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Abstract: Previous studies suggest that pulses may have the potential to protect against cancer
development by inhibiting pathways that result in the development of cancer. These pathways include
those that result in inflammation, DNA damage, cell proliferation, and metastasis. Other studies
have demonstrated extracts from pulses have the capacity to induce apoptosis specifically in cancer
cells. Compounds reported to be responsible for these activities have included phenolic compounds,
proteins and short chain fatty acids. The majority of the studies have been undertaken using in vitro
cell culture models, however, there are a small number of in vivo studies that support the hypothesis
that pulse consumption may inhibit cancer development. This review highlights the potential benefit
of a diet rich in pulse bioactive compounds by exploring the anti-cancer properties of its polyphenols,
proteins and short chain fatty acids.
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1. Introduction

Pulses are edible seeds that belong to the legume family Fabaceae/Leguminosae, and are used
for human consumption or as animal feed. The Food and Agriculture Organisation (FAO) listed
11 important types of pulses consumed around the world, including dry beans, dry broad beans,
dry peas, chickpeas, dry cowpea, pigeon pea, lentil, groundnut, vetches, and lupin [1]. They are
consumed for their high protein levels and carbohydrate rich endosperm. Pulses have also been
demonstrated to contain bioactive compounds that alleviate risk factors associated with diabetes [2],
metabolic syndrome [3], inflammation [4], and cancer [5,6].

There has been considerable interest in exploring the chemo-preventive properties of pulses
and/or their derivatives using both in vitro and in vivo cancer models [7]. Some of the potential
health beneficial properties of pulses have been attributed to the antioxidant activity exhibited by
phenolic compounds [8,9], and/or the mechanistic involvement of proteins [10] and short chain fatty
acids [11] in the disease process. This paper aims to review current literature describing the potential
of pulses as effective anti-cancer nutraceutical agents. Specifically, the role that pulse derived phenolic
compounds, proteins and fatty acids play in mechanistic pathways of anti-inflammatory, anti-apoptotic,
anti-proliferative and anti-metastatic will be discussed.

2. Bioactive Compounds in Pulses

Pulses have a seed anatomy consisting of the endosperm, seed coat, and embryo (ridicule and root).
The endosperm, which is the primary biomass of the seed, contains carbohydrates, storage proteins
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and fat. The seed coat of pulses are often rich in phenolic compounds [12], and studies have identified
the presence of flavonoids, anthocyanins and tannins [12,13] (Figure 1). These phenolic compounds
have high antioxidant activity [13] and their ability to scavenge free radicals has been correlated
to anti-inflammatory [14,15], anti-proliferative [9] and anti-apoptotic activity. While crude extracts
from pulses have been demonstrated to exhibit antioxidant activity, some pulse derived phenolic
compounds such as anthocyanins [16] and iso-flavanols [17] have been demonstrated to be effective in
targeting specific cancer pathways.
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Pulses contain proteins which are often classified as albumins, globulins, glutelins,
and prolamins [18]. Some specific types of proteins such as lectins (carbohydrate-binding proteins)
have been shown to exhibit anti-cancer properties [19]. For example. lectins derived from pulses are
thought to bind to tumour membranes, blunt cellular proliferation, stimulate the immune system and
induce apoptosis. Furthermore, protein protease inhibitors such as Bowman-Birk inhibitors (BBI),
have been reported to target specific anti-cancer pathways [20]. Protease inhibitors have been found to
have potential anti-cancer properties in in vitro and in vivo experiments by inhibiting the generation
of reactive oxygen species. Pulses generally have low levels of lipids, however, fatty acids such as
butyrate, oleic and linoleic acid have been associated with anti-cancer activities [11,21,22].

3. Cancer Development and Mechanisms of Inhibition

Transformation of normal cells into malignant cells due to mutations, result in genome instability
of DNA molecules [23]. The mutated cancer cells develop salient characteristics to evade the immune
system, sustain proliferative signalling, activates invasion with metastasis, resist cell death and
initiate tumour promoting inflammation [23]. It has been reported that DNA damage from free
radicals, increase cell cycle replication error from faulty tumour suppressors and inactivated repair
machinery [24]. This scenario provides the right conditions to alter the mechanisms that regulate
proliferation and apoptosis in normal cells with subsequent transformation into cancer cells.

