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Abstract: We propose an improved RLizard implementation method that enables the RLizard key
encapsulation mechanism (KEM) to run in a resource-constrained Internet of Things (IoT) environment
with an 8-bit micro controller unit (MCU) and 8–16 KB of SRAM. Existing research has shown that the
proposed method can function in a relatively high-end IoT environment, but there is a limitation when
applying the existing implementation to our environment because of the insufficient SRAM space.
We improve the implementation of the RLizard KEM by utilizing electrically erasable, programmable,
read-only memory (EEPROM) and flash memory, which is possessed by all 8-bit ATmega MCUs.
In addition, in order to prevent a decrease in execution time related to their use, we improve the
multiplication process between polynomials utilizing the special property of the second multiplicand
in each algorithm of the RLizard KEM. Thus, we reduce the required MCU clock cycle consumption.
The results show that, compared to the existing code submitted to the National Institute of Standard
and Technology (NIST) PQC standardization competition, the required MCU clock cycle is reduced by
an average of 52%, and the memory used is reduced by approximately 77%. In this way, we verified
that the RLizard KEM works well in our low-end IoT environments.

Keywords: RLizard; post-quantum cryptography; applied cryptography; security

1. Introduction

In Internet of Things (IoT) environments, devices utilize cryptographic algorithms to communicate
securely with each other. To do this, they are required to share a common key to perform encryption
efficiently with neighboring nodes. Of the established cryptographic algorithms, the key encapsulation
method (KEM) is a method that enables the generation of a shared key between devices that
communicate with each other. It is suitable for IoT environments because key sharing is possible at
low cost.

Owing to recent developments in the field of quantum computing, existing standard encryption
algorithms, such as RSA, Diffie–Hellman, and Elliptic curve cryptography, are expected to be unavailable
in the near future. This is because underlying problems associated with existing algorithms can
be solved efficiently using quantum computing [1]. For this reason, we need a safe KEM based on
hardness problems that are not easily breakable, even with quantum computers.

To find a new cryptographic algorithm that will be used after the advent of quantum computers,
the National Institute of Standards and Technology (NIST) is in the process of standardizing
post-quantum cryptography (PQC) algorithms. Unfortunately, even though 8-bit microcontroller-based
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devices with low-cost computing power and small memory size are widely used [2] in IoT environments,
PQC standardization does not consider such a constrained environment. In addition, few studies have
been conducted to determine the performance improvement of KEMs in such a low-cost environment.

We studied RLizard KEM, which is a Korean standard, from among various KEMs [3]. The security
of RLizard relies on the ring learning with errors (RLWE) problem [4] and the ring learning with
rounding (RLWR) [5] problem. In [6], they selected ARM Cortex-M3, which is used in high-end IoT
environments, for the experiment, and showed that RLizard was more efficient than other PQC KEMs.
Unfortunately, even if the method described in [6] is used, a large amount of memory was used in the
algorithm, so it cannot be applied to limited environments where the available memory is 16 KB or less.

Therefore, in this study, we investigate an efficient implementation of RLizard in an environment
where the memory size is limited and the clock frequency of the MCU is low. First, considering the
poor performance of the MCU, we studied a method to improve the computational performance.
We improved the original RLizard source code submitted by the NIST competition [7].

First, we used the following method to improve the computational performance. Specifically,
we improved the efficiency of polynomial multiplication in the algorithm by utilizing the properties of
the polynomials used in multiplication, which is common to all of the algorithms in the scheme.

The first method is to remove all of the multiplication operations between the coefficients of the
terms used in the polynomial multiplication. Random polynomials multiplied by the other polynomial
used in key generation, encryption, and decryption of RLizard KEMs have only −1, 0, and 1 as
coefficients. Therefore, if the coefficient value of the term to be multiplied is 1 or −1, the result is the
same as the input value of the other polynomial term to be multiplied or only the sign is changed,
so that the multiplication operation can be omitted and the same result can be obtained. We provide
an efficient tracking method to determine what coefficient value will be in the next multiplication
between coefficients. We were able to replace all of the multiplication operations with either addition
or subtraction operations.

The second improvement method is to reduce the number of iterations in the loops used to
perform polynomial multiplications.

