Abstract

3,5-Bis(4-chlorobenzylidene)-1-ethylpiperidin-4-one (1b) was condensed with malononitrile or cyanothioacetamide to yield pyranopyridine 2 and thiopyrido-pyridine 3b, respectively. Treatment of compound 3b with methyl iodide or ethyl chloroacetate in the presence of a base catalyst gave the corresponding compounds 4 and 5. Compound 3b was reacted with 2-chloro-N-arylacetamide derivatives to yield compounds 7a,b, which were reacted with benzoyl chloride or sodium nitrite to give the corresponding tetracyclic compounds 8a,b and 9a,b, respectively. Compound 2 was treated with acetic anhydride or formic acid to give the corresponding N-acetylpyranopyridine 10 and pyranopyrimidine 11. Treatment of compound 2 with triethyl ortho-formate gave compound 12, which was cyclized with hydrazine hydrate to give N-aminopyrimidine 13. Some of the synthesized compounds showed high antiarrhythmic activities comparable with Procaine amide and Lidocaine as positive controls.

Keywords

Pyridinethione • Thienopyridine • Thienopyrimidine • Thienotriazine • Pyranopyrimidine • Antiarrhythmic agents
Introduction

The search for new heterocyclic compounds and novel methods for their synthesis is a major topic in contemporary organic synthesis. As part of our program in this area, we have synthesized some pyridine and thiazolopyrimidine derivatives of biological interest as anticancer activity [1–5]. On the other hand, thienopyrimidine and thioxopyrimidine derivatives have promising biological [6, 7] and inhibitor of VEGFR-2 kinase activity [8, 9]. Recently, some new pyridine, pyrimidine and their derivatives have been synthesized and used as analgesic, anticonvulsant and anti-parkinsonian agents [10–15]. In addition, Atheral et al [16] have synthesized a novel series of thieno[2,3-d]pyrimidines which can be used in combating fungi in plant and inhibited the growth of cancer cells [17, 18]. In continuation of our previous work we synthesized some new tricyclic and tetracyclic heterocyclic compounds containing tetrahydropyridopyridine nucleus and tested their antiarrhythmic activities.

Results and Discussion

3,5-Bis(benzylidene)-1-ethylpiperidin-4-ones 1a–c and pyranopyridine derivative 2 were used as starting materials and prepared according to the published method [3]. Compounds 1a–c were reacted with cyanothioacetamide in refluxing ethanol containing drops of Et₃N to give pyridinethione derivatives 3a–c, which were reacted with methyl iodide in sodium ethoxide solution with stirring at room temperature to yield the methylmercaptopyridine derivative 4. Similarly, compound 3b was reacted with ethyl chloroacetate in refluxing ethanol in the presence of drops of Et₃N as a catalyst to give the thienopyridine derivative 5 (Sch. 1).

Compound 3b was reacted with 2-chloro-N-arylacetamide derivatives namely, 2-chloro-N-(p-tolyl)acetamide or 2-chloro-N-(4-fluorophenyl)acetamide in refluxing ethanol containing drops of Et₃N to yield 2-(N-aryl)-carboxamidomethylthiopyridine derivatives 6a,b, which were cyclized by boiling in sodium ethoxide solution to afford the corresponding 2-(N-aryl)-carboxamidomethyl-thienopyridine derivatives 7a,b. The latter compound 7a,b were also obtained directly from the reaction of compound 3b with 2-chloro-N-arylacetamide derivatives in refluxing sodium ethoxide solution. Fusion of compounds 7a,b with an excess of benzoyl chloride gave pyridothieno[3,2-d][1,2,3]triazin-4-one derivatives 8a,b. Moreover, treatment of compounds 7a,b in HCl/AcOH mixture with sodium nitrite solution at 0 °C affording thieno[3,2-d][1,2,3]triazin-4-one derivatives 9a,b (Sch. 2).