By targeting specific points in cancer development pathways, pulse bioactive compounds have
the potential to reduce the initiation and progression of cancer development and possibly play a
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role in the elimination of malignant cells. Incorporating pulses in diets have been shown to have
beneficial effects against chronic conditions [25]. Correlations have been identified between pulse
consumption and a reduction in inflammation and cancer development [26]. Studies have identified the
anticancer potential of pulses including adzuki bean, black bean, mung bean, pinto bean, faba beans,
lupins, lentils and chickpeas (Tables 1 and 2). It has been proposed that these pulses contain phenolic
compounds, proteins and short chain fatty acids with the capacity to deter the progression of cancer
cells development. These pulse bioactive compounds are thought to inhibit specific pathways to
reduce cancer development by reducing inflammation, cancer cell proliferation and induce apoptosis
specifically in cancer cells.

3.1. Anti-Inflammation

3.1.1. Role of Pulse Phenolic Compounds

Inflammation is the body’s natural response mechanisms against foreign antigens.
However, cancer-related inflammation has a cascading effect that leads to tumourigenesis [27].
Oxidative stress due to the presence of free radicals activates the enzyme IkB Kinase (IKK) which
initiates the cellular nuclear factor kappa β (NF-κβ) pathway [28]. This results in other signal
transduction pathways being activated such as the mitogen-activated protein kinase (MAPK) pathway
which has been reported to promote cancer-related inflammation [27]. The activation of these
pathways results in the production of cytokine signaling molecules/mediators such as cyclooxygenase
(COX), tumour necrosis factor alpha (TNF-α), and nitric oxide (NO). This, in turn, initiates the
production of interleukin (IL), prostaglandin E2 (PGE2) and site-specific macrophage adhesion [29,30].
This disruption of the signaling network promotes the neighboring cells and tissue to support
tumourigenesis [28].

Several studies have shown that phenolic compounds extracted from pulses have
anti-inflammatory properties and free radical scavenging activity [31,32]. An in vitro experiment
was conducted to investigate the anti-inflammatory effect of four bean varieties using colorectal cancer
cell lines [32]. It was observed that all the bean extracts exerted an anti-inflammatory effect. It was
confirmed that the level of the anti-inflammatory response was correlated to the anti-proliferative
effect. Bean extracts were observed to inhibit pro-inflammatory proteins such as cyclooxygenase-2
(COX-2), tumour necrosis factor α (TNFα), and nuclear factor kappa β (NF-κβ) while increasing the
activity of interleukin 10 (IL-10), an anti-inflammatory protein. In another experiment, Faba beans
inhibited inflammation via pro-inflammatory signal transduction pathway, mediated by Lipoxygenase
(LOX) [14]. Furthermore, investigations were conducted on anti-inflammatory properties of phenolic
extracts from mung bean cotyledon, hull, and whole grain [31]. It was observed that the hull
with higher phenolic content and antioxidant activity had the highest anti-inflammatory effect.
Lipopolysaccharide (LPS) stimulated RAW 264.7 mouse macrophage cells have also been reported to
possess high anti-inflammatory properties in phenolic extracts from wholegrain mung bean [8].

3.1.2. Role of Pulse Bioactive Peptides and Amino Acids

Pulse proteins, peptides and amino acids have been demonstrated to exhibit anti-inflammatory
effects. Protein hydrolysates from germinated beans have exhibited an anti-inflammatory effect in RAW
264.7 mouse macrophage cells by reducing nitric oxide synthesis [33]. Also, a non-protein amino acid,
gamma-aminobutyric acid (GABA) has been shown to demonstrate anti-inflammatory activity. In vivo
experiments using GABA-rich extracts were conducted on female Balb/c mice inoculated with Yac-1
and 4T1 carcinogenic cell lines [34]. Mice supplemented with diets of either 200 mg/kg or 1000 mg/kg
body weight of GABA exhibited delayed tumour formation. This was correlated with high anti-cancer
cytokine levels, splenic T cell populations, splenocyte cytotoxicity and spleen/tumour antioxidant
levels. Mitotic divisions in spleen were also reduced which was accompanied by a reduction in
antioxidant and nitric oxide levels [34].
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Table 1. Anti-inflammatory potential of pulse bioactive compounds.

