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Abstract: The human gait pattern is an emerging biometric trait for user identification of smart devices.
However, one of the challenges in this biometric domain is the gait pattern change caused by footwear,
especially if the users are wearing high heels (HH). Wearing HH puts extra stress and pressure
on various parts of the human body and it alters the wearer’s common gait pattern, which may
cause difficulties in gait recognition. In this paper, we propose the Sensing-HH, a deep hybrid
attention model for recognizing the subject’s shoes, flat or different types of HH, using smartphone’s
motion sensors. In this model, two streams of convolutional and bidirectional long short-term
memory (LSTM) networks are designed as the backbone, which extract the hierarchical spatial
and temporal representations of accelerometer and gyroscope individually. We also introduce a
spatio attention mechanism into the stacked convolutional layers to scan the crucial structure of
the data. This mechanism enables the hybrid neural networks to capture extra information from
the signal and thus it is able to significantly improve the discriminative power of the classifier for
the footwear recognition task. To evaluate Sensing-HH, we built a dataset with 35 young females,
each of whom walked for 4 min wearing shoes with varied heights of the heels. We conducted
extensive experiments and the results demonstrated that the Sensing-HH outperformed the baseline
models on leave-one-subject-out cross-validation (LOSO-CV). The Sensing-HH achieved the best Fm

score, which was 0.827 when the smartphone was attached to the waist. This outperformed all the
baseline methods at least by more than 14%. Meanwhile, the F1 Score of the Ultra HH was as high as
0.91. The results suggest the proposed model has made the footwear recognition more efficient and
automated. We hope the findings from this study paves the way for a more sophisticated application
using data from motion sensors, as well as lead to a path to a more robust biometric system based on
gait pattern.

Keywords: deep hybrid attention model; footwear recognition; ubiquitous computing

1. Introduction

Recently, with the wearable technology advancing at a fast pace, billions of smart devices have
been equipped with built-in motion sensors such as accelerometers and gyroscopes. They can be
exploited to log the body motion of users, which can be a very useful tool for the research communities
studying motion sensing. More and more researchers have used the motion characteristics of the
human body for various tasks, which ranged from activity recognition [1–6], gesture categorization [7],
clinical condition monitoring [8], BMI predication [9], to user gait recognition [10–13]. In particular,
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identity recognition using the dynamics of the walking pattern seems a promising technique in
preventing the use of smart devices and other systems linked with them without the owner’s
permission. However, the quality of gait-based biometric systems is greatly influenced by the footwear
which the subject is wearing.

The previous works [14,15] studied the gait changes related to the different shoes worn by
the subjects. Their experiments were carried out with four kinds of shoes with different weights.
They found that heavy footwear reduces the discrimination and the sideways motion of the foot has
the most discriminating power compared to the up-down or forward-backward directions of the
motion. Meanwhile, based on some previous papers on exercise physiology, the height of the heels
is also a important parameter related to the human gait. A recent survey [16] summarized a list of
the five main open problems for gait recognition including different kinds of shoes. Walking requires
ongoing, finely tuned interactions between muscular and tendinous tissues. Wearing HH puts extra
stress and pressure on various parts of the human body that would affect the subject’s natural gait [17].
In common sense, an increase in the height of HH will cause a decrease in subject’s walking speed and
the length of stride.

Though footwear alters the gait, there is only a very limited number of studies in footwear
recognition. The existing methods normally use the RGB camera [18], the specific motion capture
system [19], the ground reaction force sensors [20], or Microsoft Kinect sensor [21], all of which are lab
limited. In fact, there is no research on the footwear recognition in the daily life scenario, and none for
the HH which about 37% to 69% of American women frequently wear [22]. Additionally, even if only
considering the HH, they are categorized into many categories by the height of the heels, as shown in
Table 1 and Figure 1.

Table 1. Categorizations of shoes.

Height of Heels Categories of Shoes

0–2.54 cm (0–1 inch) Flat
2.54–7.62 cm (1–3 inch) Mid HH

>7.62 cm (> 3 inch) Ultra HH

Flat

Mid HH

Ultra HH

Figure 1. The location of the different smartphones.

Therefore, motion sensor-based footwear recognition using the gait characteristic in daily life is
still an open challenge. One of the major challenges is that the daily life walking environment is highly
dynamic and it includes a variety of environmental factors that could directly or indirectly introduce
variations into the gait patterns. For example, the clothes the individual is wearing, the different
walking surfaces, slopes, and obstacles on the road, can all contribute to gait changes besides footwear.