By utilizing the existing loop and given the fact that the body in the loops is small, we could
eliminate approximately 25% of the iterations by adding only a few lines of code. Because the ring
Z[X]/(Xn + 1) is used, when multiplication is performed, the resultant terms with degree of at least
n should be reduced using the formula Xn = −1. Because of this, when performing multiplication
operations, there are two inner loops in polynomial multiplication: the first one is to add the
multiplication result to the suitable term of the output polynomial, and the other is to subtract the
multiplication result obtained from the above reduction formula.

We appropriately changed the indices of the longer inner loop in order to transfer the burden of
some coefficient multiplications to the smaller loop. By doing this, we were able to remove the size of
the longer inner loop. This approach results in savings in tens of thousands of comparison operations,
which is significant.

In addition, we aim to reduce SRAM usage in order to run RLizard KEM in a low-cost IoT
environment; in this study, we focused on electrically erasable programmable read only memory
(EEPROM). It was confirmed that all 8-bit ATmega boards have 4 KB of EEPROM. Therefore, we store
the public key that occupies the largest space, and which is unchanged in all of the algorithms in KEM.
We tried to store it in EEPROM and run it. In addition, because the read/write speed of EEPROM is
much slower than that of SRAM, we attempted to minimize the burden of read operations of the public
key. As a result, we ran our RLizard in an 8 KB SRAM environment, while minimizing the decrease in
performance due to the use of EEPROM.

We compared the performance with the RLizard Code [7] submitted to the NIST PQC standard.
Compared with the implementation submitted in the PQC standardization process, the MCU clock
cycles used in the key generation, encryption, and decryption processes are reduced by 39%, 55%,
and 17%, respectively. In addition, the memory (SRAM) used in the key generation, encryption,
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and decryption processes are decreased by 74%, 77%, and 78%, respectively. Further, compared with
other KEM algorithms implemented in an 8-bit MCU environment, the proposed method is more
efficient both in terms of the execution time and the required SRAM size.

The remainder of this paper is structured as follows. Section 2 explains the prior knowledge
required to understand the paper, and Section 3 discusses the related studies. Section 4 introduces the
methods proposed for improving the performance of RLizard. In Section 5, the experimental results
are compared with those of other KEMs. Finally, the conclusion is presented in Section 6.

2. Preliminary

In this section, we explain the prior knowledge and notation used throughout this paper.
We explain the notation in Section 2.1, and the RLizard KEM is introduced in Section 2.2.

2.1. Notation

The notations used throughout the rest of this paper are provided in Table 1.

Table 1. Notation.

Notation Description

Zq Z ∩
(
−

q
2 , q

2

]
Dn When D is a finite set, (n ≥ 1) Dn. means product of space of d

n T dimension of LWE samples, a positive integer

Φd(X)
For an integer d, let Φd(X) be the d-th cyclotomic polynomial of degree n = Φ(d),

where Φ(·) is Euler’s totient function which denotes the number of coprime positive
integers below the input. In out implementation it means Xn + 1

R, Rq
Cyclotomic ring and its residue ring modulo an integer q: R = Z[X]/(Φd(X)) and

Rq = Zq[X]/(Φd(X))

Ds A private key distribution over R

Dr An ephemeral secet distribution over R

DGσ Discrete Gaussian distribution to sample, σ as standard deviation

Hr Hamming weight of coefficient vector r

Hs Hamming weight of coefficient vector s

t Rt is the ring representing the plaintext space.t is used to define the ring.

p′, p The parameters used to define RLWR instances. They are used as parameters for RLizard.

q The modulus of the ring

d Bit-length of the shared key

a $
← D Sampling a from Distribution D

[a, b], [a, b),
(a, b], (a, b)

Indicates the range from a to b, a to b-1, a-1 to b, and a-1 to b-1, respectively. We deal with
only integers.

2.2. RLizard

RLizard KEM is a ring version of Lizard KEM, which is a Korean standard for lattice-based
post-quantum cryptography [8]. The security of RLizard is based on the hardness of the RLWE
problem [6,7] and the RLWR problem [9], and it is realized by applying the Fujisaki–Okamoto
transformation [10] to the RLizard encryption scheme.

