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Abstract 
Four pendenticity based topological descriptors termed as superaugmented 
pendentic indices have been conceptualized in the present study. An in-house 
computer program was utilized to compute index values of all the possible 
structures (with at least one pendent vertex) containing four, five and six 
vertices. The sensitivity towards branching, discriminating power, degeneracy 
and mathematical properties of the proposed superaugmented pendentic 
indices were investigated. All the four proposed indices exhibited exceptionally 
high sensitivity towards branching, high discriminating power and extremely low 
degeneracy. Superaugmented pendentic index-4 (SA∫P-4) exhibited exceptionally 
high discriminating power of 114 in structures containing only six vertices. 
Statistical significance of the proposed indices was investigated using 
intercorrelation analysis with Wiener’s index, Balaban’s mean square distance 
index, molecular connectivity index, Zagreb indices (M1 and M2), super-
pendentic index and eccentric connectivity index. The exceptionally high 
sensitivity towards branching, high discriminating power amalgamated with 
extremely low degeneracy offer proposed indices a vast potential for isomer 
discrimination, similarity/dissimilarity, drug design, quantitative structure-
activity/structure-property relationships, lead optimization and combinatorial 
library design. 
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Introduction 
In the recent years, “Graph Theory” has been applied in an automated computer treatment 
of chemical structures and QSAR [1]. In chemical graph theory, molecular structures are 
represented by hydrogen suppressed graphs (commonly known as molecular graphs) in 
which vertices represent the atoms and bonds are represented by edges. The connection 
between atoms can be described by various types of topological matrices, which can be 
mathematically manipulated so as to derive a single number, usually known as graph 
invariant, graph-theoretical index or topological index (TI) [2]. Topological indices (TIs) are 
widely used as structural descriptors in QSPR/QSAR models [3]. Moreover, novel 
strategies are being adopted for continuous search and development of TIs [4]. During 
recent years, significant progress has been reported in the development of various 
topological, geometric, electrostatic, and quantum chemical indices as molecular 
descriptors. Because of the simplicity of topological structural representation, these TIs are 
sometime preferred over more complex geometric, electrostatic, and quantum chemical 
descriptors, especially in those cases where their use significantly reduces the 
computation time [5]. The pharmaceutical industry contributed towards increased interest 
in molecular descriptors because of the necessity to reduce the expenditure involved in 
synthesis, in vitro, in vivo and clinical testing of new medicinal compounds [6]. In recent 
years, a large number of topological indices have been reported and utilized for chemical 
documentation, isomer discrimination, study of molecular complexity, chirality, 
similarity/dissimilarity, QSAR/QSPR, drug design and database selection, lead 
optimization, rational combinatorial library design and for deriving multilinear regression 
models [2, 7, 8]. Estrada defined the paradigm of the use of TIs and molecular descriptors 
in general in QSAR studies as “it is desired to have as many molecular descriptor as 
possible at our disposition, but it is preferred to include as few of them as possible in the 
QSPR and QSAR models to be developed” [3]. 

In the present investigation, four pendenticity based topological descriptors termed as 
superaugmented pendentic indices, denoted by SA∫P have been conceptualized and their 
mathematical properties studied. The sensitivity towards branching, discriminating power, 
degeneracy and intercorrelation of the proposed indices with regard to all the possible 
structures containing four, five and six vertices (with at least one pendent vertex) have 
been investigated. 

Results and Discussion 
Topological descriptors have gained considerable popularity as these can be derived from 
molecular structures using low computational resources [9]. The use of TIs in the design 
and selection of novel active compounds is probably one of the most active areas of 
research in the application of such descriptors to biological problems [8]. In recent years a 
large number of topological indices have been reported and utilized for chirality, 
similarity/dissimilarity, QSAR/QSPR, drug design and database selection, lead 
optimization and for rational combinatorial library design. Though a large number of 
molecular descriptors of diverse nature have been reported in literature but only a small 
proportion of these descriptors have been successfully utilized in QSAR. As a 
consequence there is strong need to develop non-correlating topological indices with 
sensitivity towards branching, high discriminating power and extremely low degeneracy.  
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Tab. 1.  Index values of superaugmented pendentic indices for all possible structures of 
four, five and six vertices containing at least one pendent vertex.  