In this section, we evaluate the diffculty of the task by visualizing the raw signals, as shown in
Figure 2. A participant of medium build (average weight) was asked to walk back and forth three
times on the same surface, wearing different shoes (flat, mid HH and ultra HH), each time with a
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smartphone placed on her waist. From the visualized data, we find that the gait of ultra HH (9.8 cm) is
significantly different from the previous two scenes. Its acceleration component has a sharper peak,
and especially the angular velocity has a lateral rotation lasting for one second. We believe that this is
due to the reduced stability and the changes of the center of gravity caused by the ultra HH.

Inspired by the deep neural networks, some very recent works employ them to motion
sensor-based recognition, such as Convolution Neural Network (CNN) [3,5,23], which are competent
in capturing the local characteristics of multi-channel signals; Recurrent Neural Network (RNN) [24],
and its variant, LSTM units [1,25], which are designed to extract the temporal dependencies and
incrementally learn information over time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [s]

−10

0

10

20

30

Ac
ce

le
ra
tio

n 
[m

/s
2 ]

acc_X
acc_Y
acc_Z

(a) Acceleration (Flat).
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(b) Acceleration (Mid HH).
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(c) Acceleration (Ultra HH).
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(d) Angular Velocity (Flat).
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(e) Angular Velocity (Mid HH).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [s]

 2

0

2

An
gu
la
r V
el
oc
ity
 [∘
∘s
2 ]

gyro_X
gyro_Y
gyro_Z

(f) Angular Velocity (Ultra HH).

Figure 2. Some sub-sequences of a participant walking three times wearing different shoes (Flat, Mid
high heels (HH) and Ultra HH).

Recently, the combination of CNNs and LSTM in a unified stack framework has already offered
state-of-the-art results in sensor-based recognition [7]. In our previous study, we developed a hybrid
deep neural network [9] for gait analysis using data captured from built-in motion sensors in
smartphones. The hybrid deep neural network overcomes the challenge of environmental factors.
In this study, we extended our prior work by incorporating some extensions of attention mechanism
to the previous model, and tested its performance by investigating gait changes related to footwear.
The extensions we introduced in this study and the major contributions of this paper are summarized
in three points:

(1) To the best of our knowledge, we are the first to recognize the subject’s footwear by the dynamics
of gait changes acquired from smartphone sensors in daily life. We categorize the shoes into
3 classes by the height of the heels (flat, mid HH and ultra HH). We propose Sensing-HH, a novel
deep attention model, which can automatically learn a hierarchical feature representation and
the infinite temporal contexts from raw signals through the hybrid net structures. It also has the
ability to implicitly learn to suppress irrelevant parts in the raw signals and to highlight salient
features useful for this specific task by adding the attention mechanism.

(2) We established a dataset with 35 young females wearing 3 kinds of shoes. All of them were asked
to walk for 4 min on a flat surface, with 3 smartphones as recording devices, which at the same
time were held by their hands, attached to their waists, and placed in their handbags, respectively.

(3) We conducted comprehensive experiments on this dataset to evaluate the proposed Sensing-HH
model. The results showed that our model achieved competitive performance with a mean
F1-score ( Fm ) of 0.827 when the smartphone was attached to the waist, from different classes,
through cross verification. Meanwhile, the F1 Score of the Ultra HH was as high as 0.91.

The remaining part of this paper is structured as follows:
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In Section 2, we give a brief overview of the state of some related literature. In Section 3,
we present how the dataset was established. In Section 4, we illustrate the Sensing-HH, a deep attention
model. Experimental results with the baseline methods are presented in Section 5. Section 6 gives
the conclusions.

2. Related Work

In this section we summarize research that are most relevant to our proposed approach,
grouping them in three domains: footwear related gait analysis using motion sensors, previous
deep learning approaches for motion sensor-based recognition and attention mechanism for sensor
data processing.

2.1. General Footwear Related Gait Analysis Using Motion Sensors

Wearable motion sensors makes gait analysis [16,26] much easier. The research about general gait
analysis using motion sensors are focused on model-based methodology [27,28], which needs to first
model gait based on a comprehensive understanding of the gait mechanism, and then convert the
sensor signal into some gait-related physiological parameters [29–31], such as gait rhythm, step length,
symmetry, inner foot distance, ankle shape, detection of gait phases [32], or kinematic parameters
(joint angle measurement) [33]. The recent review [34] has proved the wearable sensors to be very
useful in monitoring and analyzing the stability of subjects.