Sample Compound Cell Line/Model Mechanisms/Outcomes of
Anti-Inflammatory Effect Reference

Black, spotted and
common bean
(Phaseolus spp)

Phenolics HT-29 human
colon cancer cells

Inhibition of pro-inflammatory
proteins cyclooxygenase-2
(COX-2), TNFα and NF-κβ,
and increased expression of
anti-inflammatory protein IL-10.

[32]

Lentil (Lens
esculenta) Faba
bean (Vicia faba)

Phenolics

Faba bean hull extracts exhibited
mild LOX inhibitory activity,
while lentils inhibited 15-LOX,
COX-1 and COX-2.

[14]

Pigmented and
non-pigmented
beans (dry)
(Phaseolus spp)

Phenolics Female Sprague
Dawley rats

Exhibited lowed incidences of
mammary cancer, cancer
multiplicity and tumour burden.

[35]

White kidney bean
(Ph. vulgaris)
Round purple bean
(Phaseolus spp)

Phenolics RAW 264.7
macrophage cells

Anti-inflammatory effect via a
reduction in LPS stimulated
macrophages of cytokine mRNA
expression and nitric oxide
production.

[36]

Adzuki bean (Ph.
angularis) Mung
bean (Vigna radiate)

Phenolics- hull and
cotyledon

Protease inhibition was highest in
hull faction followed by
wholegrain and cotyledon.

[31]

Mung bean
(Vigna radiate)

Phenolics- vitexin and
isovitexin

RAW 264.7
macrophage cells

Exhibited
anti-inflammatory effects. [8]

Black Bean
(Phaseolus spp) Protein hydrolysates RAW 264.7

macrophage cell

Nitric oxide synthesis was
inhibited when treated with
protein hydrolysates from
germinated beans

[33]

Chickpea
(Cicer arietinum) ICR male mice

Reduction in the oxidation of
lipid, protein and DNA,
downregulation of
cyclooxygenase COX-2 and
inducible nitric oxide synthase
and oncogenic protein β-catenin.

[37]

Mung bean
(Vigna radiate)

Gamma-aminobutyric
acid (GABA)

Yac-1 and 4T1
lymphoma cells
Female Balb/c
mice

High anti-cancer cytokine levels,
spleen T cell populations,
splenocyte cytotoxicity,
and spleen/tumour antioxidant
levels. Mitotic divisions in spleen
were also reduced along with
antioxidant and nitric oxide levels.

[34]

Cyclooxygenase-2 (COX-2), tumour necrosis factor α (TNFα), nuclear factor kappa β (NF-κβ), interleukin 10 (IL-10),
Lipoxygenase (LOX).

3.2. Anti-Proliferation

3.2.1. Role of Pulse Phenolic Compounds

Several studies have investigated the anti-cancer potential of pules by demonstrating its
anti-proliferative capacity in cancer cells [6,14,16]. Inhibition of cancer cell line proliferation was
examined using phenolic extracts from pulses including green pea, yellow pea, chickpea, lentil,
yellow soybean, black soybean, pinto bean, black bean, small red bean, red kidney bean, mung bean,
adzuki bean and black-eyed peas on nine cancer cell lines [38]. The study found considerable variability
in phenolic profiles and the effect these have on the various cell lines. Adzuki exhibited the highest
anti-proliferative effect in a dose-dependent manner in cell lines CAL27, AGS, HepG2, SW480, Caco-2,
DU 145, SK-OV-3, MCF-7 and HL-60. Inhibition of proliferation was observed at IC50 0.32, 0.68, 0.36,
0.4, 0.41, 1.98, 0.79, 0.86 and 0.55 mg/mL respectively. Meanwhile, the black-eyed pea, green pea,
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yellow pea and chickpea extracts did not establish an IC50 value, with substantial anti-proliferative
effect in the cell lines HepG2, Caco-2, DU145 and SK-OV-3 [38].