RLizard [8] demonstrates the fast performance in encryption using the deterministic rounding
operation in the process of sampling errors. In addition, the storage space required to use the public
and secret keys required for the encryption and decryption processes is very compact to a few KBs.
Because the size of the key is small, it is suitable for applications involving IoT endpoint devices
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whose memory (SRAM) is of the order of a few KB. RLizard KEM works with three algorithms and
the setup step. The setup step, which is referred to as RLizard.KEM.Setup, focuses on setting up the
parameters. The key generation algorithm, which is called RLizard.KEM.KeyGen, generates a key pair
of an entity participating in the KEM protocol. The key encapsulation algorithm, which is referred
to as RLizard.KEM.Encaps, generates a ciphertext that can be used to extract the shared key if the
decapsulation is performed with the correct private key. The final decapsulation algorithm, which is
referred to as RLizard.KEM.Decaps, decapsulates the ciphertext to extract the shared key.

Algorithms 1–4 present details of the four steps mentioned above.

Algorithm 1. RLizard.KEM.Setup.

Description: Set functions and variables used in the algorithms.
Input: ∅
Output: params = (n, t, p′, p, q, d, Ds, Dr, σ, G, H, H’)

Procedure

1: Choose positive integer n, t, p′, p such that t ≤ p′ ≤ p ≤ q.
2: Choose an integer n as the power of 2.
3: Choose the value of Hs and Hr less than n.
4: Set the private key distributionDs, ephemeral secret distributionDr.
5. Choose σ to create a Gaussian distribution.
6: Choose d for use as the key length.
7: Set the hash functions that do the following calculation

- G: Rp× Rp× {0, 1}d× Rt → {0, 1}d

- H: Rt → Rq

- H′: Rt → {0, 1}d

Algorithm 2. RLizard.KEM.KeyGen.

Description: Generate public key and secret key
Input: params
Output: Public key(pk) = (a, b), Secret key(sk) = (s, k)

Procedure

1: Generate polynomial a $
← Rq, the first element of pk, and polynomial s $

← Dn
s , the first element of sk.

2: Generate the second element of sk, k ∈ Rq through the random sampling.

3: Compute the second element of pk, b: b $
← a× s + e ∈ Rq

4: Return pk = (a, b) and sk = (s, k).
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Algorithm 3. RLizard.KEM.Encaps

Description: Generate cipher text and shared secret by using public key
Input: params, pk
Output: Cipher text(=c) = (c1, c2, d), Shared secret (=K) = G(c1, c2, d, δ)

Procedure

1: Generate δ $
← Rt.

2: Compute r $
← H(δ) and d $

← H′(δ).
3: Compute elements of c, c1, c2.

- c1
$
←

( p
q

)
× a× r ∈ Rp

- c2
$
←

(
p′
t

)
× δ +

(
p′
q

)
× b× r ∈ R′p

4: Compute K = G(c1, c2, d, δ).
5: Return K and c = (c1, c2, d).

Algorithm 4. RLizard.KEM.Decaps.

Description: Generate a shared key by decrypting a cipher text.
Input: params, sk, c
Output: K

Procedure:

1: Compute δ′ $
←

(
t
p

)
× (

( p
p′
)
× c2 + s× c1 ∈ Rt.

2: Compute r′ $
← H(δ′) and d′ $

← H′(δ′).
3: Compute elements of c’, a′, b′.

- a′ $
←

( p
q

)
× a× r ∈ Rp

- b′ $
←

(
p′
t

)
× δ′ +

(
p′
q

)
× b× r′ ∈ R′p

4: Return K

- If c , c′, return K = G(c1, c2, d, k).
- Else if c = c′, return K= G(c1, c2, d, δ′).

3. Related Work

This section describes the related studies. We focus on research related to the implementation of
PQC algorithms in the IoT environment.

In 2014, the authors in [11] implemented an authentication method in a very limited environment
using the smart card as a target environment, and the NTRU algorithm and LP-LWE [12] algorithm
in ARM7TDMI and AVR Atmega128. However, only the lattice-based authentication method is
covered, and not KEM. In 2015, Zhe Liu et al. [13] presented a method that effectively implemented
Regev’s RLWE-based encryption method using the ATxmega128A1 processor, which is an 8-bit CPU
environment. In order to accelerate the reduction operation, the shift-add-multiply subtract-subtract
(SAMS2) method and the byte-scanning technology are applied to minimize the execution time