2.2. Previous Deep Learning Approaches for Motion Sensors-Based Recognition

Over the past few years, deep neural networks emerged as a family of learning models
for automating feature design, and have achieved tremendous successes in many application
domains [35–40]. Particularly, Yosinski et al. [41] demonstrated that features learned were not specific
to a particular task and could be useful for multiple related tasks. Some studies employed deep
neural networks for motion sensor-based recognition tasks. It is common to use Convolutional
Neural Networks (CNN), Recurrent Neural Network (RNN), and recently some researchers have paid
attention to the hybrid network which consists of CNN and RNN. Gadaleta et al. [12] presented IDNet,
a user authentication framework from smartphone-acquired motion signals. The stacked convolutional
layers were used as a series of feature extractors, and then One-Class SVM (OSVM) was used as a
classifier for gait recognition. The experiments exploited an in-house dataset with data collected from
50 subjects during six months. Data are acquired using different smartphone models positioned in the
right front pocket of trousers. Subjects were asked to walk at their normal pace in different walking
sessions for about 5 min. The accelerometer, gyroscope were both used in the recognition process
for recording. Zou et al. [13] proposed a CNN-RNN structure for robust gait feature representation,
with which features of the space and time domains were successively abstracted by the hybrid network.
Two datasets were collected for identification and verification. In a previous work, we also proposed a
hybrid deep neural network [9] to predict the BMI of smartphone users, which was also based on the
characteristics of body movement captured by the smartphone’s built-in motion sensors.

2.3. Attention Mechanism for Sensor Data Processing

The attention mechanism is popular in deep learning areas [42]. It has been successfully applied
to image recognition [43,44], natural language processing [45,46] and speech recognition [47], which is
originally a concept in biology and psychology that illustrates how we restrict our attention to
something crucial for better cognitive results. Recently, some researchers have explored the potential
of using attention models for processing sensor data, such as Electroencephalography (EEG) and
wearable sensor data. Zhang et al. [48] presented a Convolutional Attention Model (CAM) for
EEG-based human movement intention recognition in the subject-independent scenario. In the study,
the integrated attention mechanism was utilized to focus on the most discriminative information
of EEG signals during the period of movement imagination while omitting other less relative parts.
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Zhang et al. [49] introduced a selective attention mechanism into the reinforcement learning scheme
to focus on the crucial dimensions of the multimodal wearable sensor data. This mechanism helped
to capture extra information from the signal and thus it was able to significantly improve the
discriminative power of the classifier. Zeng et al. [50] proposed two attention models for human
activity recognition: temporal attention and sensor attention. These two mechanisms adaptively
focused on important signals and sensor modalities. Wang et al. [51] presented an attention-based
convolutional neural network for human recognition from weakly labeled data.

Our proposed attention model is focused on a long sequence of sensor data, and it not only
improves the performance of the model but also has better interpretability.

3. Dataset

To our best knowledge, there is no existing dataset that specifically studied the motion
sensor-based gait recognition of HH wearing in a daily environment. In this section, we describe our
strategy for motion sensor data collection to build the dataset.

3.1. Participants Selection

We recruited female participants who wear HH for at least 5 days a week, for an average of
12 h a day (including walking, sitting and standing). In order to avoid other factors such as age,
height, and weight to impact the results, we selected 35 subjects with the age range from 19 to 27,
and with similar builds. Participant details are shown below: age: 23± 4 years; height: 164.3 ± 12.4 cm;
mass: 51.8 ± 7.6 kg. Each of the participants was informed before the experiment of its aim and
the measuring method. All of them signed a consent to participate in the study. Prior to the gait
measurement, we conducted a short survey asking questions about the preferred types of footwear
and how frequently they wear HH. Two-thirds of the participants answered that they preferred flat
shoes in their day to day life. One-third of them preferred high heeled shoes, even with the heels more
than 8 cm in height. All of them wore 3 kinds of shoes (flat, mid HH and ultra HH) for this study.

3.2. Data Collection

All of the motion sensor data were recorded by a log application from 3 different android
smartphones (Samsung Galaxy S10, Samsung Galaxy Note8, and Smartisan Pro2). Table 2 summarizes
sensor specifications for the devices.

Table 2. Sensors specifications with the max. sampling rate.

Smartphone Accelerometer Gyroscope Magnetometer

Samsung S10 STMicro LSM6DSO (416 Hz) STMicro LSM6DSO (416 Hz) AK09918 (50 Hz)
Samsung Note8 STMicro LSM6DSL (400 Hz) STMicro LSM6DSL (400 Hz) AK09916C (50 Hz)
Smartisan Pro2 Bosch BMI160 (200 Hz) Bosch BMI160 (200 Hz) AK09918 (50 Hz)

The tri-accelerometer and the tri-gyroscope are motion sensors equipped by the smartphones we
used. The tri-accelerometer is based on the basic principle of acceleration and it is used to measure the
acceleration (including gravity) in the X, Y and Z directions of the smartphones. The tri-gyroscope
captures the angular velocity of a smartphone during its rotation in space. Both of them reflect the gait
characteristic of smartphone users.