Another study examined the effect of phenolic extracts from raw, cooked and fermented
Canavalia beans of two types, on HT29 and MCF7 cell lines [39]. It was found that the
fermented Canavalia cathartica and cooked Canavalia maritima were more effective in inhibiting cell
proliferation compared to their raw forms. The study deduced that processing by cooking and
fermentation significantly increased anti-proliferative properties in canavalia beans. Meanwhile,
phenolic compounds extracted from sprouted and dry mung beans have also demonstrated
anti-proliferative effects [40]. The study extracted phenolic compounds with methanol, ethanol,
hexane, water and butanol and tested their effect on Calu6 and SNU601 cell lines. It was observed that
ethanol extracts and extracts from sprouts were more effective at inhibiting proliferation with extracts
from sprouted beans having higher anti-proliferative effects.

The effects of pulse pigmentation in relation to inhibition of cancer cell lines proliferation has
also been examined [41]. The study used phenolic extracts from 12 pigmented and non-pigmented
varieties of bean which were tested using Caco-2, MCF7 and A594 cancer cell lines. It was observed
that pigmented varieties were more toxic to cancer cells compared to non-pigmented varieties, with
Cannellino Ross having the highest cytotoxicity. While the aforementioned studies have investigated
effects of crude phenolic extracts, some studies have identified specific phenolic compounds
with anti-proliferative effects [5,42]. These studies identified condensed tannins, isoliquiritigenin,
6,4′-dihydroxy-3′-methoxyaurone, and sulfuretin as possible cytotoxic phenolic compounds present
in red bean and tokan bean. In addition, an in vivo study demonstrated female Sprague Dawley
rats to have reduced incidences of mammary cancer, multiplicity and tumour size, when fed with
bean extracts [35]. Rat diets consisted of 60% bean extract from white kidney, dark red kidney, great
northern, small red, navy and black bean. In contrast, to previously mentioned study [41], this study
proposes that the origin of cultivation correlated more closely to the anti-proliferative effects rather
than the phenolic content or pigmentation level [35].

3.2.2. Role of Pulse Bioactive Proteins

Protein isolates derived from pulses have also been investigated for their anti-proliferative
effects. Mung bean protein extracts have been observed to have a stronger anti-proliferative effect
than Adzuki bean extracts when using SKOVE and SMMC7721 cancer cells (IC50 of 505.1 and
323.6 µg/mL respectively) [43]. Other studies using protein fractions of large red (Nepalese) [44] and
spotted beans [45] found that proliferation was inhibited in L1210 and MBL2 by both bean extracts.
Spotted bean had a higher anti-proliferative effect compared to red bean with an IC50 value of 4 µM in
L1210 and 9 µM in MBL2 cell lines. Moreover, protease inhibitor peptides from chickpea, kidney bean,
mung bean, peas and lentils have also been investigated for their anti-proliferative potential [46].
From the five pulses examined, chickpea protease inhibitors were observed to be the most effective at
inhibiting MDA-MB-231 proliferation, compared to other pulses.

Mung bean protein extracts have been demonstrated to inhibit proliferation in cancerous cells
(MCF7 and Hela cells) while slightly inhibiting proliferation of normal fibroblast cells [47]. In addition,
other in vitro investigations using various cancer cell lines have demonstrated anti-proliferative effects
of isolated protein extracts including; Hemagglutinin—French bean [48], Homotetrameric—Haricot
bean [49], Limynin—Lima beans [50], Coccinin—Scarlet bean [51], Mugoin—Mung bean [52],
Lectin—Pinto beans [53], trypsin inhibitor—White cloud bean [54], Bowman-Birk inhibitors
(BBI)—Peas [55], water-soluble protein extracts [56], and C25 protein fractions [57] from chickpea.

