 5 (2-methyl-2-{[(9-oxo-9H-xanthen-2-yl)methyl]sulfanyl}-
propanoic acid) was effective in inhibiting chemiluminescence of J-774A.1 cells 
but most of the other tested compounds stimulated the reaction. FAA and two 
xanthones with a methoxycarbonyl moeity slightly decreased the generation of 
nitric oxide at 50 μM. Most of the tested compounds (1–7) showed weak toxicity 
at concentration of 100 μM. 
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Introduction 
Among the different classes of antitumor agents, the some flavone and xanthone 
derivatives are an important group of compounds with anticancer activity [1, 2]. Earlier 
studies have shown the advantageous properties of synthetic flavone-8-acetic acid (FAA, 
NSC 347512; (4-oxo-2-phenyl-4H-chromen-8-yl)acetic acid) [3] i.e. against advanced 
experimental colon tumors in mice [4]. Additionally, FAA has a different toxicity profile to 
most anticancer drugs, with no significant myelo suppression observed [5]. The related 
compounds MFAA (6-methyl-4-oxo-2-aryl-4H-chromen-8-yl)acetic acid) containing a 
6-methyl substituent in FAA showed antitumor activity comparable to FAA in vitro but were 
essentially inactive in vivo [6]. Also the closely related class of compounds FAA and 
MFAA the xanthone-4-acetic acid ((9-oxo-9H-xanthen-4-yl)acetic acid; XAA) [7] and some 
of its derivatives, in particular 5,6-dimethylxanthone-4-acetic acid ((5,6-dimethyl-9-oxo-9H-
xanthen-4-yl)acetic acid; DMXAA) [8, 9] showed promising antitumor activity. A recent 
comparative study of FAA and DMXAA, with a series of derivatives of XAA, in which the 
substituents in position 5 and 6 were included in five or six-membered rings suggest 
cytotoxicity activity in a preliminary in vitro assay, comparable to the parent compounds 
[10].  
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Earlier studies have shown that functions of activated macrophages such as killing of 
tumor cells, release of cytokines and generation of oxygen radicals can be regulated by 
flavone [11, 12]. They have also been shown to inhibit oxido–reductases [13], thus 
preventing the formation of free radicals resulting from the reduction of oxygen. FAA and 
analogues increases the direct cytotoxicity of murine macrophages in vitro against tumor 
targets [14], and stimulates the formation of nitric oxide [15]. Nitric oxide (NO.) is one from 
a variety of mediators released by activated macrophages. It has been identified as potent 
molecule that may exert regulatory or cytotoxic effects depending on the concentration 
acting on the target cell [16, 17]. The results of our earlier studies [18] suggest that the 
flavones can modulate the immune responses and the inflammatory reactions by 
controlling production of nitric oxide. J-774A.1 cells are functional similar to murine 
macrophages [19, 20]. 

In this study the chemiluminescence of stimulated cells with phorbol myristate acetate 
(PMA) and the production of nitric oxide after stimulation with lipopolysaccharide (LPS) in 
the presence of the parent compounds FAA, XAA and xanthone derivatives 1–7 were 
determined. 
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Results and Discussion 
Chemistry 
FAA was derived from the Drug Synthesis and Chemistry Branch, Division of Cancer 
Treatment, National Cancer Institute, USA, through the courtesy of Dr. Paull. Other 
xanthone derivatives (XAA and 1-5) were synthesized as previously described [7, 21–23]. 
Compound 6 was obtained by condensation of 2-methyl-6-hydroxyxanthone [24] with α-
bromopropionic acid according to published procedure for 4 [23]. Compound 7 was readily 
formylated according to Link [25], using 2-methyl-6-hydroxyxanthone, solid sodium 
hydroxide, acetone and chloroform. Formation of appropriate analogues of clofibrate under 
Link conditions is a widely used reaction [26,27]. Some of them (XAA, 2, 6 and 7) were 
characterized by formation of appropriate esters (XAAa, 2a, 6a and 7a) (Tab.1), according 
to well known procedures.  