S.N. Structure ∫P SA∫P-1 SA∫P-2 SA∫P-3 SA∫P-4 
1  3.162 8.000 6.333 1.444 0.648 

2 
 

3.606 19.000 10.000 5.500 3.250 

3 
 

2.236 16.000 10.000 7.000 5.500 

4  4.243 16.000 6.333 2.694 1.211 

5 
 

5.196 26.000 10.000 4.000 1.667 

6 
 

5.745 65.000 33.000 17.000 9.000 

7 
 

3.000 21.500 8.750 3.708 1.632 

8 
 

3.742 36.000 17.000 8.167 3.972 

9 
 

3.606 44.000 24.000 14.000 9.000 

10 
 

2.828 18.000 8.333 3.944 1.898 

11 
 

2.646 52.000 32.000 22.000 17.000 

12  2.828 49.500 23.250 11.125 5.396 

13  3.162 135.000 81.000 54.000 40.500 
14  5.477 24.000 7.133 2.188 0.687 

15 
 

7.211 52.000 19.667 8.139 3.609 

16  7.000 41.000 14.000 5.083 1.965 

17 
 

8.944 84.000 30.000 11.000 4.167 

18 
 

8.544 84.000 31.000 11.833 4.694 

19  6.245 81.000 36.000 16.500 7.750 
20  5.916 95.000 43.333 20.278 9.676 
21  4.690 50.000 18.667 7.222 2.907 
22  4.899 56.000 22.250 9.312 4.078 

23 
 

3.742 26.667 8.889 3.213 1.258 

24 
 

5.196 65.500 26.083 10.819 4.669 

25 
 

3.606 25.000 9.333 3.695 1.544 
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Tab. 1.  (Cont.)  
S.N. Structure ∫P SA∫P-1 SA∫P-2 SA∫P-3 SA∫P-4 

26 
 

4.690 51.333 22.778 10.426 4.892 

27  4.690 50.000 22.167 10.264 4.890 

28 
 

4.690 42.000 16.000 6.333 2.611 

29 
 

3.317 22.000 9.667 4.389 2.046 

30  3.317 56.000 25.333 11.778 5.593 

31 
 

4.472 109.000 49.333 29.944 10.898 

32 
 

4.243 104.000 50.667 24.884 12.296 

33  3.606 64.000 23.583 9.174 3.761 
34  3.162 48.000 22.667 10.889 5.296 
35  3.317 46.500 20.250 9.125 4.229 

36 
 

3.162 48.000 23.000 11.166 5.473 

37  3.317 52.500 24.250 11.458 5.507 

38 
 

3.317 51.000 22.000 9.833 4.528 

39  4.690 132.000 61.500 29.375 14.260 
40  4.690 132.833 61.028 28.717 13.760 

41 
 

3.317 112.500 47.250 20.625 9.312 

42 
 

3.162 111.000 52.500 25.250 12.292 

43 
 

3.162 106.500 51.750 25.375 12.521 

44  3.317 132.000 60.000 28.000 13.333 
45 

 
3.162 120.000 58.000 28.333 13.945 

46  4.243 272.000 134.667 66.889 33.296 

47  3.464 164.000 64.000 26.000 11.000 
48  3.317 136.000 63.000 29.556 14.185 
49  3.162 258.000 123.000 59.500 29.084 
50  3.317 320.000 144.000 66.667 31.555 
51  3.317 296.000 145.333 71.778 35.593 
52  3.162 672.000 325.333 159.111 78.370 
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In the present study, four superaugmented pendentic indices, denoted by SA∫P, were 
conceptualized. These indices can be easily calculated from pendent matrix (Dp) and 
additive adjacency matrix (Aα). In the proposed TIs, simultaneous use of pendent-distance, 
degree of the vertices and eccentricity results in significant changes in the index value with 
a minor change in the branching of molecules.  