3.2.3. Role of Short-Chain Fatty Acids

A limited number of studies have investigated the anti-proliferative effects of short chain fatty
acids from pulses. The role of fatty acids in conjunction with coumarins from alhagi beans has
been examined on C32 melanoma cells. The study found that short-chain fatty acids from alhagi
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beans inhibited proliferation with an IC50 value of 2700 mg/mL [58]. An in vivo analysis utilized
Azoxymethane to induce colon cancer in rats [59]. The rats were fed with 75% Black bean and Navy
bean short chain fatty acid, Butyrate. Rats fed with a diet of black bean or navy bean had reduced
incidences of colon adenocarcinoma and total tumour multiplicity. The reduction in carcinogenesis
from the diet was attributed to reduced body fat due to the presence of butyrate in the distal colon.

3.3. Pro-Apoptotic Effects of Pulses

3.3.1. Pro-Apoptotic Bioactive Phenolic Compounds

In addition, to inhibition of inflammation and cancer cell proliferation, phenolic compounds
from pulses have also been recognised as inducers of apoptosis (Table 2). The effect of faba bean
phenolic extracts was examined on several human cancer cell lines [6]. The phenolic extracts
were found to inhibit proliferation of cancer cells and specifically induce apoptosis in leukaemia
cells while inhibiting angiotensin-converting-enzyme (ACE), α-glucosidase and pancreatic lipase.
Studies have also investigated phenolic extracts of jamapa beans on HeLa and HaCaT cells [24,60].
Apoptotic induction in Hela cells was achieved by upregulation of pro-apoptotic proteins such as Bax
and caspase3. Korean kidney bean phenolic extracts have also been identified to induce apoptosis
through the Activated Protein Kinase (AMPK) signalling pathway [10]. This involved upregulation of
proteins such as p-AMPK, p-Acc, p53 and p21 as a result of inhibition of AMPK by the interaction of
compound C with AMPK activator 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) [10].

Phenolic extracts from mung bean sprouts have been demonstrated to reduce inflammation,
induce anti-proliferative effect and apoptosis in HeLa and HepG2 cells [61]. It was observed that the
mung bean extracts upregulated TNFα and IFN-β, while inducing expression of IFNγ, apoptotic genes,
tumour suppressor genes and inhibiting IL-4. A similar investigation has been conducted on phenolic
extracts of lentil and pea sprouts [62]. The study revealed that in green non-sprouted and yellow
sprouted pea, a 50% cytotoxicity was observed at 3 mg/mL [62]. Furthermore, in the sprouted green
pea, sprouted lentil and non-sprouted lentils, induced cytotoxicity was seen at 6 mg/mL and in yellow
non-sprouted pea at 7.5 mg/mL. The apoptotic effect of the extracts was linked to the induction of
lactate dehydrogenase enzyme (LDH) release, DNA fragmentation and upregulation of caspase3
activity. An in vivo study incorporated red kidney bean phenolic extracts into female Sprague Dawley
rats diet and found rats fed with the extract had lower mammary cancer incidences, multiplicity and
tumour size [63]. The mechanism of action was identified as the mitochondrial pathway involving
up-regulation of Bcl-2 associated X protein and down-regulation of B cell lymphoma 2 and X-linked
inhibitor protein.

Furthermore, specific phenolic compounds responsible for activation of apoptosis have also
been identified. For instance, flavonoid extracts from black bean hulls have been found to have
pro-apoptotic effects on OCI-Ly7 lymphoma cells in mouse. It was believed that flavonoids have an
effect on cell cycle by inducing cell cycle arrest at the S-phase and blocking progression to G2/M
phase [64]. Isoflavones from chickpeas were observed to have cytotoxic effects at IC50 of 10–60 µg/mL
as the extract upregulated cytoclasis, apoptotic body formation, caspase7, caspase9 and p53 [17].
It further showed a decrease in the following; P21, mitochondrial membrane potential, expression
of Bcl-2-associated X protein but an increase in Bcl-2. Additionally, epigallocatechin and luteolin
present in pea phenolic compound extracts have been linked to apoptotic activity induced in LS174,
MDA-MB-453, A594 and K562 cancer cell lines [65]. The study found that these phenolic compounds
were linked to darker pigmented pea varieties. Potential activation of apoptosis was identified via
caspase3 pathway.