All of the participants were asked to walk for 4 min on a flat ground, as shown in Figure 3,
the recording devices, the 3 smartphones that was mentioned before were held on their hands,
attached to their waists, and placed in their handbags, respectively, as shown in Figure 4.
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Figure 3. Photos of participants wearing Ultra HH.

Figure 4. The locations of the different smartphones.

4. Methodology

In this section, we give an overview of the development of Sensing-HH. First, we define the
notations used in this study. Second, we introduce the proposed Sensing-HH model in details.

4.1. Notation and Definitions

To avoid ambiguity, we are clarifying the following terms used in this paper: Sequence,
Sub-Sequence and Instance:
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4.1.1. Sequence

The sequence S is all recordings of one subject, it is an ordered list of multi-dimensional time
series that are typically recorded in temporal order at fixed intervals. Given the dataset with total N
subjects, the m-th subject, m ∈ [1, N], the sequence is Sm, and Tm is the total number of intervals.

Sm = {d1
m, . . . , di

m, . . . , dTm
m } (1)

di
m denotes the m-th subject’s sensor recording (tri-axis accelerometer and tri-axis gyroscope) at the

i-th sampling point and i ∈ [1, Tm], as follows:

di
m =



ai
m,x

ai
m,y

ai
m,z

gi
m,x

gi
m,y

gi
m,z


(2)

In this paper, the sequence Sm will be segmented into a series of sub-sequences by a sliding
windows strategy.

4.1.2. Sub-Sequence

The de-facto standard workflow for processing sensor data in ubiquitous computing treats
individual sub-sequences xk

m as statistically independent.
xk

m, k ∈ [1, L], is the k-th sub-sequence of the sequence Sm:

Sm = {x1
m, . . . , xk

m, . . . , xL
m} (3)

L = bTm − w
θ

c, w is the length of each sub-sequence, and θ is the step between the start intervals of

two consecutive sub-sequences. Concretely, xk
m has the sampling points from d(k−1)×θ

m to d(k−1)×θ +w
m .

xk
m = {d(k−1)×θ +1

m , . . . , d(k−1)×θ +w+1
m } (4)

4.1.3. Instance

In practice, the instance ik
m refers to the data fed into the recognition model, which is the suitable

transforming format of sub-sequence xk
m by data preprocessing functionH(∗).

ik
m = H(xk

m) (5)

In this paper, the task is to learn a function f : I → Y from a given data set. Where I denotes
the instance space, I = {i1m, . . . , ik

m, . . . , iL
m}, k ∈ [1, L], and Y is the set of class labels,

Y = {′Flat′,′ Mid− HH′,′UltraHH′}.
Given the unified representation f , we simultaneously optimize the network by minimizing a loss

function L, which makes it possible to shorten the distance between the predicted label and ground truth.

4.2. Sensing-HH: A Deep Attention Model

This subsection introduces our proposed deep attention network, which consists of two streams,
and takes acceleration and angular velocity as inputs respectively. Each stream is composed of
four different Modules: a signal preprocessing module, a deep hybrid connection network module,
an attention network module, and a fusion module. As illustrated in Figure 5, and the details are
presented as follows:
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Figure 5. Overall architecture of the Sensing-HH model.

4.2.1. Data Preprocessing Module

In practice, the data preprocessing module includes three main steps:

Step 1: Resampling and Interpolating

Unlike some specific sensors which are used under constrained experimental conditions,
the sampling frequencies in most smartphones’ built-in sensors are time-varying because their processing
unit and operating system were designed for multitasking [11]. Additionally, different sensors have
different sampling rates to guarantee the data from all types of the motion sensors can be processed
simultaneously, resampling and interpolating steps are required to transform the sequence of raw
signals into equally spaced time series. In this paper, the motion sensor data time series are interpolated
using cubic spline method [52] and resampled at f = 200 Hz.

Step 2: Gravity Filtering

Raw accelerometer data include gravity components, which makes it difficult to use motion
sensors to reflect the change of celerity and position of a smartphone at the time. In this paper,
we applied a novel gravity filtering method based on the combination of EMD (Empirical Mode
Decomposition) and the wavelet threshold, which is proposed by Lu et al. [53].