Compound 2 was reacted with acetic anhydride or formic acid to yield N-acetylpyranopyridine 10 and pyranopyrimidine derivative 11, respectively. Compound 2 was condensed with triethyl ortho-formate in refluxing acetic anhydride to give the corresponding ethoxymethylidenameino derivative 12, which was cyclized with hydrazine hydrate in ethanol at room temperature with stirring to give N-aminopyrimidine derivative 13 (Sch. 3).
Antiarrhythmic Activities of Some Newly Synthesized Tricyclic and… 541

Sci Pharm. 2009; 77; 539–553.

Sch. 1.
Sch. 2.
Pharmacological Screening

The newly synthesized compounds were pharmacologically screened for their Antiarrhythmic potency (Table 1).

Procaine amide, 5 mg/kg iv and lidocaine 5 mg/kg i.v. led to an increase in LD_{100} by 65%, which corresponds to a LD_{100} of approximately 9 μg/100 mg.
From Table 1, Compounds 6a, 3c, 12 and 13 displayed nearly equal anti-arrhythmic activities as procaine amide and lidocaine. Compounds 1b, 4, 5, 7b, 8a, 8b, 9a, and 9b are more active than procaine amide and lidocaine, they are arranged in descending manner. Also, 2, 3a, 3b, 6b, 7a, 10 and 11 showed anti-arrhythmic activities less than procaine and lidocaine, they are arranged in descending manner.

Tab. 1. Anti-arrhythmic activities of the newly synthesized compounds

<table>
<thead>
<tr>
<th>Compound in (5 mg/kg)</th>
<th>Percentage Increase in LD_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76 ± 0.08</td>
</tr>
<tr>
<td>2b</td>
<td>54 ± 0.05</td>
</tr>
<tr>
<td>3a</td>
<td>48 ± 0.05</td>
</tr>
<tr>
<td>3b</td>
<td>41 ± 0.05</td>
</tr>
<tr>
<td>3c</td>
<td>67 ± 0.07</td>
</tr>
<tr>
<td>4</td>
<td>79 ± 0.07</td>
</tr>
<tr>
<td>5</td>
<td>77 ± 0.09</td>
</tr>
<tr>
<td>6a</td>
<td>65 ± 0.06</td>
</tr>
<tr>
<td>6b</td>
<td>45 ± 0.05</td>
</tr>
<tr>
<td>7a</td>
<td>47 ± 0.04</td>
</tr>
<tr>
<td>7b</td>
<td>77 ± 0.08</td>
</tr>
<tr>
<td>8a</td>
<td>75 ± 0.08</td>
</tr>
<tr>
<td>8b</td>
<td>86 ± 0.09</td>
</tr>
<tr>
<td>9a</td>
<td>72 ± 0.07</td>
</tr>
<tr>
<td>9b</td>
<td>78 ± 0.10</td>
</tr>
<tr>
<td>10</td>
<td>37 ± 0.05</td>
</tr>
<tr>
<td>11</td>
<td>55 ± 0.06</td>
</tr>
<tr>
<td>12</td>
<td>69 ± 0.07</td>
</tr>
<tr>
<td>13</td>
<td>68 ± 0.07</td>
</tr>
</tbody>
</table>

All data were significantly different from the normal control value at $P \leq 0.05$

Structural Activity Relationship (SAR)

- The naphthyridine moiety and a high degree of aromaticity is essential for anti-arrhythmic activity.
- Hetero-aromaticity increases the anti-arrhythmic activity
- Fused ring systems give anti-arrhythmic activity but to a lower extent.

Experimental

All melting points were taken on a Electrothermal IA 9000 series digital melting point apparatus. Elemental analytical data (in accordance with the calculated values) were obtained from the microanalytical unit, Cairo University, Cairo, Egypt. The IR spectra (KBr) were recorded on a Pye Unicam SP-1000 spectrophotometer. The 1H NMR and 13C NMR spectra were recorded at 270 MHz and 64.5 MHz, respectively, on a Varian EM-360
Spectrometer using TMS as an internal standard. The mass spectra were performed using a VC 2AB-3F spectrometer (70 eV). All reactions were followed by TLC (silica gel, aluminium sheets 60 F254, Merck).