3.3.2. Pro-Apoptotic Bioactive Peptides

Peptides extracted from pulses have been shown to exhibit a considerable effect in inducing
apoptosis (Table 2). Non-digestible fractions from fermented beans of four different types including
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Azufrado higuera, Bayo madero, Negro 8025, and Pinto Durango have been examined for pro-apoptotic
potential [66]. Extracts from the beans induced apoptosis in HCT116, RKO, and KM12L4 cancer cell
lines. The investigation also established that extracts from all the four types exerted an anti-proliferative
effect. Azufrado higuera upregulated cell cycle arrest markers such as p53 Ser392, p21 and
downregulated cyclin-B1. Meanwhile, Bao Madero induced apoptosis through the mitochondrial
pathway affected the transmembrane receptor TNFR1 and induced modification of markers including
BAD, cytC, c-casp3, survivin and BIRC7 [66].

Further investigation isolated the aforementioned peptides from Large lima beans to examine
the mechanistic pathways involved in inducing apoptosis by ACE inhibitor proteins [67].
The non-digestible fraction consisted of 70% protein, rich in ACE inhibitors, was sequenced
as GLTSK, LSGNK, GEGSGA, MTEEY, and MPACGSS. It was demonstrated that the ACE
inhibitor proteins GLTSK and GEGSGA were the most effective in inhibiting cell proliferation.
GLTSK induced mitochondrial membrane disruption, by the loss of mitochondrial membrane
potential and a 12.1-fold increase in reactive oxygen species. While GEGSGA initiated DNA damage
by promoting poly-ADP-ribose polymerize (PARP) cleavage and halting cell cycle in G1phase.
Consequently, activating oxaliplatin initiated the translocation of p53 protein in the apoptotic signal
pathway. Similar mitochondrial dysfunction was observed when HCT116 and HT29 colorectal cancer
cell lines were treated with hemagglutinin fraction from the black bean [68].

Furthermore, anti-proliferative activity of WKBL lectin from white kidney beans have been
examined on HONE1, HepG2, MCF7 and WRL68 cancer cells [69]. The study showed that
the anti-proliferative activity in HONE1 cells and HepG2 cells were high, while activity in
MCF7 and WRL68 cells was considerably lower. Apoptosis was induced through the extrinsic
pathway. The pathway involved upregulation of caspase 3, 8 and 9 in cells affected by WKBL
treatment. Lectin found in lentils has demonstrated apoptotic activity through the extrinsic
apoptotic pathway, the mechanism of action was through caspase 3, 8, and 9 as detected in CNE1
cells [70]. Additional apoptotic pathways were identified by phosphatidylserine externalization,
mitochondrial depolarization and cell cycle arrest [70].

The anti-proliferative effect of proteins has also been investigated via the inhibition of
glucose-regulated protein 78 (GRP78)—present only in cancerous cell membrane [71]. In the study,
WIFPWIQL was formed using a GRP78 binding peptide and mung bean trypsin inhibitor protein.
The synthesised protein was tested in vitro and in vivo. Cancer cell lines of HT29, SW620 and DLD1
exhibited apoptotic deaths while the normal cell line of FHC was unaffected. Xenografts in mice
induced with human colorectal carcinoma also demonstrated reduced tumourigenesis. A potential
pathway of apoptosis was through binding and activation of the constructed protein to GRP78,
consequently, activating multiple apoptotic pathways and inducing G1 phase arrest [71].

3.3.3. Pro-Apoptotic Pulse Short-Chain Fatty Acids

Anti-proliferative effects of short chain fatty acids have been associated with the induction of
apoptosis [11,72,73]. Apoptotic induction by DNA fragmentation utilizing butyrate derived from black
beans has been examined in HT29 cells [11] (Table 2). Further investigation indicated that the apoptotic
effect was due to the modulation of RB1, CDC2, CDC25A, NFκβ ,and E2F genes [73]. In addition,
an increase was observed in the pro-apoptotic genes APAF1, BID, CASP9, FASLG, TNFR10B, and Bcl2A.
In vivo investigations of butyrate derived from black bean tested on male Sprague Dawley rats treated
with 1.84 g/kg lyophilized samples induced substantial levels of apoptosis [72]. Lowering the number
of total colonic Aberrant Crypt Foci initiated cell cycle arrest the G1 phase.
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Table 2. Pro-apoptotic pathways initiated by pulse bioactive compounds.