Tab. 1.  Structure of the synthesized compounds 
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Pharmacology 
The studied compounds can influence on cell viability. Macrophages, as phagocytes 
during activation, are dynamic cells that characterize movement of cell membrane. To 
preliminary study of cytotoxic effect of tested compounds during experiments it was used 
method based on measurements of LDH leakage from the cells. Neither of the tested 
xanthone derivatives at concentration 50 µM showed toxicity against J7774A.1 cells 
cultured for 24h, but at concentration 100 µM most of them showed weak toxicity (Tab. 2). 
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Tab. 2.  Effects of tested compounds on cell viability (cytotoxic effect) determined with 
LDH method 

Cpds Cytotoxic effect at  
concentration 100µM [%]  

Mean±SEM 
Control 0 
FAA 0 
XAA 5.0±1.0 
1 1.0±0.6 
2 1.2±0.7 
3 3.9±0.8 
4 8.2±2.6 
5 7.5±1.8 
6 3.9±1.0 
7 6.3±1.5 
Percentages of cytotoxicity at concentration 
50µM of tested compounds were equal zero.  
The cells were cultured with compounds for 24h. 
The data are the mean values from three 
experiments. 

 

Stimulation of macrophages by PMA induces process, named respiratory burst, mainly 
combined with generation of reactive forms of oxygen. The process remember 
phagocytosis when the cells destroying microorganisms. The phagocytosis is important in 
defense system against invading microbial pathogens. On the other hand overproduction 
of the oxygen metabolites may induce pathologies [36–38]. 

Tab. 3.  Effects of tested compounds on chemiluminescence and generation of nitrite 
Cpds Chemiluminescence 

[% control] 
 Nitrite 

concentration
[µM] 

 Nitrite concentration 
after stimulation 
with LPS [µM] 

 Mean±SEM P< Mean±SEM P< Mean±SEM P< 
Control 100  5.7±1.0  25.7±0.4  
FAA 137±8.7 0.05a 5.7±0.9 n.s. 19.2±1.4 0.05 
XAA 127±8.1 0.05 5.8±0.8 n.s 21.4±1.4 n.s. 
1 149±12.7 0.05 5.5±0.5 n.s 21.8±0.6 0.01 
2 112±4.6 n.s. 5.8±0.2 n.s 20.3±0.9 0.01 
3 114±13.3 n.s. 7.2±0.7 n.s 23.1±1.0 n.s. 
4 113±2.3 0.02 7.2±0.9 n.s 24.3±1.5 n.s. 
5 72±6.9 0.05 7.3±0.9 n.s 22.8±1.8 n.s. 
6 117±5.8 n.s. 7.2±0.5 n.s 21.9±1.3 n.s. 
7 131±4.6 0.005 5.5±0.4 n.s 22.3±1.2 n.s. 
a Level of significance of t-Student’s test. Values are compared to control (without tested 
compounds). n.s. – no significance. Concentration of tested compounds – 50µM.  
The data are the mean values from three experiments. 
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Chemiluminescence (Tab. 3) was only inhibited in the presence of compound 5 with the 
2-thio-2-methyl propionic moiety. Other of tested compounds increased or did not change 
chemiluminescence. In study [12] FAA and xanthnone acetic analogues these compounds 
changed PMA stimulated generation of superoxide anion by murine macrophages 
dependent on concentration.  