As observed from Figure 1, the value of superaugmented pendentic index-1 (SA∫P-1) 
changes by more than 4 times (from 16.0 to 65.0), the value of superaugmented pendentic 
index-2 (SA∫P-2) changes by more than 5 times (from 6.333 to 33.0) and the value of 
superaugmented pendentic index-3 (SA∫P-3) changes by more than 6 times (from 2.694 to 
17.0) and the value of superaugmented pendentic index-4 (SA∫P-4) changes by more than 7 
times (1.211 to 9.0) following branching of five membered linear carbon structure. The 
superaugmented pendentic index-4 was found to be about 2 times more sensitive to 
change in molecular structure when compared with superaugmented pendentic index-1 for 
identical changes. These superaugmented pendentic indices were found to be far more 
sensitive towards branching using three isomers of pentane.  

Researchers are striving hard to develop TIs with not only high discriminating power but 
also devoid of both degeneracy and correlation with existing TIs. The values of 
superaugmented pendentic indices were computed for all the possible structure of four, 
five and six vertices containing at least one pendent vertex using an in-house computer 
program. Various structures containing four, five and six vertices containing at least one 
pendent vertex and their corresponding index values have been presented in Table 1 
whereas their comparison has been depicted in Table 2. Superaugmented pendentic 
indices have revealed high discriminating power. The discriminating power may be defined 
as the ratio of highest to lowest value for all possible structures of same number of 
vertices. The ratio of highest to lowest value for all possible structure containing six 
vertices with at least one pendent vertex was found to be 31 in case of superaugmented 
pendentic index-1, 46 in case of superaugmented pendentic index-2, 73 for 
superaugmented pendentic index-3 and 114 for superaugmented pendentic index-4 in 
comparison to 2.83 for ∫P. High discriminating power of the proposed indices renders them 
more sensitive to any change(s) in the molecular structure. Extreme sensitivity towards 
branching as well as exceptionally high discriminating power of all the four proposed 
indices is clearly evident from the respective index values (Table 1) of all the possible 
structures with four, five and six vertices containing at least one pendent vertex. 

Degeneracy is the measure of ability of an index to differentiate between the relative 
positions of atom in a molecule. The superaugmented pendentic index-2, superaugmented 
pendentic index-3 and superaugmented pendentic index-4 did not exhibit any degeneracy 
for all possible structures with six vertices containing at least one pendent vertex, whereas 
the superaugmented pendentic index-1 has very low degeneracy of five in case of all 
possible structures with six vertices containing at least one pendent vertex whereas The ∫P 

had 22 same values out of 39 structures with all possible structures with six vertices 
containing at least one pendent vertex (Table 2). Extremely low degeneracy indicates the 
enhanced capability of these indices to differentiate and demonstrate slight variations in 
the molecular structure. This means that the likeliness of different structures to have same 
value is remote.  
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Intercorrelation analysis of the proposed four indices with other well-known indices 
revealed that superaugmented pendentic indices are not correlated with Wiener’s index 
[10], Balaban’s mean square distance index [11], molecular connectivity index [12] and 
eccentric connectivity index [13] and superpendentic index [14] as well. Moreover, 
superaugmented pendentic indices are weakly correlated with Zagreb indices (M1 and M2) 
[15, 16]. These superaugmented pendentic indices describe the structural parameters in a 
different manner in comparison to other indices.  

Tab. 2.  Comparison of discriminating power and degeneracy of various 
superaugmented pendentic indices using all possible structures with four, five 
and six vertices containing at least one pendent vertex 

 ∫P SA∫P-1 SA∫P-2 SA∫P-3 SA∫P-4 
For Four Vertices      
Minimum value 2.236 8.000 6.333 1.444 0.645 
Maximum Value 3.606 19.000 10.000 7.000 5.500 
Ratio  1:1.61 1:2.370 1:1.580 1:4.850 1:8.490 
Degeneracy  0/3 0/3 1/3 0/3 0/3 
For Five Vertices      
Minimum value 2.646 16.000 6.333 2.694 1.211 
Maximum Value 5.745 135.000 81.000 54.000 40.500 
Ratio  1:2.17 1:8.440 1:12.790 1:20.040 1:33.440 
Degeneracy  2/10 0/10 0/10 0/10 1/10 
For Six Vertices      
Minimum value 3.162 22.000 7.133 2.188 0.687 
Maximum Value 8.944 672.000 325.333 159.211 78.370 
Ratio  1:2.83 1:30.540 1:45.610 1:72.760 1:114.080 
Degeneracy  22/39 5/39 0/39 0/39 0/39 
Degeneracy = Number of compounds having same values/Total number of compounds with 
same number of vertices 