Sample Compound Cell Line/Model Mechanisms for Apoptosis Reference

Black Bean
(Phaseolus spp)

Phenolics—hulls extract and
flavonoid fraction OCI-Ly7 lymphoma cells mouse

Induced cell population to S-phase, increased the
overall survival of mice fed with bean extracts by
blocking progression to G2/M phase.

[64]

Black Bean
(Phaseolus spp) Phenolics HeLa human cervical cancer cells HaCaT

human premalignant keratinocytes
Reduced number of cells in the G0/G1 phase in
comparison to control and induced apoptosis. [60]

Black Bean
(Phaseolus spp) Phenolics HeLa human cervical cancer cells Methanol extracts induced apoptosis via upregulation

of pro-apoptotic proteins, Bax and Caspase-3. [24]

Mung bean sprouts
(Vigna radiate) Phenolics HeLa human cervical cancer cells, HepG2

human liver cancer cells

Regulation of tumour necrosis factor (TNF-α),
Interferon (FN-β, IFNγ), Interleukin (IL-4), apoptotic
genes and tumour suppressor genes.

[61]

Red beans (dry)
(Phaseolus spp) Phenolics—isoflavones Female Sprague Dawley rats

Increase in pro-apoptotic proteins BCL-2–associated X
protein and reduction in inhibitory apoptotic protein B
cell lymphoma 2 and X-linked inhibitor, hence induction
of apoptosis was via the mitochondrial pathway.

[63]

Peas (Cajanus cajan)
Phenolics Caco-2 human colon cancer cell

Apoptotic action was linked to the induction of lactate
dehydrogenase (LDH) release, DNA fragmentation and
upregulation of caspase-3 activity.

[62]
Lentil (Lens esculenta)

Peas (Cajanus cajan) Phenolics—epigallocatechin
and luteolin

LS174 human colon adenocarcinoma,
MDA-MB-453 human breast carcinoma,
A594 human lung carcinoma, K562
myelogenous leukaemia

Induction of caspase 3 pathway. [65]

Chickpea
(Cicer arietinum) Phenolics—isoflavones SKBr3, MCF-7 human breast cancer cells

Upregulation of cytoclasis, apoptotic body formation,
caspase 7, caspase 9, P53, and P21 decrease in
mitochondrial membrane potential, expression of
Bcl-2-associated X protein and increased Bcl-2.

[17]

Korean kidney bean
husk (Ph. vulgaris) Phenolics HT-29 human colon cancer cells

Upregulation of proteins adenosine
monophosphate-activated protein kinase (p-AMPK),
protein acetyl-CoA carboxylase (p-ACC), p53 and p21.

[10]

Speckled lentil (Lens
esculenta; Ervum lens) Peptide-lectin Nasopharyngeal carcinoma CNE1 and

CNE2 cells

Phosphatidylserine externalization, mitochondrial
depolarization and cell cycle arrest. An extrinsic
apoptotic pathway involving caspase 3, 8, and 9 were
also detected in CNE1 cells

[70]

Black Bean
(Phaseolus spp) Peptide—hemagglutinin HCT116, HT-29 human colon cancer cells

Hemagglutinin successfully penetrate the cytoplasm of
colorectal cancer cells and instigate mitochondrial
dysfunction and apoptotic activity

[68]
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Table 2. Cont.