Step 3: Normalization

After filling up the missing values by resampling and interpolating, we normalize the training
data by setting data mean to 0 and standard deviation to 1, and as usual we use the training data mean
and standard deviation to normalize the test data.

4.2.2. Deep Hybrid Connection Network Module

As a result, learning the inter-modality correlations along with the intra-modality information
is one of the major challenges in HH recognition from multi-modalities of signals. The current
researches of sensor-based recognition are usually accomplished with multiple different sensors
such as accelerometer and gyroscope. Generally, using the diverse sensing modalities can obtain better
results than using only one particular sensor. Our proposed deep hybrid connection neural networks
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consist of two-stream CNN-BiLSTM (Bidirectional LSTM) networks with the stacked convolution
layers and bi-directional Long Short-Term Memory that encode features from multiple perspectives.

There are two main components in the CNN-BiLSTM, the first one is the stacked 2-Dimensional
CNNs, which is applied to extract spatial features from processed sensory data such as acceleration
and angular velocity. The second one is the BiLSTM which is responsible for learning the bidirectional
long-term dependencies of salient features extracted by CNNs.

In practice, the stacked CNNs are competent in capturing the local connections of sensory
data in spatial scale. In order to learn a rich representation of the input, the convolutional layers
produce a set of multiple feature maps. Although the cells in adjacent convolutional layers are locally
connected, various significant patterns of input signals at different levels can be obtained by stacking
several convolutional layers to form a hierarchical structure of gradually more abstract features.
The 2-Dimensional convolution layer l with its operation of calculating a feature map cl,M

i,j as:

cl,m
i,j = ϕ

(
M′−1

∑
m′=0

X−1

∑
x=0

Y−1

∑
y=0

wl−1,k
x,y,m′z

l−1,M′
i+x−1,j+y−1 + bl−1,m

)
(6)

where X and Y are the size of convolution kernel running over space and time, respectively, M′ is the
number of feature maps in the convolutional layer (l− 1), wl−1,m′ ∈ RX ×Y×M′ is a local filter weight
tensor, and bl−1,k ∈ R is a bias, and ϕ (∗) is the Rectified Linear Units (ReLU) nonlinear function.

One shortcoming of conventional LSTM is that they are only able to make use of the previous
context. Following Bi-LSTM, the same input data are fed into a forward LSTM and a backward LSTM.
Then two hidden states are concatenated to compute the final output of Bi-LSTM yt as:

−→
h t = LSTM

(
xt,
−→
h t−1

)
(7)

ht = LSTM (xt, ht−1) (8)

yt = W~hht + Whht + b (9)

where
−→
h t is the forward LSTM hidden state and ht is the backward LSTM hidden state simultaneously

at each time step t, LSTM(∗) denotes the LSTM operation, W~h and Wh represent the weights of the
forward LSTM and the backward LSTM, respectively, and b is the bias at the output layer.

4.2.3. Attention Network Module

As shown in Figure 5, the attention network is constructed based on the deep hybrid connection
network we mentioned before. We generate the class activation maps [54] using global average pooling
(GAP) in the CNNs parts, where GAP outputs the spatial average of the feature map of each unit at the
last convolutional layer. A weighted sum of these values is used to generate the final output. Similarly,
we compute a weighted sum of the feature maps of the last convolutional layer to obtain our class
activation maps. We describe this in details below for the case of classification using softmax.

The weights of the softmax layer are propagated back to the convolution layers for decomposing
the multi-dimensional time series into salient and non-salient regions. The so-called salient regions are
considered to contain information on discriminative gait patterns of wearing high heels, which provide
indications and important information associated to pre-defined shoe categories, and the non-salient
regions that are less relevant to the footwear categories.

For a given instance of signals, we denoted fk(c, t) represent the activation of unit k in the last
convolutional layer at spatial location (c, t) , where c means the channel of signals and t means the
timestamps of signals. Then for a certain category m, we denote the corresponding weight of unit k
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and the corresponding input of softmax layer as wm
k , and the the result of performing global average

pooling as Fk can be obtained

Fk = ∑
c,t

fk(c, t) (10)

Thus, for a given class m, the input to the softmax, Sm, can indicate the overall importance of
convolutional activations for category m, we obtain that

Sm = ∑
k

wm
k Fk = ∑

c,t
∑
k

wm
k fk(c, t) (11)

Also we can define Attm the class activation map as class m, and it can directly indicate the
importance of the activation at spatial location (c, t) for category m

Attm(c, t) = ∑
k

wm
k fk(c, t) (12)

Sm = ∑
c,t

Attm(c, t) (13)

Finally, after all these processes, we have a set of compatibility score for the output of class m by a
softmax function:

Pm =
exp (Sm)

∑m exp (Sm)
(14)

This way, we transfer the spatial attention into deep hybrid connection network to emphasize
the salient regions with discriminative information. This attention model is also able to revisit the
previous information and focus on more important parts to learn a better representation.