 

Tab. 3.  Inter-correlation matrix 
 W D χ M1 M2 ξc ∫P SA∫P-1 SA∫P-2 SA∫P-3 SA∫P-4 
W 1 0.731 0.840 0.114 0.141 0.661 0.511 0.017 -0.037 -0.086 -0.161 
D  1 0.361 -0.477 -0.411 0.220 0.562 -0.356 -0.402 -0.447 -0.501 
χ   1 0.545 0.588 0.918 0.077 0.295 0.253 0.213 0.146 
M1    1 0.983 0.545 -0.354 0.813 0.812 0.808 0.780 
M2     1 0.768 -0.403 0.796 0.791 0.783 0.753 
ξc      1 -0.125 0.507 0.469 0.428 0.359 
∫P       1 -0.130 -0.170 -0.203 -0.243 
SA∫P-1        1 0.996 0.983 0.943 
SA∫P-2         1 0.994 0.965 
SA∫P-3          1 0.965 
SA∫P-4           1 
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Arbitrary Vertex numbering 
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Superaugmented Pendentic Index-1 
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Fig. 1.  Calculation of values of superaugmented pendentic index-1 (SA∫P-1), 
superaugmented pendentic index-2 (SA∫P-2), superaugmented pendentic index-3, 
(SA∫P-3), superaugmented pendentic index-4, (SA∫P-4) for three isomer of pentane. 

Theoretical 
Calculation of Topological Indices 
Pendenticity based topological indices termed as superaugmented pendentic indices i.e. 
superaugmented pendentic index-1 (SA∫P-1), superaugmented pendentic index-2 (SA∫P-2), 
superaugmented pendentic index-3 (SA∫P-3), superaugmented pendentic index-4 (SA∫P-4) 
have been developed in the present study.  

Throughout, let G = (V, E) be a simple connected graph with vertex set V = {v1,v2,……,vn} 
and edge set E. Let di be the degree of vertex vi for i = 1, 2, …..,n and Δ, the highest 
degree of a graph G. Denote by i ~ j, vertices vi and vj are adjacent. For two vertices vi and 
vj (i ≠ j), d (i, j), the topological distance between vi and vj is the number of edges in a 
shortest path joining vi and vj. The diameter of a graph is the maximum distance between 
any two vertices of G. The graphs having at least one pendent vertex were denoted by 
Gk,n, where k (k ≥ 1) is the number of pendent vertices and n (> 4) is the order of the 
graph. 
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Superpendentic index (∫p): 

The superpendentic index, denoted by ∫P, is defined as square root of the sum of products 
of non-zero row elements in the pendent matrix in the hydrogen suppressed molecular 
graph [14]. It is expressed as,  

( ) ( )
2/1,

1,1
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∫ ∑∏

==

mn

ji
ji vvdGP     (1) 

where m and n are maximum possible number of i and j respectively. For a molecular 
graph (G) if v1, v2,….., vn are its vertices. Then, the topological distance d(vi,vj⏐G) between 
the vertices vi and vj of G is length of the shortest path connecting vi with vj.  

A pendent vertex is defined as a vertex of degree one or an endpoint. The eccentricity ei of 
a vertex vi in G is the length of shortest path from vi to the vertex vj that is farthest from vi 
(ei = max d (vi, vj; j / G) [16]. 

Superaugmented pendentic index-1:  

The superaugmented pendentic index-1, denoted by SA∫P-1, is defined as the summation of 
quotients, of the product of non-zero row elements in the pendent matrix and product of 
adjacent vertex degrees; and eccentricity of the concerned vertex, for all vertices in the 
hydrogen suppressed molecular graph. It is expressed as,  

, )(G
1

nk,
1-P ∑

=

=∫
n

i i

iiSA

e
mp

     (2) 

where pi = ∏j: dj =1;pij≠ 0 pij , mi = ∏j:j~i dj, and pij is the length of the path that contains the 
least number of edges between vertex vi and vertex vj in graph Gk,n, mi is the product of 
degrees of all the vertices (vj), adjacent to vertex i and can be easily obtained by 
multiplying all the non-zero row elements in additive adjacency matrix, di is the degree of 
the vertex vi, ei is the eccentricity of vertex vi.  