Compounds at lower concentration stimulated but at higher concentration decreased 
generation of superoxide anion. Early studies with hydroxy and methoxyxanthone 
derivatives [28] showed stimulation of protein kinase C (PKC) isoforms. PMA induces 
respiratory burst via PKC [29]. This mechanism may be in the presence of tested 
compounds. Compounds XAA and 1 (different position of the methyl carboxyl group) 
showed similar activity. Stimulation the J-774A.1 cells, as a model cells, by LPS induces 
generation of nitric oxide radical. The strong stimulation of macrophages in the body by 
pathogens generating a big amount of nitric oxygen and many other reactive substances 
destroying an environmental of the body. The activity of nitric oxide is dependent on place 
and concentration and this process is very difficult to control [39–41]. Tested compounds 
did not change generation of nitrite by unstimulated cells and slightly decreased 
generation of nitrite by stimulated J-774A.1 cells with LPS. The most activity in decreasing 
of nitrite generation was observed in the presence of FAA and xanthone derivatives with 
methyl carboxyl group. This result is in opposition to data by Thomsen [30]. That study 
was performed with FAA at higher concentration. Only 5,6-dimethyl-XAA was more active 
at low concentration. In our study concentration of tested compounds was lower because 
of cytotoxic effect. 

The tested compounds in our study have not hydroxyl substituents at the main xanthone 
structure. The hydroxyxanthone derivatives, tested by other authors, showed an inhibitory 
effect on stimulated macrophages [31, 32]. It is probably dependent on an activity of these 
groups to reaction with oxygen and nitrogen intermediates. 

The chosen most active xanthone derivatives, after additional studies, may be use as a 
modulator of process accompanying with reactions of free radicals. 

Further studies on the biological effects of the active xanthone derivatives are in progress. 

Experimental 
Chemistry  
1H NMR and 13C NMR spectra were recorded on a Bruker spectrometer 500.13 MHz, 
using signal from DMSO in DMSO-d6 and TMS in CDCl3 as internal standards. MS were 
recorded using an AMD-604 mass spectrometer (70eV). The IR spectra were recorded on 
a Perkin Elmer or Jasco FT/IR 410 spectrometer (KBr pellets). M.p.s are uncorrected and 
were determined using a Büchi SMP-20 apparatus. Microanalyses were performed in the 
Department of Pharmaceutical Chemistry of Jagiellonian University, Medical College. All 
the results were within an acceptable range. 

Mps (°C) for: XAA: 207–209 (214–215 [7], 205–207 [21]); 1: 215–217 (224–226 [7], 217–
219 [21], 215–217 [22]; 2: 236–238 [22]; 3: 222–224 [22]; 4: 182–184 [22]; 5: 205–-206 
[23]. 
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Methyl (9-oxo-9H-xanthen-4-yl)acetate (XAAa) 
Yield: 76%, m.p. 155–157°C (methanol). IR (cm-1): 2950, 1732, 1655, 1616, 1603, 1446, 
1347, 1226, 1215, 1172. 1H NMR (500.13 MHz) (δ, ppm, DMSO-d6): 8.21 (1H, dd, J = 7.9 
Hz, J = 1.7 Hz, H-8), 8.14 (1H, dd, J = 7.9 Hz, J = 1.7 Hz, H-1), 7.90 (1H, ddd, J = 8.5 Hz, 
J = 7.1 Hz, J = 1.7 Hz, H-6), 7.84 (1H, dd, J = 7.2 Hz, J = 1.7 Hz, H-3), 7.63 (1H, dd, J = 
8.5 Hz, J = 1.0 Hz, H-5), 7.51 (1H, ddd, J = 7.9 Hz, J = 7.1 Hz, J = 1.0 Hz, H-7), 7.46 (1H, 
dd, J = 7.9 Hz, J = 7.2 Hz, H-2), 4.09 (2H, s, CH2), 3.69 (3H, s, CH3). 13C NMR (500.13 
MHz) (δ, ppm, DMSO-d6): 175.92 (C=O), 170.85 (COO),155.17 (C-4b), 153.76 (C-4a), 
136.79 (C-3), 135.56 (C-6), 125.90 (C-8), 124.96 (C-1), 124.51 (C-7), 124.33 (C-4), 123.83 
(C-2), 121.02 (C-8b), 120.81 (C-8a), 118.10 (C-5), 51.86 (OCH3), 34.49 (Ar-CH2). 
C16H12O4 (268.3). 