Electronics 2020, 9, 1549 6 of 14

to increase the efficiency of the discrete Gaussian sampler based on the Knuth–Yao random walk
algorithm [14]. However, it did not address memory optimization, and KEM was not covered. In 2017,
Oscar et al. [15] presented a method for improving the performance of the NTRUEncryption algorithm
in ARM Cortex-M0. To improve the speed of multiplication of polynomials, which consumes the most
CPU cycles among operations, the product form [16] was applied to polynomial multiplication to
show faster operation than conventional algorithms. However, an 8-bit MCU environment was not
considered. Angshuman et al. [17] implemented both memory and speed-optimized versions of the
SABER scheme in the ARM Cortex-M4 and Cortex-M0 environments. However, the 8-bit environment
was not considered. James et al. [18] implemented the FrodoKEM algorithm in the ARM Cortex-M4
environment in 2018. By improving the performance through the design of field-programmable gate
arrays (FPGAs) for fast calculation, the required clock cycle is improved to use only approximately
45% compared to the previously implemented FrodoKEM algorithm. However, for the same level of
security, approximately 300 million cycles are required to run the algorithms, which is over 90 times that
of Kyber [19]. In 2018, Saarinen et al. [20] implemented the Round5 algorithm targeting the embedded
environment. However, they only targeted the Cortex-M4 environment, and the 8-bit environment
was not considered. In 2019, Cheng et al. [21] implemented a hash function that was optimized in
terms of the assembly language for NTRU Prime KEM, and it exhibited improved performance in
an 8-bit AVR ATmega1284 environment. However, the maximum memory usage of the algorithm is
11,478 bytes, and the environment where the memory size is approximately 8 KB is not considered.
In 2020, Shahriar et al. [22] implemented RLWE encryption algorithms in the microprocessor of the AVR
ATxmega128A1 and ARM Cortex-M0 in a limited environment using the binary Ring-LWE algorithm.
However, binary Ring-LWE requires many more bits compared to the Ring-LWE with ternary bits,
and it is therefore not suitable for memory constraint devices.

Many studies have implemented and optimized KEM using grid-based encryption in an IoT
environment. However, many studies have been conducted on the 32 bit-ARM Cortex-M series,
and they have not considered more limited environments such as 8-bit microprocessors. However,
the market for 8-bit IoT devices is also growing, and KEM’s performance improvement for these
devices is also important [2]. Therefore, it is necessary to provide an efficient KEM by performing
research on increasing speed and reducing memory usage in constrained environments.

4. Proposed Methods

This section shows how to reduce the number of required clock cycles and memory usage in the
ATmega 8-bit environment. To support the 128-bit level of security, we assume that the following
parameters in Table 2 are used in our implementation.

Table 2. The parameters used in this work (for 128-bit security).

Parameter Value Parameter Value Parameter Value

n 1024 log p 8 Hs 128
log q 10 Hr 128

4.1. Representing A Sprase Polynomial with Coefficients −1,0, or, 1

We describe the data structure used for multiplication in the target implementation [7]. Because this
is also used in the proposed method, its understanding is essential to understand the proposed method.
Polynomial multiplication is used in the fourth step of the key generation algorithm (Algorithm 2)
described in Section 2, the third step of the encapsulation algorithm (Algorithm 3), and the third step
of the decapsulation algorithm (Algorithm 4).

In these polynomial multiplications, one polynomial (s in Algorithm 2 and r in Algorithms 3 and
4) has a special form. We explain this case using r.
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Figure 1 shows Ridx, which is an array representing polynomial r. This array has the degrees of
the terms whose coefficient values are 1 in front, in order from the largest to the smallest. Conversely,
the degrees of the terms with −1 as a coefficient are stored in opposite directions starting from the last.
When creating the polynomial r, the number of terms with 1 and −1 is fixed at Hr, so we can set the
size of the array to it. In addition, the index of the array in which the term with the coefficient value of
−1 starts is stored in a variable called neg_start.
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In the key generation process, the Sidx array is created for the polynomial s in the same process,
the size of the array is fixed to Hs, and a variable called neg_start is set with the same meaning as above.

4.2. Proposed Methods for Improving the Speed of RLizard

In this subsection, we propose two ways to reduce the required MCU clock cycles. Before discussing
the details of the description, we explain the meaning of the symbols used in this and
subsequent subsections.

a: An n-order polynomial, and coefficients are values that are sampled with a uniform distribution
among the integers between − q

2 + 1 and q
2 (inclusive).

c1: An array representing the polynomial to hold the result of a× r. Depending on the algorithm
used, it can finally be a ciphertext or information used to verify the ciphertexts in decapsulation.