Superaugmented pendentic index-2:  

The superaugmented pendentic index-2, denoted by SA∫P-2, is defined as the summation of 
quotients, of the product of non-zero row elements in the pendent matrix and product of 
adjacent vertex degrees; and squared eccentricity of the concerned vertex, for all vertices 
in the hydrogen suppressed molecular graph. It is expressed as,  

, )(G
1

2nk,
2-P ∑

=

=∫
n

i i

iiSA

e
mp

     (3) 

where pi = ∏j: dj =1; pij≠ 0 pij , mi = ∏j:j~i dj, and pij is the length of the path that contains the 
least number of edges between vertex vi and vertex vj in graph Gk,n, mi is the product of 
degrees of all the vertices (vj), adjacent to vertex i and can be easily obtained by 



530 H. Dureja, K. C. Das and A. K. Madan:  

Sci Pharm. 2009; 77; 521–537. 

multiplying all the non-zero row elements in additive adjacency matrix, di is the degree of 
the vertex vi, ei is the eccentricity of vertex vi. 

Superaugmented pendentic index-3:  

The superaugmented pendentic index-3, denoted by SA∫P-3, is defined as the summation of 
quotients, of the product of non-zero row elements in the pendent matrix and product of 
adjacent vertex degrees; and cubic eccentricity of the concerned vertex, for all vertices in 
the hydrogen suppressed molecular graph. It is expressed as,  

, )(G
1

3nk,
3-P ∑

=

=∫
n

i i

iiSA

e
mp

     (4) 

where pi = ∏j:dj =1;pij≠ 0 pij , mi = ∏j:j~i dj, and pij is the length of the path that contains the 
least number of edges between vertex vi and vertex vj in graph Gk,n, mi is the product of 
degrees of all the vertices (vj), adjacent to vertex i and can be easily obtained by 
multiplying all the non-zero row elements in additive adjacency matrix, di is the degree of 
the vertex vi, ei is the eccentricity of vertex vi. 

Superaugmented pendentic index-4:  

The superaugmented pendentic index-4, denoted by SA∫P-4, is defined as the summation of 
quotients, of the product of non-zero row elements in the pendent matrix and product of 
adjacent vertex degrees; and fourth power of eccentricity of the concerned vertex, for all 
vertices in the hydrogen suppressed molecular graph. It is expressed as,  

, )(G
1

4nk,
4-P ∑

=

=∫
n

i i

iiSA

e
mp

     (5) 

where pi = ∏j:dj =1;pij≠ 0 pij , mi = ∏j:j~i dj, and pij is the length of the path that contains the 
least number of edges between vertex vi and vertex vj in graph Gk,n, mi is the product of 
degrees of all the vertices (vj), adjacent to vertex i and can be easily obtained by 
multiplying all the non-zero row elements in additive adjacency matrix, di is the degree of 
the vertex vi, ei is the eccentricity of vertex vi. 

Superaugmented pendentic indices (SA∫P) can be easily calculated from pendent matrix 
(Dp) and additive adjacency matrix (Aα) obtained by modifying distance matrix (D) and 
adjacency matrix (A), respectively. Pendent matrix (Dp) of a graph G is a sub-matrix of 
distance matrix (D) obtained by retaining the columns corresponding to pendent vertices. 
The additive adjacency matrix (Aα) is obtained from adjacency matrix by substituting the 
degree of corresponding vertex (of the vertices adjacent to vertex i) of a molecular graph 
G. The product of the non-zero row elements in additive adjacency matrix represents the 
mi. Calculation of superaugmented pendentic index-1 (SA∫P-1), superaugmented pendentic 
index-2 (SA∫P-2), superaugmented pendentic index-3 (SA∫P-3) and superaugmented pendentic 
index-4 (SA∫P-4) for three isomer of pentane has been exemplified in Fig.1.  
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The sensitivity of superaugmented pendentic indices to branching was investigated using 
three isomers of pentane (Fig. 1). Discriminating power and degeneracy of the 
superaugmented pendentic indices were investigated using all possible structures with 
four, five and six vertices containing at least one pendent vertex (Table 1) and compared 
for discriminating power and degeneracy (Table 2).  