4.2.4. Fusion Module

In the previous work [9], we used the fully connected (FC) layer on top of two-stream
CNN-LSTM to produce probability scores on target labels. However, in this paper, to overcome
the “one-stream-dominating-the-network” problem, the designed fusion module is combined with the
attention weighted learning strategy. On one hand, directly concatenating the convolutional features
and feeding it into FC layers may result in over-parameterization, which makes training difficult,
especially for a high heels gait dataset on a limited scale. On the other hand, the low accuracy of
the previous model is not only due to the over-fitting problem but also because only one type of
sensor dominates the network while the other source only has a small impact on the final prediction.
In this paper, we modify the attention mechanism to take two sources as input and have the compute
attention weight from each source to produce a prediction for the current input by the softmax layer.
This assumption is also confirmed by the following stream selection approach. We took two-stream
CNN-BiLSTM as input and compute weights for each stream, as follows:

s = W ′1x1 + W ′2x2 (15)

ei = vT tanh
(
s + W ′i xi

)
(16)

αi =
exp (ei)

∑2
k=1 exp (ek)

(17)

oi =
2

∑
k=1

αixi (18)
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where W ′1, W ′2 are the weighted parameters of the different streams, and x1, x2 are the learned features
from accelerometer and gyroscope, respectively. The attention weights are normalized by softmax to
create the attention map αi for each type of sensor.

5. Experiments

In this section, to evaluate the performance of the proposed Sensing-HH model for real-world
application scenarios, we carefully conducted an experimental evaluation on a real-world dataset collected
by ourselves and compared the results with several baselines methods. Additionally, we tested if there
were significant signal differences between using footwear as measuring standard verses not using it.

5.1. Experimental Settings

5.1.1. Baselines

To illustrate the difficulty of the task we also compared the approach proposed in this work with
standard classification methods typically used for automated assessment systems in other sensor-based
recognition [9,55–58].

RF [55]. The random forest (RF) is an ensemble classifier which, besides classifying data, can be
used for measuring attribute importance. RF builds many classification trees, where each tree votes for
a class and the forest chooses the classification having the most votes from the trees.

SVM [56]. The recognition process starts with the acquisition of the sensor signals, which were
subsequently pre-processed by applying noise filters and then sampled in fixed-width sliding windows.
From each window, a vector of 17 features is obtained by calculating variables from the signals in the
time and frequency domain. Finally, these patterns are used as input of the trained SVM Classifier for
the recognition.

CNN [57]. The stacked 2-Dimensional CNNs were designed to introduce a degree of locality
in the patterns matched in the input data and to enable translational invariance with respect to the
precise location (i.e., time of occurrence) of each pattern within a frame of movement data.

BiLSTM [58]. The model was based on a bidirectional Long Short-Term Memory Recurrent Neural
Network (BLSTM-RNN), which is designed to take contextual information into account. The network
can process data gathered from different positions, which results in a system that is invariant to
transformations and distortions of the input patterns.

CNN-LSTM [9]. The CNN was designed to capture the spatial relationship, and the LSTM can
make use of the temporal relationship. Combining CNN and LSTM enhances the ability to recognize
the varied time span and signal distributions.

5.1.2. Setup

The handcrafted feature-based methods use WEKA toolkit [59] and the settings from previous
papers [55,56]. Sensing-HH and other deep learning benchmark models [9,57,58] are performed
on Keras 2.3.0 and Tensorflow 2.0. For such deep learning models, tuning hyper-parameters is a
time-consuming and challenging task due to the fact that numerous parameters need to be configured.
In this paper, we applied the functional ANOVA framework proposed by Hoos et al. [60] to estimate
the impact of each hyperparameter on the performance observed across all experiments. Six common
hyper-parameters, namely the optimizer, learning rate, number of epochs, batch size, dropout rate,
and regularizer, are optimized, see Table 3.
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Table 3. Setting of hyper-parameters.