Methyl (6-methoxy-9-oxo-9H-xanthen-2-yl)acetate (2a) 
Yield: 73%, m.p. 159–160°C (methanol). IR (cm-1): 2950, 1734, 1654, 1619, 1595, 1453, 
1256, 1162. 1H NMR (500.13 MHz) (δ, ppm, DMSO-d6): 8.09 (1H, d, J = 8.8 Hz, H-8), 8.07 
(1H, dd, J = 2.3 Hz, J = 0.5 Hz, H-1), 7.74 (1H, dd, J = 8.5 Hz, J = 2.3 Hz, H-3), 7.58 (1H, 
dd, J = 8.5 Hz, J = 0.5 Hz, H-4), 7.14 (1H, d, J = 2.4 Hz, H-5), 7.04 (1H, dd, J = 8.8 Hz, J = 
2.4 Hz, H-7), 3.93 (3H, s, CH3OAr), 3.89 (2H, s, CH2), 3.65 (3H, s, CH3). 13C NMR (500.13 
MHz) (δ, ppm, DMSO-d6): 174.73 (C=O), 171.38 (COO), 164.89 (C-6), 157.48 (C-4b), 
154.55 (C-4a), 136.21 (C-3),130.58 (C-2), 127.51 (C-8), 126.27 (C-1),120.87 (C-8b), 
117.82 (C-4),114.84 (C-8a),113.54 (C-7),100.52 (C-5), 56.07 (CH3OAr), 51.71 (OCH3), 
39.05 (CH2).C17H14O5 (298.3). 

(±)-2-[(7-Methyl-9-oxo-9H-xanthen-3-yl)oxy]propanoic acid (6) 
Yield: 63%, m.p. 201–203°C (ethanol). IR (cm-1): 3438, 2922, 1749, 1655, 1618, 1578, 
1481, 1310, 1257, 1234, 1206, 1177, 1113. 1H NMR (500.13 MHz) (δ, ppm, DMSO-d6): 
13.30 (1H, bs, CO2H), 8.10 (1H, dd, J = 8.7 Hz, J = 0.5 Hz, H-8), 7.94 (1H, ddd, J = 2.3 
Hz, J = 0.9 Hz, J = 0.5 Hz, H-1), 7.65 (1H, ddd, J = 8.5 Hz, J = 2.3 Hz, J = 0.6 Hz, H-3), 
7.53 (1H, ddd, J = 8.5 Hz, J = 0.5 Hz, J = 0.5 Hz, H-4), 7.03 (1H, dd, J = 8.7 Hz, J = 2.3 
Hz, H-7), 7.01 (1H, dd, J = 2.3 Hz, J = 0.5 Hz, H-5), 5.13 (1H, q, J = 6.8 Hz, CH), 2.43 (3H, 
ddd, J = 0.9 Hz, J = 0.6 Hz, J = 0.5 Hz, CH3Ar), 1.58 (3H, d, J = 6.8 Hz, CH3R). 13C NMR 
(500.13 MHz) (δ, ppm, DMSO-d6): 174.77 (C=O), 172.16 (COOH), 162.91 (C-6), 157.17 
(C-4b), 153.79 (C-4a), 135.98 (C-3), 133.66 (C-2), 127.64 (C-8), 125.10 (C-1), 120.78 (C-
8b),117.67 (C-4),115.19 (C-8a), 113.71 (C-7), 101.46 (C-5), 72.15 (CH-O-Ar), 20.25 (CH3-
Ar), 17.91(CH3-CH). MS (m/z): 298 (M+), 253 (100%), 226, 209, 197, 181, 169, 153, 126, 
115. C17H14O5 (298.3). 

