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Abstract: The development of an accurate and robust state-of-charge (SOC) estimation is crucial for
the battery lifetime, efficiency, charge control, and safe driving of electric vehicles (EV). This paper
proposes an enhanced data-driven method based on a time-delay neural network (TDNN) algorithm
for state of charge (SOC) estimation in lithium-ion batteries. Nevertheless, SOC accuracy is subject
to the suitable value of the hyperparameters selection of the TDNN algorithm. Hence, the TDNN
algorithm is optimized by the improved firefly algorithm (iFA) to determine the optimal number
of input time delay (UTD) and hidden neurons (HNs). This work investigates the performance of
lithium nickel manganese cobalt oxide (LiNiMnCoO2) and lithium nickel cobalt aluminum oxide
(LiNiCoAlO2) toward SOC estimation under two experimental test conditions: the static discharge
test (SDT) and hybrid pulse power characterization (HPPC) test. Also, the accuracy of the proposed
method is evaluated under different EV drive cycles and temperature settings. The results show that
iFA-based TDNN achieves precise SOC estimation results with a root mean square error (RMSE)
below 1%. Besides, the effectiveness and robustness of the proposed approach are validated against
uncertainties including noise impacts and aging influences.

Keywords: time-delay neural network; improved firefly algorithm; lithium-ion battery; state of
charge; electric vehicle

1. Introduction

Environmental issues such as global warming, climate change, and carbon emissions drive the
necessity to deploy battery storage technologies [1]. Lithium-ion batteries are extensively employed
in the automotive industry due to their attractive characteristics such as low self-discharge, long life
cycle, high voltage, and high energy density [2]. However, the lithium-ion battery has some issues
such as performance degradation with aging cycles, temperature rise, accurate charge estimation,
over-charging, and over-discharging [3]. Thus, further investigation is required on the lithium-ion
battery charge estimation under a safe temperature region in electric vehicle (EV) applications.

EV has a battery management system (BMS) that executes operations such as state of charge
(SOC) monitoring, battery health estimation, remaining life prediction, temperature management,
battery equalization, and fault diagnosis [4,5]. SOC is a crucial parameter of BMS which defines the
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residual charge existing inside a battery cell [6,7]. SOC in EV applications has become an increasingly
popular research topic and is of great importance for improving battery lifecycles. An accurate
SOC calculation technique confirms the safe driving operation and protects the battery from many
abnormalities such as over-charged, over-discharged, and over-heating problems. Nonetheless,
SO is influenced by various factors such as the cathode material, material degradation, aging cycles,
and temperatures [8]. Hence, advanced research is concerned greatly with developing an accurate and
robust SOC estimation algorithm.

1.1. Related Works

A lot of studies have reported different approaches for SOC estimation of lithium-ion batteries
under different operating conditions. The conventional methods like coulomb counting (CC) [9] and
open-circuit voltage (OCV) [10] are the straightforward approaches for estimating SOC. Nevertheless,
the accuracy of the CC method is affected by sensor precision which accumulates during each current
integration. The OCV method obtains SOC by looking up the OCV vs. SOC curve; nevertheless,
it needs a long rest time and cannot operate in online conditions. To overcome these concerns,
model-based SOC estimation methods have been proposed. The model-based methods utilize a battery
model incorporated with adaptive filter algorithms such as the extended Kalman filter (EKF) [11],
unscented Kalman filter (UKF) [12], particle filter (PF) [13], H-infinity filter [14] and sliding mode
observer [15] to estimate SOC. The KF is a popular approach for SOC estimation; however, the accuracy
of KF may diverge badly in a highly nonlinear system. PF has fast execution and can deliver accurate
SOC results. Nevertheless, PF has a complex mathematical computation. The H-infinity filter is
suitable for moderate accuracy and a low computational cost. However, the performance would
abruptly decrease owing to temperature and aging effects. In recent years, data-driven SOC estimation
approaches have gained a lot of attention around the world because of their robust computation
capabilities for handling highly non-linear lithium-ion battery characteristics. Besides, data-driven
approaches examine SOC without exploring battery material structure, features, and associated
chemical reactions [16]. The back-propagation neural network (BPNN) algorithm offers simple
and easy execution but suffers from slow training operation [17]. The radial basis function neural
network (RBFNN) achieves reasonable SOC accuracy with incomplete information; however, it has
the shortcoming of lengthy training duration [18]. The extreme learning machine (ELM) is excellent
with regard to fast learning speed and improved generalization performance, but the accuracy is
influenced by the number of hidden layer neurons [19]. Although the wavelet neural network (WNN)
has less complexity in training operation, it needs many hidden units. The support vector machine
(SVM) can estimate SOC in the highly non-linear system, but has a complex execution process [20].
Gaussian process regression (GPR) can estimate SOC with model uncertainty; nonetheless, it has
a drawback of poor efficiency in high dimensional spaces [21]. The nonlinear autoregressive with
exogenous input neural network (NARXNN) is effective for mapping the lithium-ion battery non-linear
characteristics, but the performance highly depends on the suitable value of the hyperparameters [22].
The long short-term memory (LSTM) [23] and gated recurrent unit (GRU) [24] can examine SOC
under long-term dependencies; however, they require a large pool of data and an appropriate training
operation to achieve accurate SOC estimation results. The adaptive neuro-fuzzy inference system
(ANFIS) is an intelligent data-driven method that can obtain satisfactory SOC estimation solutions
against changing environmental conditions, but it has a complex structure and lengthy computation
process [25].