(8E)-4-aryl-8-(arylmethylidene)-6-ethyl-2-thioxo-1,2,5,6,7,8-hexahydro-1,6-naphthyridine-3-carbonitriles (3a–c)

A mixture of compound 1a–c (0.01 mole), cyanothioacetamide (0.10 g, 0.01 mole) and few drops of Et3N in ethanol (100 ml) was refluxed for 6 h. The reaction mixture was poured onto cold water and acidified with HCl to pH 3, the orange solid formed was filtered off, washed with water, dried and recrystallized to give 3a–c.

(8E)-8-Benzylidene-6-ethyl-4-phenyl-2-thioxo-1,2,5,6,7,8-hexahydro-1,6-naphthyridine-3-carbonitrile (3a)

Yield (55%), M.p. 205 °C (Ethanol); IR (KBr) ν = 3345 (NH), 2212 (CN) cm -1; MS m/z (%): 383 [M+] base peak (100) corresponding to the molecular formula C24H21N3S, 354 (79). Analysis for C24H21N3S (383.51): Calc. C, 75.16; H, 5.52; N, 10.96; S, 8.36, Found C, 75.12; H, 5.56; N, 11.02; S, 8.26.

(8E)-8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-6-ethyl-2-thioxo-1,2,5,6,7,8-hexahydro-1,6-naphthyridine-3-carbonitrile (3b)

Yield (50%), M.p. 228 °C (EtOH); IR (KBr) ν = 3320 (NH), 2208 (CN) cm -1; 1H-NMR (CDCl3) δ = 0.9 (t, 3H, CH3), 2.40 (q, 2H, CH2), 3.33, 3.42 (2s, 4H, 2CH2), 7.30–7.80 (m, 9H, ArH + benzylic proton), 7.95 (s, 1H, NH, exchangeable with D2O); 13C-NMR (CDCl3) δ = 13.35 (CH3), 50.55, 51.45, 58.90 (3 CH2), 125.30, 135.25 (C=C), 103.25, 114.55, 145.50, 153.62 (Pyridine-C), 117.95 (CN), 125.50, 126.75, 128.55, 129.15, 128.30, 129.10, 132.57, 133.50 (Ph-C), 165.25 (C=S); MS m/z (%): 451 [M+] base peak (100) corresponding to the molecular formula C24H19Cl2N3S, 453 [M+2] (80), 455 [M+4] (30), 326 (79). Analysis for C24H19Cl2N3S (452.40): Calc. C, 63.72; H, 4.23; Cl, 15.67; N, 9.29; S, 7.09, Found C, 63.69; H, 4.20; Cl, 15.63; N, 9.32; S, 7.12.

(8E)-6-Ethyl-2-thioxo-4-(3,4,5-trimethoxyphenyl)-8-(3,4,5-trimethoxybenzylidene)-1,2,5,6,7,8-hexahydro-1,6-naphthyridine-3-carbonitrile (3c)

Yield (70%), M.p. 255 °C (Ethanol); IR (KBr) ν = 3358 (NH), 2220 (CN) cm -1; MS m/z (%): 563 [M+] base peak (100) corresponding to the molecular formula C30H33N3SO6, 543 (80), 394 (75). Analysis for C30H33N3SO6 (563.66): Calc. C, 63.92; H, 5.90; N, 7.45; S, 5.69, Found C, 63.88; H, 5.94; N, 7.48; S, 5.73.

(8E)-8-(4-Chlorobenzylidene)-4-(4-chlorophenyl)-6-ethyl-2-(methylsulfanyl)-5,6,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (4)

A mixture of compound 3b (0.45 g, 0.001 mole) and methyl iodide 10% excess was suspended in sodium ethoxide solution (10 mg sodium metal in 50 ml ethanol) and stirred for 1h. at room temperature. The reaction mixture was poured onto cold water, the obtained solid was filtered off, dried and recrystallized to afford 4. Yield (50%), M.p. 150 °C (Ethanol) IR (KBr) ν = 2217 (CN) cm -1; 1H-NMR (CDCl3) δ: 1.10 (t, 3H, CH3), 2.37 (q, 2H, CH2), 2.70 (s, 3H, CH3), 3.20-3.35 (m, 4H, 2CH2) 7.20–7.95 (m, 9H, ArH + benzylic proton); MS m/z (%): 466 [M+] (85) corresponding to the molecular formula C25H21Cl2N3S,
Ethyl (8E)-3-amino-4-(4-chlorophenyl)-8-(4-chlorobenzylidene)-6-ethyl-5,6,7,8-tetrahydrothieno[2,3-b][1,6]naphthyridine-2-carboxylate (5)