The above two arrays have coefficients as values, and the index is the degree. Thus, their size is n.
Hr: this represents HR in our code.
The “original algorithm” in Figure 2 represents the implementation of [7], and the “improved

algorithm” depicts the proposed implementation in the figure. Because the previous implementation
did not use neg_start, it was not known whether 1 or −1 would be included in the branch variable.
Therefore, the branch value was multiplied, as in the code of the existing implementation. We improved
this and finally eliminated the multiplication by dividing the loop into two and replacing the branch
value with a constant using neg_start so that the branch value can be known before the inner loop
starts. Using the above method, the process of multiplication by n ×Hr times has been eliminated.
This has the effect of removing 131,072 multiplication operations from the above-described parameters.
Moreover, because the multiplication operation generally requires three times as many cycles as the
addition, the effect of removing them is very large.



Electronics 2020, 9, 1549 8 of 14

Electronics 2020, 9, x FOR PEER REVIEW 7 of 14 

 

In the key generation process, the ௜ܵௗ௫ array is created for the polynomial ݏ in the same process, 
the size of the array is fixed to ܪ௦, and a variable called neg_start is set with the same meaning as 
above. 

4.2. Proposed Methods for Improving the Speed of RLizard 

In this subsection, we propose two ways to reduce the required MCU clock cycles. Before 
discussing the details of the description, we explain the meaning of the symbols used in this and 
subsequent subsections. ܽ : An n-order polynomial, and coefficients are values that are sampled with a uniform 
distribution among the integers between − ௤ଶ + 1 and ௤ଶ (inclusive). ܿଵ: An array representing the polynomial to hold the result of ܽ ×  Depending on the algorithm .ݎ
used, it can finally be a ciphertext or information used to verify the ciphertexts in decapsulation. 

The above two arrays have coefficients as values, and the index is the degree. Thus, their size is ݊. ܪ௥: this represents HR in our code.  
The “original algorithm” in Figure 2 represents the implementation of [7], and the “improved 

algorithm” depicts the proposed implementation in the figure. Because the previous implementation 
did not use neg_start, it was not known whether 1 or −1 would be included in the branch variable. 
Therefore, the branch value was multiplied, as in the code of the existing implementation. We 
improved this and finally eliminated the multiplication by dividing the loop into two and replacing 
the branch value with a constant using neg_start so that the branch value can be known before the 
inner loop starts. Using the above method, the process of multiplication by ݊ ×  ௥ times has beenܪ
eliminated. This has the effect of removing 131,072 multiplication operations from the above-
described parameters. Moreover, because the multiplication operation generally requires three times 
as many cycles as the addition, the effect of removing them is very large. 

Here, we describe the second method. As can be seen in lines 2 to 7 of the “Improved algorithm” 
in Figure 2, there are two inner loops: the first one executes the 4th–5th lines iterated with the index 
value in the range of [0,n-deg), and the second executes the 6th–7th lines iterated with the index value 
in the range of [n-deg,n]. 

 
Figure 2. Details of the first method (the proposed implementation is indicated in red.). Figure 2. Details of the first method (the proposed implementation is indicated in red.).

Here, we describe the second method. As can be seen in lines 2 to 7 of the “Improved algorithm”
in Figure 2, there are two inner loops: the first one executes the 4th–5th lines iterated with the index
value in the range of [0,n-deg), and the second executes the 6th–7th lines iterated with the index value
in the range of [n-deg,n].

Of the two inner loops, we reduce the number of iterations for which the number of iterations is
longer by the number of iterations in the shorter loop. Then, we add the body of the longer loop in the
shorter loop to compensate for the reduction in the number of iterations in the longer loop. Because the
code size of the bodies in both loops is small, this works well without consuming a significant amount
of memory.

Figure 3 describes how the code changes from the form of the first proposed method that was
applied to the form of the second proposed method that was applied, while preserving their functions.

First, part (1.a) in the figure was divided into parts (2.a) and (2.b), and part (2.c) in order to process
differently depending on whether deg is less than or equal to n/2. It is important to consider whether
deg is less than or equal to n/2. This is because of the two inner loops described in (1.a), the loop that
has a large number of iterations depends on the deg value.

For convenience, we focus on parts (2.a) and (2.b) of the figure to explain only the cases where deg
is greater than or equal to n/2. The loop in Figure (2.a) can be further divided into two loops, i.e., (3.a)
and (3.b). We also transformed the loop (3.b) into (3.c), preserving its function by simply modifying
the range of values of the iteration variable and adjusting the formula used as the indices of arrays c1
and a. Finally, (4.b) can be constructed by adding the body of (3.c) to the body of the existing (2.b) loop.
In conclusion, it can be seen that (2.a) and (2.b) perform the same operation as (4.a) and (4.b), but the
number of iterations of the loop decreased by deg.