Sample Compound Cell Line/Model Mechanisms for Apoptosis Reference

Mung bean
(Vigna radiate)

Peptide—GRP78 binding
peptide WIFPWIQL and the
active fragment of mung bean
trypsin inhibitor

HT-29, SW620, DLD1 human colon
cancer cell, FHC human normal colon
cells, female mice with severe combined
immune deficiency (SCID/NOD)

Activation of multiple apoptotic pathways and
induction of G1 phase arrest. [71]

White kidney bean
(Ph. vulgaris)

Peptide—WKBL (lectin)

HONE1 epithelial tumour cells Caspase 3, 8 and 9 were upregulated in cells as a result
of WKBL treatment outlining apoptosis as the
mechanism of action following an extrinsic pathway.

[69]
HepG2 human liver cancer cells
MCF-7 human breast cancer cells
WRL68 human normal adherent cells

Black, spotted and
common bean
(Phaseolus spp)

Peptides HCT116, RKO, KM12L4 human
colorectal cancer cells

P53 expression was up-regulated along with
modification of p21 and cyclin B1 [66]

Large Lima beans
(Ph. lunatus)

Peptides—GLTSK, LSGNK,
GEGSGA, MTEEY,
and MPACGSS

HCT116, CCD-33Co human normal
colon cells

GLTSK caused mitochondrial membrane disruption via
loss of mitochondrial potential (∆ψm) and increased
intracellular ROS. GEGSGA caused DNA damage via
cleavage of PARP and cell cycle arrest in G1 phase,
suggesting oxaliplatin initiated activation and nuclear
translocation of p53.

[67]

Black Bean
(Phaseolus spp) Short-chain fatty acid HT-29 human colon cancer cells

Modulation of: RB1, CDC2, CDC25A, NFKB and E2F
genes; and pro-apoptotic genes: APAF1, BID, CASP9,
FASLG, TNFR10B and BCL2A genes.

[73]

Black Bean
(Phaseolus spp)

Short-chain fatty
acids—butyrate Male Sprague Dawley rats Rats demonstrated apoptotic effects and cell cycle arrest

in G1 phase. [72]

Black Bean
(Phaseolus spp)

Short-chain fatty
acids—butyrate HT-29 human colon cancer cells DNA fragmentation induced by the extracts indicating

that cells were undergoing apoptosis. [11]

Bean (Phaseolus spp) Polysaccharides—human gut
fermented bean HT-29 human colon cancer cells

Extract induced apoptosis via modulation of 72
p53-mediated signal transduction response genes in
human colorectal cancer cells

[74]
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3.4. Anti-Metastatic Effects of Pulses

A limited number of studies have investigated the anti-metastatic potential of pulses. One such
study examined the anti-metastatic potential of the chickpea, lentil, lupin, common bean, peas,
faba bean, and cowpea, using HT29 cells [75]. It was observed that the albumin and globulin
fractions from seeds inhibit cell proliferation at 100 µg/mL, with lupin and peas extracts displaying
the highest and lowest anti-metastatic activity respectively. The study showed that, cell proliferation,
correlated to anti-metastatic ability and that MMPIs present in these seeds to be novel metalloproteinase
inhibitors. In addition, investigations on the anti-metastatic properties of pulses has been examined
by evaluating the effect of protease inhibitor from field beans on mice injected with melanoma
cells [76]. Two treatment approaches were investigated, firstly, melanoma cells were treated with
extract pre-induction to mice and secondly by feeding mice with diets of 100 mg/kg of extract post
induction of melanoma cells. Both approaches effectively reduced migration of metastatic lung
melanoma cells by plasmin inhibitory action. Although the two studies have identified pulse protein
factions to have potential anti-metastatic effect in vitro and in vivo, further research is warranted to
understand the exact mechanism of action associated with MMP/protease inhibition.

4. Conclusions

The studies discussed in this review suggest that pulses may play an important role in reducing
the risk of cancer occurrence and deterring its progression via diverse mechanisms. These mechanisms
include reducing inflammation and cancer cell proliferation/metastasis as well as the induction of
apoptosis in cancer cells. Figure 2 provides a summary of how bioactive compounds from pulses may
play a role in the reduction of cancer development and progression. Although the studies outlined
in this review demonstrate the potential anti-cancer properties of pulses, as well as the impact that
processes such as sprouting and cooking, may have on these activities, more research is needed to
confirm these activities using in vivo human clinical trials.
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