To a mixture of compound 3b (0.45g, 0.001 mole) and ethyl chloroacetate (0.14g, 0.001 mole) in ethanol (50 ml), few drops of Et3N were added then the reaction mixture was refluxed for 4h. The solid formed was filtered off, dried and recrystallized to give 5. Yield (35%), M.p. 238 °C (Ethanol), IR (KBr) ν = 3410, 3430 (NH2), 1738 (CO) cm-1; 1H-NMR (DMSO-d6) δ: 1.05, 1.10 (2t, 6H, 2CH3), 2.46 (q, 2H, CH2), 3.29-3.35 (m, 4H, 2CH2), 4.05 (q, 2H, CH2), 4.55 (s, 2H, NH2), 7.50–7.90 (m, 9H, ArH + benzylic proton); MS m/z (%): 538 [M]+ base peak (100) corresponding to the molecular formula C28H25Cl2N3SO2, 412 (86). Analysis for C28H25Cl2N3SO2 (538.49): Calc. C, 62.45; H, 4.68; Cl, 13.17; N, 7.80; S, 5.95, Found C, 62.41; H, 4.62; Cl, 13.13; N, 7.83; S, 5.91.

2-({(8E)-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-3-cyano-6-ethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-2-yl}sulfanyl)-N-arylacetamides (6a,b)

Method A:

To a mixture of compound 3b (0.45g, 0.001 mole) and anhydrous sodium acetate (2g) in ethanol (50 ml), 2-chloro-N-arylacetamide, namely, 2-chloro-N-(p-tolyl)acetamide or 2-chloro-N-(4-fluorophenyl)acetamide (0.001 mole) was added. The reaction mixture was refluxed for 2h then cooled and poured onto cold water. The solid formed was filtered off, dried and recrystallized to give 6a,b respectively.

Method B:

To a mixture of compound 3b (0.45g, 0.001 mole) and 2-chloro-N-arylacetamide namely, 2-chloro-N-(p-tolyl)acetamide or 2-chloro-N-(4-fluorophenyl)acetamide (0.001 mole) in ethanol (50 ml), few drops of Et3N were added then the reaction mixture was refluxed for 3h. The solid formed was filtered off, dried and recrystallized to give 6a,b respectively.

2-({(8E)-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-3-cyano-6-ethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-2-yl}sulfanyl)-N-(4-methylphenyl)acetamide (6a)

Yield (55%) [A], (75%) [B], M.p. 218 °C (Dioxan), IR (KBr) ν = 3294 (NH), 2215 (CN) and 1662 (CO) cm-1; 1H-NMR (CDCl3) δ: 0.98 (t, 3H, CH3), 2.27 (s, 3H, CH3), 2.50 (q, 2H, CH2), 3.40, 3.70 (2d, 4H, 2CH2), 4.10 (s, 2H, CH2) 7.10–7.83 (m, 13H, ArH + benzylic proton), 8.20 (s, 1H, NH, exchangeable with D2O); MS m/z (%): 599 [M]+ (55) corresponding to the molecular formula C33H28Cl2N4SO, 449 base peak (100). Analysis for C33H28Cl2N4SO (599.58): Calc. C, 66.11; H, 4.71; Cl, 11.83; N, 9.34; S, 5.35, Found C, 66.15; H, 4.76; Cl, 11.86; N, 9.30; S, 5.38

2-({(8E)-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-3-cyano-6-ethyl-5,6,7,8-tetrahydro-1,6-naphthyridin-2-yl}sulfanyl)-N-(4-fluorophenyl)acetamide (6b)