The intercorrelation of four proposed superaugmented pendentic indices with Wiener’s 
index (W), Balaban’s mean square distance index (D), molecular connectivity index (χ), 
Zagreb indices (M1 and M2), superpendentic index (∫P), and eccentric connectivity index 
(ξc) was investigated (Table 3). This intercorrelation has been determined with respect to 
index values of all possible structures containing four, five and six vertices (with at least 
one pendent vertex). The degree of correlation was appraised by the correlation coefficient 
r. Pairs of indices with r ≥ 0.97 are considered highly inter-correlated, those with 0.90 ≤ r ≤ 
0.97 are appreciably correlated, those with 0.50 ≤ r ≤ 0.89 are weakly correlated and finally 
the pairs of indices with low r-values (< 0.50) are not inter-correlated [17].  

Properties on Superaugmented Pendentic Indices of Graphs 

Here we study superaugmented pendentic index-1 of graph Gk,n, denoted by SA∫P-1(Gk,n) 
and defined as 

, )(G
1

nk,
1-P ∑

=

=∫
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i i

iiSA

e
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       (2) 

where pi = ∏j:dj=1;pij≠ 0 pij , mi = ∏j:j~i dj, and pij is the length of the path that contains the least 
number of edges between vertex vi and vertex vj in graph Gk,n, di is the degree of the 
vertex vi, ei is the eccentricity of vertex vi. 

Denote star K1, n-1, and path Pn. Now we calculate SA∫P-1 for star K1, n-1, and path Pn (n > 3): 
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Suppose that vertices vi, i=1, 2, …….,k are pendent vertices and vertex vn is the highest 
degree vertex corresponding degree Δ in Gk.n. Let v1 be only one pendent vertex in G1,n, 
and we define p1 = 1 in G1, n. Denote by H1,n, which is constructed by the complete graph 
Kn-1 of order n-1 with one pendent vertex. Now we calculate (H1,n) → SA∫P-1 (H1,n): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4444444444 34444444444 21
2

3332
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2
1 )(H
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nnnn nnnnnnnn

( ) ( ) 221
2
1          −−+−= nnnn . 

Lemma 1.1. If a1, a2,………..,an are positive numbers, then: 
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⎛ +++

 

Equality holds if and only if a1 = a2 = ………..=an. 

Theorem 1.2. Let T be a tree of order n with k pendent vertices. Then 

,)1)(( (T) 121-P Δ−− −−+Δ≤∫ μkkSA DknDk     (6) 

where μ is the maximum average degree of all non-pendent vertices and D is the diameter 
of T. Moreover, the equality holds in (6) if and only if T is a star K1, n-1. 

Proof: First let vi, i=1, 2,……,k be the pendent vertices of tree T. Also let μi be the average 

degree of the vertices adjacent to vertex vi, that is, ,~:
i

i

jijj

d
d∑=μ  and let μ be the 

maximum average degree of all non-pendent vertices. For i = k + 1, k + 2,……..,n; 
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≤ ∑  by Lemma 1.1 
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For any i, we have 

D ≥ ei ≥ d(i, j) for all vj. 

Using this we have 

Pi/ei ≤ Dk-2, and mi ≤ Δ for i = 1,2,……,k.     (8) 
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For i = k + 1, k + 2, ……….,n; we have 

Pi/ei ≤ (D-1)k-1.        (9) 
We have 
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)7(,)1)((            12 byDknkD kk Δ−− −−+Δ≤ μ .   (10) 

First part of the proof is over. 

Now suppose that equality in (6) holds. Then all inequalities in the above argument must 
be equalities. From equality in (7) and (10), we get: 

for each non-pendent vertex vi, dl = dk for all k, l such that k ~ i, l ~ i and di = Δ, μi=μ. 