(±)-Ethyl 2-[(7-methyl-9-oxo-9H-xanthen-3-yl)oxy]propanoate (6a) 
Yield: 71%, m.p. 121–123°C (ethanol). IR (cm-1): 2991, 2932, 1732, 1656, 1614, 1591, 
1480, 1444, 1305, 1289, 1252, 1232, 1175, 1107. 1H NMR (500.13 MHz) (δ, ppm, DMSO-
d6): 8.10 (1H, dd, J = 8.7 Hz, J = 0.5 Hz, H-8), 7.95 (1H, ddd, J = 2.3 Hz, J = 0.9 Hz, J = 
0.5 Hz, H-1), 7.66 (1H, ddd, J = 8.6 Hz, J = 2.3 Hz, J = 0.6 Hz, H-3), 7.53 (1H, dd, J = 8.6 
Hz, J = 0.5 Hz, H-4), 7.06 (1H, dd, J = 2.4 Hz, J = 0.5 Hz, H-5), 7.04 (1H, dd, J = 8.7 Hz, J 
= 2.4 Hz, H-7), 5.28 (1H, q, J = 6.8 Hz, CH), 4.19 (2H, dq, J = 10.9 Hz, J = 7.1 Hz, 
CHH(Et)), 4.17 (2H, dq, J = 10.9 Hz, J = 7.1 Hz, CHH(Et)), 2.44 (3H, dd, J = 0.9 Hz, J = 
0.6 Hz, CH3Ar), 1.59 (3H, d, J = 6.8 Hz, CH3), 1.20 (3H, t, J = 7.1 Hz, CH3(Et)). 13C NMR 
(500.13 MHz) (δ, ppm, DMSO-d6): 174.79 (C=O), 170.58 (COOH), 162.67 (C-6), 157.18 
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(C-4b), 153.81 (C-4a),136.05 (C-3), 133.71 (C-2), 127.72 (C-8), 125.12 (C-1), 120.79 (C-
8b), 117.69 (C-4),115.37 (C-8a), 113.68 (C-7), 101.70 (C-5), 72.17 (CH-O-Ar), 61.02 (CH2 
(Et)), 20.25 (CH3-Ar), 17.87 (CH3-CH),13.89 (CH3 (Et)). C19H18O5 (326.3). 

2-Methyl-2-[(7-methyl-9-oxo-9H-xanthen-3-yl)oxy]propanoic acid (7) 
Yield: 62%, m.p. 212–214°C (ethanol). IR (cm-1): 3436, 2941, 1743, 1654, 1603, 1575, 
1448, 1250, 1140, 1108.1H NMR (500.13 MHz) (δ, ppm, DMSO-d6): 13.40 (1H, s, CO2H), 
8.09 (1H, d, J = 8.9 Hz, H-8), 7.92 (1H,.d, J = 2.3 Hz, H-1), 7.61 (1H, ddd, J = 8.4 Hz, J = 
2.3 Hz, J = 0.6 Hz, H-3), 7.50 (1H, d, J = 8.5 Hz, H-4), 6.95 (1H, dd, J = 8.9 Hz, J = 2.4 Hz, 
H-7), 6.82 (1H, d, J = 2.4 Hz, H-5), 2.42 (3H, s, CH3Ar), 1.67 (6H, s, 2xCH3). 13C NMR 
(500.13 MHz) (δ, ppm, DMSO-d6): 175.99 (CO), 175.36 (COOH), 162.16 (C-6), 157.83 (C-
4b), 154.82 (C-4a), 137.11 (C-3), 134.77 (C-2), 128.60 (C-8), 126.11 (C-1), 121.73 (C-8b), 
118.75 (C-4), 116.62 (C-7), 116.18 (C-8a), 104.74 (C-5), 80.73 (C-O-Ar), 26.03 (2x CH3), 
21.34 (CH3-Ar). MS (m/z): 312 (M+), 267, 226 (100%), 197, 181, 169, 115. C18H16O5 
(312.3). 