Yield (60%) [A], (78%) [B], M.p. 205 °C (Dioxan), IR (KBr) ν = 3315 (NH), 2210 (CN) and 1655 (CO) cm-1; 1H-NMR (CDCl3) δ: 1.05 (t, 3H, CH3), 2.35 (q, 2H, CH2), 3.35, 3.60 (2d, 4H, 2CH2), 4.21 (s, 2H, CH2), 7.15–7.90 (m, 13H, ArH + benzylic proton), 8.32 (s, 1H, NH, exchangeable with D2O); 13C-NMR (CDCl3) δ = 12.75 (CH3), 41.25, 49.55, 52.15, 55.85
(4CH₂), 127.20, 134.50 (C=C), 106.25, 126.10, 152.35, 161.42, 161.85 (Pyridine-C), 116.75 (CN), 116.50, 125.30, 136.15, 155.25, 126.23, 127.80, 128.45, 129.25, 134.55, 134.05, 135.76, 163.80 (Ph-C), 169.25 (C=O); MS m/z (%): 603 [M⁺] (100) base peak corresponding to the molecular formula C₃₂H₂₅Cl₂F₅N₄SO. Analysis for C₃₂H₂₅Cl₂F₅N₄SO (603.54): Calc. C, 63.68; H, 4.18; Cl, 11.75; N, 9.28; S, 5.31, Found C, 63.72; H, 4.22; Cl, 11.80; N, 9.32; S, 5.35.

(8E)-3-Amino-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-6-ethyl-N-aryl-5,6,7,8-tetrahydrothieno[2,3-b][1,6]naphthyridine-2-carboxamides (7a,b)

Method A:
A mixture of compound 6a,b (0.001 mole) and 2-chloro-N-arylacetamide namely, 2-chloro-N-(p-tolyl)acetamide or 2-chloro-N-(4-fluorophenyl)acetamide (0.001 mole) was suspended in sodium ethoxide solution (10 mg sodium metal in 50 ml ethanol) and refluxed for 2h. On cooling, the product precipitated was filtered off and recrystallized to afford 7a,b respectively.

Method B:
A mixture of compound 3b (0.45g, 0.001 mole) and 2-chloro-N-arylacetamide namely, 2-chloro-N-(p-tolyl)acetamide or 2-chloro-N-(4-fluorophenyl)acetamide (0.001 mole) in sodium ethoxide solution (10 mg sodium metal in 50 ml ethanol) was refluxed for 5 h. The reaction mixture was cooled, poured onto cold water and the solid formed was filtered off and recrystallized to afford 7a,b respectively.

(8E)-3-Amino-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-6-ethyl-N-(4-methylphenyl)-5,6,7,8-tetrahydrothieno[2,3-b][1,6]naphthyridine-2-carboxamide (7a)

Yield (80%) [A], (45%) [B], M.p. 172 °C (Ethanol), IR (KBr) ν = 3483, 3399 (NH₂), and 1645 (CO) cm⁻¹; ¹H-NMR (CDCl₃) δ: 0.98 (t, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.35 (q, 2H, CH₂), 3.35, 3.82 (2d, 4H, 2CH₂), 5.67 (s, 2H, NH₂, exchangeable with D₂O); 7.10–7.80 (m, 13H, ArH + benzylic proton), 8.13 (s, 1H, NH, exchangeable with D₂O); ¹³C-NMR (CDCl₃) δ = 12.65, 20.66 (2CH₃), 51.31, 53.55, 59.90 (3CH₂), 128.25, 137.65 (C=C), 119.15, 124.10, 146.50, 155.62, 156.77 (Pyridine-C), 128.75, 129.65, 129.77, 131.05, 132.35, 132.75, 133.55, 134.05, 135.76, 163.80 (Ph-C, Thiophene-C), 169.25 (C=O); MS m/z (%): 599 [M⁺] (30) corresponding to the molecular formula C₃₃H₂₈Cl₂N₄SO, 570 (25), 509 base peak (100). Analysis for C₃₃H₂₈Cl₂N₄SO (599.58): Calc. C, 66.11; H, 4.71; Cl, 11.83; N, 9.34; S, 5.35, Found C, 66.15; H, 4.74; Cl, 11.86; N, 9.37; S, 5.31.