Parameter
DL Models Optimal Values

Search Space Sensing-HH CNN [57] BiLSTM [58] CNN-LSTM [9]

Optimizer (Rmsprop, Adam, Sgd) Adam Sgd Rmsprop Adam

Learning Rate (0.001, 0.01) 0.001 0.001 0.001 0.001

Epochs (20, 50, 100) 50 50 20 100

Batch Size (20, 30, 40, 50) 10 10 30 10

Dropout Rate (0, 0.3, 0.5) 0.5 0.3 0.5 0.5

Regularizer (L1, L2) L2 L2 L2 L2

5.1.3. Cross-Validation Strategies

In order to obtain an unbiased evaluation of the classification performance, a leave one subject
out cross-validation (LOSO-CV) is adopted. Suppose a dataset with N subjects. For each experiment,
we used N − 1 subjects’ sensor data for training and the rest of the subjects’ sensor data for testing.
At first, in LOSO-CV, the subjects {Sn}N

n=1 are partitioned into N groups. The samples are then
partitioned by the groups into N sub-samples {Dn}N

n=1 of the N sub-samples. A single sub-sample
Dtest is retained for testing the model, and the remaining N − 1 sub-samples Dtrain are used as the
training data. Then the cross-validation process is repeated N times, with each of the N sub-samples
used exactly once as the validation data. Compared with k-fold cross-validation, the LOSO-CV not
only ensures that the testing procedure covers all the participants but also makes it closer to the
real-world application.

5.1.4. Evaluation Criteria

Since high precision and high recall are both desired in this application, and the datasets utilized in
this work are possibly biased as it is limited by the selection of the subjects. We used the mean F1 score
(Fm) to estimate the overall performance of different models, which corresponds to the harmonic mean
of precision and recall:

Fm =
1
C

C

∑
i=1

2 · precisioni · recalli
precisioni + recalli

(19)

Here, i = 1, . . . , C is the set of classes considered.

precisioni =
TPi

TPi + FPi
, recalli =

TPi
TPi + FNi

(20)

TPi, FPi represents the number of true and false positive, respectively and FNi is the number of
false negatives.

5.2. Experimental Results and Analysis

Extensive experiments were conducted on footwear recognition tasks on the real-world dataset
collected by ourselves, as mentioned in Section 3. We first compare our method with different
state-of-the-art works under different locations of devices, held in their hands, attached to their waists,
and placed in their handbags, respectively. Then, to demonstrate how well the Sensing-HH works in
real-world applications. An additional experiment was performed on a new fusion scene.

5.2.1. Comparsion with Baselines

In this subsection, we extensively compare our model with a set of baseline methods under
different scenes for footwear recognition.



Electronics 2020, 9, 1552 13 of 18

Table 4 presents the comparison between the proposed Sensing-HH and the state-of-the-art
methods as well as baselines, in three groups of sliding windows parameters settings for example to
quantitatively show the different performance of the models, and the best performance is emphasized
in bold. In general, the deep neutral network-based models [9,57,58] indeed improve considerably due
to the captured complex features from raw signals. On the other hand, the handcrafted feature-based
method only has satisfactory results in the waist scene. Sensing-HH achieved the best Fm score which
was 0.896, when the smartphone was attached to the waist. Meanwhile, we found that the suitable
size of sliding windows for this recognition task was 2 s. Clearly, in this scene, the performance
improvements of Sensing-HH over the RF [55], SVM [56], CNN [57], BiLSTM [58], CNN-LSTM [9]
models are 23.1%, 17.8%, 14.2%, 16.5% and 15.4%, respectively.

Table 4. Performance comparison measured by Fm, where Ws and ‘O’ are short for ‘Size of Sub-sequence’
and ‘Overlap of the adjacent sub-sequence or cycle’, where ‘H’, ‘W’ and ‘B’ are short for ‘Hand’, ‘Waist’
and ‘Bag’. Sensing-HH achieves the best results on most parameters, significantly outperforming the
state-of-the-art.

Model
Ws:1s, O : 50% Ws:2s, O : 50% Ws:5s, O : 50%

H W B H W B H W B

RF [55] 0.601 0.649 0.521 0.613 0.671 0.557 0.582 0.648 0.428
SVM [56] 0.637 0.688 0.582 0.672 0.701 0.564 0.601 0.652 0.536
CNN [57] 0.682 0.715 0.604 0.707 0.723 0.641 0.653 0.694 0.572

BiLSTM [58] 0.676 0.693 0.609 0.662 0.709 0.583 0.699 0.714 0.565
CNN-LSTM [9] 0.683 0.711 0.614 0.703 0.716 0.659 0.704 0.723 0.534

Sensing-HH 0.716 0.759 0.627 0.743 0.826 0.636 0.721 0.786 0.617

Overall, the Sensing-HH has robust performance in most of the scenes, regardless of the device
locations. The reason could be that it has attention-based two-stream deep hybrid networks. We will
discuss this further in the following subsection.