1.2. Major Contributions

The main contribution of this research is to design an optimized data-driven algorithm-based
SOC estimation technique for lithium-ion batteries. In particular, a time-delay neural network (TDNN)
algorithm optimized by the improved firefly algorithm (iFA) is proposed to elevate the accuracy and
robustness in SOC evaluation. The significant contributions of this research work are explained below:
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• The data pre-processing of the proposed iFA-based TDNN algorithm is simple and has easy
execution which only requires sensors to monitor the battery variables including voltage, current,
and temperature, thereby avoiding the need for an added filter.

• The TDNN has a self-learning algorithm that updates the learning parameters and employs input
layer information in the previous time steps to estimate SOC in the future stage. In contrast,
the model-based SOC estimation techniques require depth information and knowledge about
battery internal characteristics as well as experience and time to develop a battery model and
estimate related parameters accurately.

• The traditional TDNN algorithm examines SOC with a trial and error approach to determine the
suitable values of input time delay (UTD) and hidden neurons (HNs) [26]. However, the trial and
error method has some drawbacks such as inefficiency, data under-fitted, and over-fitted issues.
Therefore, the TDNN algorithm is integrated with iFA to avoid the trial and error method and
achieve accurate SOC estimation solutions.

• The generalization capability of the iFA-based TDNN algorithm is tested with two dissimilar
types of lithium-ion batteries. Moreover, two suitable experimental tests are carried out to validate
the proposed algorithm.

• Apart from the experiments, the accuracy of the proposed method is examined using three EV
drive cycles such as the dynamic stress test (DST), federal urban drive schedule (FUDS), and US06.
Accordingly, the variation of SOC estimation is monitored at three different temperature conditions.

• The influence of electromagnetic interference and low sensor precision might lead to inaccuracy
in measured current and voltage values. Thus, this paper considers uncertainty issues such as
noise impacts and aging profiles while estimating SOC. The robustness and effectiveness of the
iFA-based TDNN method are verified against both bias noise and random noise. The performance
of lithium-ion batteries deteriorates after the battery is repeatedly charged and discharged a
hundred times. Therefore, the adaptability of the proposed method is assessed under 50, 100, 150,
and 200 aging cycles.

The remainder of the paper is organized into six sections. Section two covers the explanation
of the proposed algorithm framework. The lithium-ion battery test bench and related experimental
tests are outlined in section three. Section four illustrates the design, methodological structure and
the execution of the proposed algorithm. The SOC estimation results under various conditions are
delivered in section five. The conclusion is presented in section six.

2. Theoretical Framework of SOC Algorithm

This section explains the theoretical strategy and framework of the proposed optimized data-driven
algorithm for SOC estimation in lithium-ion batteries.

2.1. SOC Modeling with Time Delay Network Algorithm

TDNN is a modified version of the feedforward neural network (FNN) which is simple, fast,
and efficient. TDNN is a supervised machine learning algorithm that is well-suited to model a dynamic
system with large time delays. Generally, FNN has no internal memory for storing past information,
which is ineffective for solving time-series problems. TDNN overcomes this issue by having a past
memory with tapped delay lines. TDNN exhibits dynamic memory and employs multiple layers
under a necessary interconnection between units which confirms the capability to address non-linear
and complex decisions [27]. TDNN has intelligent self-learning skills and robust computation abilities,
and hence it is suitable for SOC estimation.

The structure of TDNN is designed using one input layer, one or more hidden layers, and one output
layer, as shown in Figure 1. This research uses one hidden layer to estimate SOC. TDNN employs
a series of data such as an input vector with UTD (x = xk, xk−1, . . . xk−i+1), HNs (h = h1, . . . hL),
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and output vector yk to examine SOC. The output of the network can be expressed mathematically
using the following equations:

yk = ϕ0

(∑
L
j=1woj.ϕ j

(∑
M
i=1xk−i+1w ji + b j

)
+ bo

)
(1)

where ϕ j and ϕ0 denote the output of the hidden layer and output layer, respectively; w ji is the weight
between the input layer and hidden layers, woj is the weight between the hidden layer and output
layer; b j and bo denote the hidden layer bias and output layer bias, respectively; M and L represent the
number of inputs and hidden neurons, respectively.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 25 

 

  0 11 1
.