(8E)-3-Amino-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-6-ethyl-N-(4-fluorophenyl)-5,6,7,8-tetrahydrothieno[2,3-b][1,6]naphthyridine-2-carboxamide (7b)

Yield (75%) [A], (50%) [B], M.p. 152 °C (Ethanol), IR (KBr) ν = 3450, 3366 (NH₂), and 1655 (CO) cm⁻¹; ¹H-NMR (CDCl₃) δ: 1.05 (t, 3H, CH₃), 2.55 (q, 2H, CH₂), 3.40, 3.70 (2d, 4H, 2CH₂), 5.67 (s, 2H, NH₂, exchangeable with D₂O); 7.10–7.80 (m, 13H, ArH+ benzylic proton), 8.18 (s, 1H, NH, exchangeable with D₂O); MS m/z (%): 602 [M⁺] (30) corresponding to the molecular formula C₃₂H₂₅Cl₂F₅N₄SO, 442 (25), 111 base peak (100). Analysis for C₃₂H₂₅Cl₂F₅N₄SO (603.54): Calc. C, 63.68; H, 4.18; Cl, 11.75; N, 9.28; S, 5.31, Found C, 63.73; H, 4.22; Cl, 11.71; N, 9.32; S, 5.35.
A mixture of compound 7a,b (0.001 mole) and excess benzoyl chloride (6 ml) was refluxed for 2 h. Excess of benzoyl chloride was extracted several times with pet. ether (60–80) and the residue was recrystallized to give 8a,b.

Yield (65%), M.p. 205 °C (Ethanol), IR (KBr) v = 1648 (CO) cm\(^{-1}\). \(^1\)H-NMR (CDCl\(_3\)) \(\delta\): 1.05 (t, 3H, CH\(_3\)), 2.13 (s, 3H, CH\(_3\)), 2.45 (q, 2H, CH\(_2\)), 3.65–3.85 (m, 4H, 2CH\(_2\)), 6.95–7.77 (m, 18H, ArH + benzylic proton), MS m/z (%): 685 [M\(^+\)] (44) corresponding to the molecular formula C\(_{40}\)H\(_{30}\)Cl\(_2\)N\(_4\)SO, 559 (35). Analysis for C\(_{40}\)H\(_{30}\)Cl\(_2\)N\(_4\)SO (685.67): Calc. C, 70.07; H, 4.41; Cl, 10.34; N, 8.17; S, 4.62.

Yield (60%), M.p. 192 °C (Ethanol), IR (KBr) v = 1645 (CO) cm\(^{-1}\). \(^1\)H-NMR (CDCl\(_3\)) \(\delta\): 1.08 (t, 3H, CH\(_3\)), 2.35 (q, 2H, CH\(_2\)), 3.53–3.77 (m, 4H, 2CH\(_2\)), 7.10–7.85 (m, 13H, ArH + benzylic proton); \(^1\)\(^3\)C-NMR (CDCl\(_3\)) \(\delta\): 12.55 (CH\(_3\)), 53.50, 56.35, 60.40 (3CH\(_2\)), 117.25, 124.30, 126.23, 127.80, 129.45, 133.50, 135.35, 137.20 (Ph-C), 148.55, 153.62, 158.53 (Pyridine-C), 147.35, 162.10, 165.34 (Pyridine-C), 167.25 (C=O); MS m/z (%): 689 [M\(^+\)] (44) corresponding to the molecular formula C\(_{39}\)H\(_{27}\)Cl\(_2\)FN\(_4\)SO, 559 (35). Analysis for C\(_{39}\)H\(_{27}\)Cl\(_2\)FN\(_4\)SO (689.63): Calc. C, 67.92; H, 3.95; Cl, 10.28; N, 8.12; S, 4.65, Found C, 67.96; H, 4.41; Cl, 10.22; N, 8.27; S, 4.65.

To a mixture of compound 7a,b (0.001 mole) in conc. hydrochloric acid (5 ml) and glacial acetic acid (5 ml), sodium nitrite solution (7 ml 10%, 0.001mol e) was added at 0 °C during 5 minutes with stirring. After half hour, the reaction mixture was poured onto water, the solid thus precipitated was collected, dried and recrystallized to give 9a,b.