5.2.2. Ablation Study

In this subsection, to demonstrate the efficiency of our framework design, we performed a careful
ablation study to examine the contributions of the proposed components to the model’s classification
performance. Specifically, we removed each component one at a time in our Sensing-HH framework.
First, we named the different versions of Sensing-HH with different components removed as follows:

(1) HHw/oATT: The Sensing-HH model without the attention component.
(2) HHw/oLSTM: The Sensing-HH model without the BiLSTM component.

For different variants, we tuned the hidden dimension of models, so that they had similar
numbers of model parameters to the completed Sensing-HH, to remove the performance gain induced
by model complexity.

The experiment measures use Ws: 2 s, O: 50% settings. The results are shown in Figure 6,
with comparison to other deep learning models. Some observations from these results were
worth noting:

(1) The best recognition performance was obtained with the smartphone attached to the waist.
The Sensing-HH significantly outperformed other deep models in this scene. But the differences
amongst all the deep models in other scenes, i.e., held by the hand or in the bag, were not
significant.

(2) Removing the attention component (in HHw/oATT) from the Sensing-HH caused the most
significant performance drop in the waist scene, which dropped nearly 14.6%. This suggests the
importance of the attention component in this mode.
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(3) Removing the BiLSTM component (in HHw/oLSTM) from the Sensing-HH caused a performance
drop of nearly 4–6% in most of the scenes.

The conclusion is that all of the components together lead to the robust performance of
Sensing-HH in all of the scenes.

Hand Waist Bag
0.0

0.2

0.4

0.6

0.8

1.0

F m

 CNN
 BiLSTM
 CNN-LSTM
 HHw/oATT
 HHw/oLSTM
 Sensing-HH

Figure 6. Fm of six models on different class in waist scene.

5.2.3. Failure Cases

To analyze failure cases of our proposed Sensing-HH, we visualized the confusion matrix of the
result of misclassification. The details of the instances as shown in Table 5.

Table 5. The instances of different shoes categories (sliding windows of 200 samplings, 2 s).

Categories by Shoes
Number of Instances

Hand Waist Handbag

Flat 9937 9451 9703
Mid HH 4391 4479 4532
Ultra HH 6591 6902 6811

From the confusion matrix in Figure 7, we found that the recognition accuracy of the Flat and Mid
HH classes in the cross-view benchmark were relatively lower than the Ultra HH class, which had
Precision 0.92 and Recall 0.89.

Furthermore, we paid attention to the specific failure cases of the Mid HH and Ultra HH classes,
as shown in Table 6. We found that gait pattern changes related to the different shoes seemed to be
impacted by the subject’s body height and weight.

Table 6. Some subjects of failure cases.

No. Heels (cm) Height (cm) Weight (kg) True Label Predicted Label

2 7.0 152 46.3 Mid HH Ultra HH
22 7.1 154 43.8 Mid HH Ultra HH
12 7.7 170 58.4 Ultra HH Flat
31 8.1 176 51.6 Ultra HH Mid HH
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Figure 7. Confusion matrix for the proposed Sensing-HH in waist scene.

6. Conclusions

In summary, we developed Sensing-HH for footwear recognition based on daily life gait data
captured by built-in motion sensors from smartphones. To our best knowledge, we are the first to
recognize the subject’s footwear by the dynamics of gait changes acquired from smartphone sensors
in daily life. We categorize the shoes into 3 classes by the height of the heels (flat, mid HH and ultra
HH). Sensing-HH is a novel deep attention model which can automatically learn a hierarchical feature
representation and the infinite temporal contexts from raw signals through the hybrid net structures.
It also has the ability to implicitly learn to suppress irrelevant parts in the raw signals and to highlight
useful salient features for this specific task by adding the attention mechanism. We used a daily life
gait dataset to evaluate the performance of Sensing-HH and other baseline models. Comparing to
three existing deep neural networks and two shallow models, Sensing-HH performed significantly
better in most scenarios.

The results show that the proposed model is able to make footwear recognition more efficient and
automated. It also can be applied to a large population as it only requires data from smartphones and
it can accurately recognize footwear using daily life gait data with no restriction to the location of the
measuring devices. Sencing-HH has the potential to extend use of the motion sensor data. For example,
to help build a robust biometric system that includes gait pattern analysis. Future studies will focus on
how to accurately recognize footwear in a dataset having a wider range of varied heights and weights
of the subjects, so that the model would be able to work under an even closer-to-reality scenario.
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