Based on the above improvement, if deg is less than n/2, the inner loops (4.a) and (4.b) that are
iterated n times in the original implementation are iterated by only n-deg times, and if deg is greater
than n/2, it is iterated by deg times, as in (4.c). Because the deg value has an average value of n/2 and is
selected from a uniform distribution in [0,n−1], the average number of executions of the entire loop is
reduced to

(
3n
4

)
×Hr, considering the outer loop. By reducing the number of iterations using the above

method, we can speed up the multiplication of polynomials.
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Algorithm 5 represents the description of the final version of the proposed implementation. All of
the ideas for computational efficiency are applied to the pseudo code given in Algorithm 5. The r_idx
array is explained in Section 4.1. Also, the variable neg_start is also explained in Section 4.1.

The algorithm consists of double loops. By applying the idea of (Figure 2), the multiplication
process could be eliminated because the coefficient of polynomial r was 1 in lines 2–15 and −1 in lines
16–29. Divide the loop based on the coefficient of r, then take out the order of polynomial r from the line
3, 17 and save it in the deg. In addition, by applying the idea of (Figure 3), some of the computations
to be done in the larger loop were modified to be done in the smaller loop. Thus, the multiplication
operation of the polynomial is performed in inner loops lines 5–9, lines 11–15, lines 19–23, and lines
25–29. As a result, the result of multiplication of polynomials through double loops is stored in the
c1 array.

4.3. SRAM Usage Improvement in 8-Bit ATmega Environment

The RLizard [7] implementation submitted to NIST uses up to 22 KB of memory. This is not a
problem when running in a desktop environment. However, if we only have a few KB of SRAM,
the code cannot be executed as is. Therefore, it is important to secure more SRAM space that can be
used while running RLizard in order for it to run in a constrained environment where the SRAM size
is about 8–16 KB.
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Algorithm 5. The proposed implementation.

Description: Multiplication of two polynomials a, which is stored in the array a, and r, which is stored in the
array r_idx. Please refer to Figure 1 to obtain the information about r_idx.
Input: the arrays a and r_idx
Output: the array c1 that contains the result of multiplication.

Procedure:

01: for i: = 0 to neg_start − 1 //Refer to Figure 1 for neg_start
02: set deg = r_idx[i]
03: if deg <= n/2:
04: for j: = deg to n − deg − 1
05: c1[deg + j] += a[j]
06: for j: = n − deg to n − 1
07: c1[deg + j − n] -= a[j]
08: c1[2*deg + j − n] += a[deg + j − n]
09: else
10: for j: = 0 to n − deg − 1
11: c1[deg + j] += a[j]
12: c1[j] −= a[j + n − deg]
13: for j: = 2*n − 2*deg to n −1
14: c1[deg + j − n] −= a[j]
15: for i: = neg_start to HR − 1
16: set deg = r_idx[i]
17: if deg <= n/2:
18: for j: = deg to n − deg − 1
19: c1[deg + j] −= a[j]
20: for j: = n − deg to n − 1
21: c1[deg + j − n] += a[j]
22: c1[2*deg + j − n] −= a[deg + j − n]
23: else
24: for j: = 0 to n − deg − 1
25: c1[deg + j] −= a[j]
26: c1[j] += a[j + n − deg]
27: for j: = 2*n − 2*deg to n −1
28: c1[deg + j − n] += a[j]
29: return

The pk generated in the key generation process of RLizard KEM (Algorithm 2) is used to generate
a ciphertext containing the shared key in the key encapsulation process of RLizard KEM (Algorithm 3).
pk consists of two polynomials (a, b), and the coefficient of each has a length of 9 bits. Therefore,
when n = 1024, pk occupies slightly more than 2 KB of memory. This is a very large size considering
the environment where the SRAM size is assumed to be in the range between 8–16 KB. Fortunately,
we have found that all ATmega 8-bit environments have EEPROMs with sufficient size. Table 3 presents
a list of the products mentioned [23].
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Table 3. 8-bit AVR products whose SRAM size is 8–16 KB.