Yield (85%), M.p. 216 °C (Ethanol), IR (KBr) v = 1668 (CO) cm\(^{-1}\). \(^1\)H-NMR (CDCl\(_3\)) \(\delta\): 1.07 (t, 3H, CH\(_3\)), 2.42 (s, 3H, CH\(_3\)), 3.01 (q, 2H, CH\(_2\)), 3.75, 4.12 (2d, 4H, 2CH\(_2\)), 7.20–7.85 (m, 13H, ArH + benzylic proton); \(^1\)\(^3\)C-NMR (CDCl\(_3\)) \(\delta\): 13.25, 22.35 (2CH\(_3\)), 49.20, 52.95, 57.70 (3CH\(_2\)), 129.80, 138.30 (C=C), 122.15, 128.45, 127.80, 129.40, 133.50, 134.65, 135.35, 138.40 (Ph-C), 147.55, 154.55, 157.25 (Pyridine-C), 139.15, 152.35 (Pyrimidine-C), 168.65 (C=O); MS m/z (%): 609 [M\(^+\)] base peak (100) corresponding to the molecular formula C\(_{33}\)H\(_{25}\)Cl\(_2\)N\(_5\)SO, 580 (75). Analysis for C\(_{33}\)H\(_{25}\)Cl\(_2\)N\(_5\)SO (609.11) Calc. C, 65.01; H, 4.14; Cl, 11.48; N, 11.49; S, 5.25, Found C, 65.06; H, 4.18; Cl, 11.53; N, 11.52; S, 5.28.
(7E)-11-(4-Chlorophenyl)-7-(4-chlorobenzylidene)-9-ethyl-3-(4-fluorophenyl)-7,8,9,10-tetrahydro[1,2,3]triazino[4',5':4,5]thieno[2,3-b][1,6]naphthyridin-4(3H)-one (9b)

Yield (80%), M.p. 227 °C (Ethanol), IR (KBr) ν = 1655 (CO) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.25 (t, 3H, CH₃), 3.01(q, 2H, CH₂), 3.88, 4.25 (2d, 4H, 2CH₂), 7.20–7.85 (m, 13H, ArH+ benzylic proton), MS m/z (%): 613 [M⁺] (35) corresponding to the molecular formula C₃₂H₂₂Cl₂FN₅SO, 585 base peak (100), 458 (85). Analysis for C₃₂H₂₂Cl₂FN₅SO (613.11): Calc. C, 62.63; H, 4.18; Cl, 11.41 N, 11.42; S, 5.21. Found C, 62.67; H, 4.23; Cl, 11.46 N, 11.45; S, 5.26.

N-{(8E)-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-3-cyano-6-ethyl-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridin-2-yl}acetamide (10)

A mixture of compound 2 (0.01 mole) in acetic anhydride (10 ml) was refluxed for 1 h. After cooling the reaction mixture was poured onto cold water, the solid formed was filtered off, dried and recrystallized to give 10. Yield (65%), M.p. 205 °C (Ethanol), IR (KBr) ν = 2195 (CN), 1679 (CO) cm⁻¹,: ¹H-NMR (DMSO-d₆) δ: 1.25 (t, 3H, CH₃), 2.10 (s, 3H, CH₃), 3.01(q, 2H, CH₂), 3.27, 3.60 (2d, 4H, 2CH₂), 3.95 (s, 1H, pyran proton), 7.10–7.85 (m, 9H, ArH + benzylic proton) and 8.24 (s, 1H, NH, exchangeable with D₂O), MS m/z (%): 479 [M⁺] (22) corresponding to the molecular formula C₂₆H₂₃Cl₂N₃O₂, 436 base peak (100), 393 (55). Analysis for C₂₆H₂₃Cl₂N₃O₂ (479.11): Calc. C, 65.12; H, 4.84; Cl, 14.60; N, 8.77, Found C, 65.17; H, 4.80; Cl, 14.65; N, 8.71.