We can see easily that for any non-pendent vertex vi, d(i, j) ≤ D-1 (vj is any vertex) in any 

tree. From equality in (9), we must have 

d(i, j) = D -1 for any non-pendent vertex vi and any pendent vertex vj. 

Since T is a tree, from above result we conclude that k = n -1 and hence T is star K1, n-1. 

Conversely, one can see easily that the equality holds in (6) for star K1, n-1. 

Corollary 1.3. Let T (≠ Pn) be a tree of order n with k pendent vertices. Then 

,)1)(( (T) 232-P Δ−− −−+Δ≤∫ μkkSA DknDk     (11) 

where μ is the maximum average degree of all non-pendent vertices and D is the diameter 
of T. 

Proof: Since tree T is not a path Pn, we have that at least three pendent vertices in T. Thus 
we have  

  pi/ei
2 ≤ Dk-3, for i = 1, 2,…….,k.    (12) 

For i = k+1, k+2,…….,n; we have 

pi/ei
2 ≤ (D-1)k-2.        (13) 
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We have 
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       (14) 

Using (12), (13) in (14) and from Theorem 1.2, we get the required result. 

Remark 1.4. In Theorem 1.2, we have that star K1, n-1 is the maximum superaugmented 
pendentic index-I of trees. Also we believe that path Pn is the minimum superaugmented 
pendentic index-I of trees. 

Now we will see that H1,n is the maximum superaugmented pendentic index-1 of Gk,n 
graphs (k ≥1, n > 4). 

Theorem 1.5. Let Gk,n (k ≥ 1, n > 4) be a connected simple graph of order n with k pendent 
vertices. Then 
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2
1 )(G 2
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1-P −−+−≤∫ nSA nnn      (15) 

with equality holding if and only if Gk, n ≅ H1, n. 

Proof: We consider two cases (i) k = 1, (ii) k ≥ 2. 

Case (i) : k = 1. In this case graph has exactly one pendent vertex. Let v1 and vn be the 
pendent vertex and the highest degree vertex of G1,n, respectively. If G1,n = H1,n, then the 
equality holds in (15). Otherwise, G1, n ≠ H1, n. First we suppose that G1,n has highest 
degree dn = Δ. Thus we have di ≤ n-2, i = 2, 3, …,n-1 and at least one vertex has degree di 
(i ∈ [2, n-1]) strictly less than n-2. For each vertex i ∈[2, n] in G1, n, we have 

  p1/e1 ≤ ½ and pi/ei ≤ 1, as p1=1, pi = d(i,1) ≤ ei.  (16) 

Since di ≤ n - 2 and mi < (n - 1)(n - 2)n-3, for all i ∈ [2, n - 1]. Now, we have 
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From (2), we have  
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( ) ,)2(1
2
1 2−−+−< nnnn  by (17) and (18) 

).(H n1,
1-P∫=SA  

Case (ii) : k ≥ 2. Now we suppose that Gk,n has highest degree dn = Δ with diameter D. If D 
= n -1, then Gk,n ≅ Pn and hence ∫PC-1(Gk,n) < ∫PC-1(H1,n). Otherwise, D ≤ n - 2. 

If Δ ≤ n – 2, then we have 

pi/ei ≤ (n-2)k-2, as d(i, j) ≤ ei ≤ n -2, i,j = 1, 2, …….,k.     (19) 

and  pi/ei ≤ (n-2)k-1, as d(i, j) ≤ ei ≤ n -2, i = k +1, k +2, ……,n; j =1, 2, …,n. (20)  

Thus,   , )(G
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( ) 22 −−≤ nnn as Δ ≤ n-2, k ≤ n-1 
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We have remain the case Δ = n-1 and D ≤ n-2. In that case  

pi/ei = 2k-2, i = 1, 2, …….,k;  pi/ei = 2k-1, i = k +1, k +2, …….,n-1,  

and pn/en =1. 

Using these results, we have that 
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Hence the theorem. 
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Conclusion 
The simplicity, high sensitivity towards branching, exceptionally high discriminating power 
coupled with extremely low degeneracy render proposed superaugmented pendentic 
indices promising tools for quantitative structure-activity/property relationships, isomer 
discrimination, similarity/dissimilarity, drug design, lead optimization and combinatorial 
library design. 
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