8-Bit Microcontroller Product
Percentage of ATmega MCUs
with 8–16 KB SRAM and 4 KB

EEPROM

8-bit AVR

ATmega1284, ATmega1284P,
ATmega1280, ATmega1281,
ATmega2560, ATmega2561,

ATmega640, ATmega128,
ATmega128A

100%

We store pk in the EEPROM and use it. Because the value of pk does not change during the
algorithm execution process, it is suitable for storing in EEPROM, where the update time is very slow.
Using this, we are able to secure an additional SRAM of 2 KB or more.

In addition, 640 bytes of memory were saved by storing all constants used in the implementation
of flash memory. Furthermore, by optimizing the bit length of the random seed used in Gaussian
sampling employed in [4], it is possible to save a total of 2 KB of SRAM usage.

In conclusion, we reduced the size of the required SRAM to run the proposed method to 6576 bytes.
Therefore, the RLizard can work well in the 8–16 KB SRAM environment that we aim to achieve.

5. Performance Evaluation

We analyzed the performance of the proposed implementation. We used ATmega2560 [24,25],
which is an 8-bit CPU environment, as the implementation environment, to prove the suitability of
RLizard in a more restrictive environment, unlike [6], where the performance was evaluated on 32-bit
Cortex-M3. To obtain the required clock cycles correctly, we ran each algorithm 10,000 times, and then
averaged their required clock cycles. In addition, the maximum usage of SRAM was also measured.

We compared our implementation with that submitted to the NIST PQC competition [7].
Unfortunately, because of its high SRAM usage, it did not work well in our environment. Therefore,
the performance and SRAM usage of the existing implementation were measured in another
environment of 32-bit Cortex-M0+. The details of the environment used for the performance analysis
are shown in Table 4.

Table 4. Environment for performance evaluation.

Arch. SRAM Flash Memory EEPROM Clock Speed

32-bit ARM Cortex-M0+ 32 KB 256 KB NONE 48 MHz
8-bit AVR ATmega2560 8 KB 256 KB 4 KB 16 MHz

The performance analysis result is shown in the Figure 4, we can find that, compared to the
implementation in [7], the proposed implementation requires 39%, 55%, and 17% fewer MCU clock
cycles in key-generation, encapsulation, and decapsulation, respectively. As shown in Figure 5,
the maximum SRAM usage is decreased in the proposed implementation to only 6248 bytes, 6576 bytes,
and 6462 bytes in key-generation, encapsulation, and decapsulation, respectively. The required SRAM
is small enough to be used in environments where the SRAM size is even 8 KB.
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Table 5 shows the comparison with the implementation of other KEMs in an 8-bit MCU environment.
As shown in the table, our implementation performs the best compared with those in [11,21] in terms
of both the required clock cycles and the SRAM usage. In addition, the implementations in [11,21]
cannot be used for our target environment whose SRAM size is 8–16 KB because the required SRAM is
much greater than 8 KB.

Table 5. Comparison with other implementations.

Work Device
Name

Clock Cycles (×1000) SRAM Usage (Byte)

Key Gen. Enc. Dec. Total Key Gen. Enc. Dec.

Our work ATmega2560 1980 1978 6339 10,297 6248 6576 6462
[11]

NTRU ATmega64 76,444 2008 1390 79,842 13,721 13,721 13,721

[21]
NTRU Prime ATmega1284 - 8160 15,602 23,762 - 8694 11,478

The execution times of the improved algorithms are 118.0 ms (KeyGen), 117.8 ms (Enc.),
and 377.8 ms (Dec.) on the same environment as Figure 4. Since they are less than a second,
in terms of the computation time, it seems tolerable.

6. Conclusions

With the advent of the IoT era, there is a critical need to address security issues. In this study,
we propose some methods with which IoT devices with a small amount of computational power and
available SRAM can use KEM for data security. Focusing on the fact that 8-bit ATmega MCUs have an



Electronics 2020, 9, 1549 13 of 14

EEPROM of sufficient size, we proposed a method that allows the RLizard KEM to operate even in
low-spec IoT devices with an SRAM size of 8–16 KB by maximizing the use of EEPROM and flash
memory. In addition, the execution time of the RLizard algorithm has been improved to overcome
the performance limitations of low-end IoT MCUs. Furthermore, by performing experiments, it was
confirmed that the proposed method works efficiently in an environment with 8 KB SRAM. We hope
that the results of this study can contribute to improving the security of low-cost IoT devices.
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