(9E)-5-(4-Chlorophenyl)-9-(4-chlorobenzylidene)-7-ethyl-3,5,6,7,8,9-hexahydro-4H-pyrido[3',4':5,6]pyrano[2,3-d]pyrimidin-4-one (11)

A mixture of compound 2 (0.01 mole) in formic acid (10 ml) was refluxed for 1 hr. After cooling the reaction mixture was poured onto cold water, the solid formed was filtered off, dried and recrystallized to give 11. Yield (75%), M.p. 183 °C (Ethanol), IR (KBr) ν = 1669 (CO) cm⁻¹, ¹H-NMR (DMSO-d₆) δ: 1.25 (t, 3H, CH₃), 3.01(q, 2H, CH₂), 3.35, 3.60 (2d, 4H, 2CH₂), 4.10 (s, 1H, pyran proton) 7.20–7.65 (m, 9H, ArH + benzylic proton), 7.95 (s, 1H, pyrimidine proton), 8.25 (s, 1H, NH, exchangeable with D₂O), MS m/z (%): 465 [M⁺] (50) corresponding to the molecular formula C₂₅H₂₁Cl₂N₃O₂, 436 base peak (100), 393 (55). Analysis for C₂₅H₂₁Cl₂N₃O₂ (479.11): Calc. C, 64.50; H, 4.55; Cl, 15.04; N, 9.03, Found C, 64.55; H, 4.51; Cl, 15.09; N, 9.07.

Ethyl {(8E)-4-(4-Chlorophenyl)-8-(4-chlorobenzylidene)-3-cyano-6-ethyl-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridin-2-yl}imidoformate (12)

A mixture of compound 2 (0.01 mole), triethyl ortho-formate (0.01 mole) and acetic anhydride (20 ml) was refluxed for 6 h. The solvent was removed under vacuum, the residue obtained was solidified by ether and recrystallized to give 12. Yield (75%), M.p. 155 °C (Ethanol), IR (KBr) ν = 2980 (CH), 2218 (CN), 1630 (C=N) cm⁻¹, ¹H-NMR (DMSO-d₆) δ: 1.10,1.25 (2t, 6H, 2CH₃), 3.01(q, 2H, CH₂), 3.57, 3.80 (2d, 4H,), 3.95 (q, 2H, CH₂), 4.15 (s, 1H, pyran proton), 7.10–7.85 (m, 10H, ArH + benzylic proton+CH); MS m/z (%): 492 [M⁺] (85) corresponding to the molecular formula C₂₇H₂₅Cl₂N₃O₂, 393 (100) base peak. Analysis for C₂₇H₂₅Cl₂N₃O₂ (393.13): Calc. C, 65.70; H, 5.11; Cl, 14.18; N, 8.52, Found C, 65.75; H, 5.14; Cl, 14.22; N, 8.56
Pharmacological Assay

Anti-arrhythmic Activity [19–24].

Purpose and Rational

The plant alkaloid aconitine persistently activates sodium channel. Infusion of aconitine in the anesthetized rat causes ventricular arrhythmias. Drugs considered to have anti-arrhythmic properties can be tested in aconitine-intoxicated rats.

Procedure

Male Ivanovas rats weighing 300–350g are used. The animals are anesthetized by intra peritoneal injection of 1.25 g/kg urethane: 5 mg/kg aconitine dissolved in 0.1 N HNO₃ is administered by continuous infusion into the saphenous vein of 0.1ml/min and the ECG in lead II is recorded every 30 seconds. The test compound is injected IV at a screening dose of 3 mg/kg 5min before the start of the aconitine infusion, 24 animals are used per compound.

Animals were obtained from the animal house colony of the National Research Center, Cairo, Egypt. The animals were allowed free access to water and were kept on a constant standard diet. All animal experiments were carried out in compliance with the institutional guidelines on the use of living animals.

Evaluation

The anti-arrhythmic effect of a test compound is measured by the amount of aconitine/100g animal.

(Duration of infusion) which induces:

- Ventricular extra systoles.
- Ventricular tachycardia.
- Ventricular fibrillation.

Higher doses of aconitine in the treated group as compared to an untreated control group are an indication of anti-arrhythmic activity. Statistical significance between the groups is assessed by the student’s T-test.
Authors’ Statements

Competing Interests
The authors declare no conflict of interest.

Animal Rights
The institutional and (inter)national guide for the care and use of laboratory animals was followed. See the experimental part for details.

References