Methyl 2-methyl-2-[(7-methyl-9-oxo-9H-xanthen-3-yl)oxy]propanoate (7a) 
Yield: 74%, m.p. 120–122°C (methanol). IR (cm-1): 2993, 2956, 1737, 1651, 1620, 1593, 
1482, 1445, 1301, 1261, 1172. 1H NMR (500.13 MHz) (δ, ppm, DMSO-d6): 8.09 (1H, d, J = 
8.9 Hz, H-8), 7.93 (1H,.d, J = 2.3 Hz, H-1), 7.63 (1H, ddd, J = 8.5 Hz, J = 2.3 Hz, J = 0.7 
Hz, H-3), 7.50 (1H, d, J = 8.5 Hz, H-4), 6.91 (1H, dd, J = 8.8 Hz, J = 2.4 Hz, H-7), 6.81 
(1H, d, J = 2.4 Hz, H-5), 3.76 (3H, s, CH3O), 2.43 (3H, s, CH3Ar), 1.68 (6H, s, 2xCH3). 13C 
NMR (500.13 MHz) (δ, ppm, DMSO-d6): 176.01 (CO), 174.10 (COOH), 161.79 (C-6), 
157.84 (C-4b), 154.86 (C-4a), 137.24 (C-3), 134.84 (C-2), 128.73 (C-8), 126.13 (C-1), 
121.73 (C-8b), 118.82 (C-4), 116.55 (C-7), 116.48 (C-8a), 105.27 (C-5), 80.75 (C-O-Ar), 
58.81 (OCH3), 26.00 (2x CH3), 21.31 (CH3-Ar). MS (m/z): 312 (M+), 267, 226 (100%), 197, 
181, 169, 115. C19H18O5 (326.3). 

Pharmacology 
Compounds were dissolved in RPMI 1640 medium without phenol red (Gibco, Grand 
Island, NY) or in Hanks buffer (HBSS) pH 7.4 without phenol red (Gibco, Grand Island, 
NY). 

J-774A.1 cells 
Murine J-774A.1 macrophages were obtained from German Collection of Microorganisms 
and Cell Cultures, Dept. Human and Animal Cell Cultures in Braunschweig. During the 
study cells were grown in RPMI 1640 medium without phenol red (Gibco, Grand Island, 
NY) supplemented with 10% fetal calf serum (FCS) (South American Origin, BIO 
WHITTAKER EUROPE, Verviers, Belgium), penicillin (100 U/mL) and streptomycin (100 
µg/mL) at 37°C and 5% CO2 atmosphere. 

During culture and experiments cell viability was controlled by lactate dehydrogenase 
method (Cytotoxicity Detection Kit (LDH)–Roche Diagnostics GmbH, Mannheim, 
Germany). 

Cell stimulation 
The adherent cells were incubated with tested compounds (0.5 h) and next stimulated with 
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lipopolisaccharide (100 ng/mL) from E.coli (0127:B8) (Calbiochem, La Jolla, CA, USA) 
After 24h culture of the cells the supernatants were removed and assayed for levels of 
nitrite.  

Nitrite assay 
Nitrite concentration in the culture medium was measured by a microplate assay method, 
based on the Griess reaction [33]. Equal volumes of culture medium supernatant and 
Griess reagent (0.5% sulfanilamide, 0.05% naphthylene-diamide dihydrochloride in 2.5% 
H3PO4) were added to microplate and incubated at 25°C for 10 min. The absorbance of 
culture medium and Griess reagent at 550nm was determined with Microplate Reader ELX 
800 (Bio-tek Instruments, Inc., Winooski, VT, USA). 

Chemiluminescence 
Into 106 cells with tested compounds or with HBSS (controls), luminol (Sigma, St. Louis, 
MO, USA) solution was added, giving a final concentration 0.1 mM and 5 min later phorbol 
myristate acetate (PMA) (Sigma, St. Louis, MO, USA) solution (final concentration 0.8 μM) 
as stimulus was used. The final volume of each sample was 1 mL. Chemiluminescence 
(CL) was measured for 20 min (5 min with luminol and 15 min, after that, PMA was added) 
using a system equipped with a photomultiplier 9514s from THORN EMI (Middlesex, 
England) [34, 35]. The intensity of CL was determined by measuring counts/min and by 
calculating the area under the CL curve. Then the percentages of control were calculated. 
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