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Short Note

Less Is More in Biosignal Analysis: Compressed Data
Could Open the Door to Faster and Better Diagnosis
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Abstract: In the digital medicine field, biosignals, such as those of an electrocardiogram (ECG),
are collected regularly for screening and diagnosis, and there continues to be an increasingly
substantial shift towards collecting long-term ECG signals for remote monitoring, e.g., in smart homes.
ECG signal collection is quite simple and only requires the use of inexpensive sensors, an active
Internet connection, and a mobile device that acts as the medium between the sensors and the Internet
(e.g., a mobile phone or laptop). Despite the ease and convenience of remote ECG data collection
and transmission, the amount of time and energy required for the related remote computational
processes remains a major limitation. This short note discusses a biosignal approach that uses fewer
biomedical data for screening and diagnosis that is, compared to current data collection methods,
equally, if not more, efficient.
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1. Introduction

Advances in healthcare tend to focus on developing complex algorithms: the programs behind
the flashy apps that can track people’s health do not thoughtfully consider the transmission and
analysis of the substantial amounts of collected data [1]. Meanwhile, efforts to introduce sweeping
changes to the complex algorithms to make them more suitable for big data have been ignored [2].
Moreover, algorithms for big data collected in medicine, especially in cardiovascular care, are still in
the early stages of development and evaluation and lack evidence of improving quality of care and
patient outcomes [3].

More and more, clinicians are starting to demand the long-term collection of ECG signals and
the online monitoring of these signals to better understand the progression and life cycle of certain
diseases [4]. This data can help practitioners provide better care and treatment for their patients [5].
With this demand comes an increased pressure on biomedical engineers to develop more complex
algorithms that collect larger data sets that are complete and do not allow for the removal of any data
points [6]. This can be problematic since larger data sets require more complex computational resources
to collect, analyze, and transmit the data and require large data centers that are resource-exhaustive.

2. Case Description

A recent approach [7,8] published last year through the University of British Columbia (Canada)
used a different method; the method described a novel way of transmitting ECG data so that it
requires less space (memory) and less time to process and transmit the data, all while still providing
an accurate analysis that is comparable to previous approaches that use full data sets collected in

Diseases 2018, 6, 18; doi:10.3390/diseases6010018 www.mdpi.com/journal/diseases

http://www.mdpi.com/journal/diseases
http://www.mdpi.com
https://orcid.org/0000-0003-1831-0202
http://dx.doi.org/10.3390/diseases6010018
http://www.mdpi.com/journal/diseases


Diseases 2018, 6, 18 2 of 3

conventional ways. The proposed approach speeds up computational performance and can be used
for any biosignal, such as that of a photoplethysmogram or an ECG. In fact, the proposed approach is
generic and applicable to any time-series big data application. More importantly, the new approach
uses fewer resources and transmits compressed information (i.e., less information from the ECG signal)
while protecting the data’s integrity and preserving the essential data components. Preserving data
integrity is necessary, as it ensures that disease diagnosis can be carried out accurately and properly.

3. Discussion

This proposed compression approach is applied to one-dimensional data (e.g., ECG signals) that
are typically collected with higher sampling frequencies, such as 1000 Hz [9] (i.e., in order to transmit a
one-second snapshot of the patient’s data to a physician, 1000 data points are required). This common
collection approach overwhelms the device that is used to collect the ECG signal, the servers on the
Internet, and the receiving device the clinician uses to read the data. By compressing the ECG data
(i.e., removing redundant components), the resource burden is lessened, thereby increasing the
collection, transmission, and analysis processes. The essential information of the ECG signal
(i.e., polarization and depolarization) is kept by using an interpolation process, therefore preserving
the necessary features of the biosignal.

Interestingly, during the validation process of the compression approach, the mathematical
analysis demonstrates that the main features of the biosignal are amplified before compression,
making them more prominent and informative. Consequently, when the compression step is executed
after the amplification step, the main ECG features still hold strong producing higher heartbeat
detection accuracy. It’s an intriguing, thought-provoking idea, detecting heartbeats from compressed
ECG is better than using original (uncompressed) ECG signal. The compression process can be viewed
as a filter, in that it extracts redundant data and leaves a purer presentation of the ECG features.

Of course, when we speak about algorithms, the implementation of the algorithm affects both
the software and hardware. The compression algorithms are the software, while the hardware must
allow the software to advance. This is a challenge that needs to be addressed as well in order to
take advantage of new machine learning techniques. For example, currently, the data-storage units
inside computers are separate from data-processing units. This creates a bottleneck in performance,
time, and power. For decades, advances in computing have been driven by scaling down the size
of the components, guided by Gordon Moore’s prediction that the number of transistors on a chip
will roughly double every two years; however, this prediction did not consider the processing power,
especially of mobile phones (or battery-driven devices). In the upcoming decades, the hardware
implementation of biosignal analysis for collecting big data needs to change accordingly to enable fast
and reliable decision making.

4. Conclusions

Currently, the proposed compression method has been tested on one-dimensional time-series data;
however, it can be applied to two-dimensional data (e.g., MRI pictures) with some modifications.
The principle of this compression method can work on any biosignal data or time-series data
that contains periodic (repeated) features, and it has mass application potential for big data.
More importantly, the compression biosignal approach demonstrates that using fewer biomedical data
is as efficient as, and even better than, current data collection, transmission, and analysis methods
used in remote monitoring, screening, and diagnosis. Big data thinking has commonly been that the
more data you have, the better the understanding and insight you will have into the area of interest.
Contrary to this belief, fewer data can be as informative, if not more informative, when paired with
efficient compression and analysis algorithms.
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