L M

k oj j k i ji j oj i
y w x w b b 

  
     (1) 

where j
  and 

0
  denote the output of the hidden layer and output layer, respectively; ji

w  is the 

weight between the input layer and hidden layers, oj
w  is the weight between the hidden layer and 

output layer; j
b  and 

o
b  denote the hidden layer bias and output layer bias, respectively; M and L 

represent the number of inputs and hidden neurons, respectively. 

Output LayerHidden layerInput layer

1z

1z

1z

1z









1


2


3


L


 0


+1
+1

k
x

1k
x



2k
x



1k M
x

 

ij
w

j
b

oj
w

0
b

k
y

 

Figure 1. The TDNN configuration for SOC estimation of the lithium-ion battery. 
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Figure 1. The time-delay neural network (TDNN) configuration for state-of-charge (SOC) estimation of
the lithium-ion battery.

The sigmoid activation function is represented by ϕ(t) and it is expressed as,

ϕ(t) =
1

1 + e−1
(2)

The back-propagation learning algorithm is applied to update network parameters of the TDNN
algorithm including weights and bias by propagating the output error from the output layer to the
hidden layer [28]. The Levenberg–Marquardt (LM) optimization technique is employed to train the
TDNN due to its high accuracy and fast response toward the training operation [29]. LM updates the
parameters adaptively to minimize the sum of the squared error, as shown in the following equations:

E(w) = e(w)Te(w) =
∞∑

k=0

∣∣∣∣∣∣∣∣ek(w)
∣∣∣∣∣∣∣∣2 (3)

where e(w) is the vector with element ek(w); ek(w) denotes the error in the k-th epoch.
A first-order Taylor series is employed to expand the error vector if the difference between the

past weight vector and newly estimated weight vector becomes small [30]. The Newton method is
used to reduce the function E(w) with respect to w, as presented in the following equation.

∆w = −
[
∇

2E(w)
]−1
∇E(w) (4)
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where ∇E(w) stands for gradient and ∇2E(w) denotes the Hessian matrix which can be obtained using
the following equation:

∇E(w) = JT(w)e(w) (5)

∇
2E(w) = JT(w)J(w) +

N∑
k=1

ek(w)
∂2ek(w)

∂wi∂w j
(6)

where J(w) denotes the Jacobian matrix which includes the first derivative of the network error.
Since the second term of Equation (6) is trivial in comparison to the product of the Jacobian matrix,
then Equation (4) can re-written as,

∆w = −
[
JT(w)J(w)

]−1
JT(w)e(w) (7)

If the simplified Hessian matrix is found not invertible, then LM algorithm is adjusted and
accordingly, Gauss-Newton method becomes,

∆w = −
[
JT(w)J(w) + γI

]−1
JT(w)e(w) (8)

where γ is the parameter to confirm the term
[
JT(w)J(w) + γI

]
is positive and invertible, I is the identity

matrix. The selection of the appropriate value of γ is essential for the LM function to ensure the
steadiness and convergence speed.

2.2. Improved Firefly Algorithm

The concept of the FA is derived based upon the flashing characteristics of fireflies. The fireflies
use different flashes to commutate among themselves as well as attract potential prey and mating
partners [31]. Three statements are applied to develop FA. The first statement mentions that the
attraction between two fireflies is independent since all the fireflies are unisex. The second statement
declares that the brighter fireflies attract the less-bright fireflies. The fireflies with the same brightness
travel randomly inside the boundary. The third statement says that the brightness of the fireflies will
define the fitness function [32].

The standard FA has slow convergence issues when the fireflies are located far away in the early
phases of generation. Moreover, the technique used to find the potential prey or communicate with
mating partners in standard FA is mimicked. Also, the influence of environmental factors on the
visibility of the flashing light is ignored. Generally, the attractiveness/ brightness of FA relies on many
factors, such as the type and shape of the landscape, the distance between two fireflies, and a few
environmental factors. For instance, the brightness visibility is reduced in the presence of fog, while the
attractiveness/brightness rises as darkness increases. Likewise, the brightness of fireflies cannot be
seen in the presence of high-intensity light. To address these concerns, Ball et al. [33] proposed a
new improved FA (iFA) algorithm (Algorithm 1) to increase the convergence speed by updating the
brightness of the fireflies. The exploration and exploitation capacities are enhanced in iFA algorithm
by adding two new terms: brightness visibility (Lmod) and environmental factors (ξ).

Generally, the probability of brightness visibility increases in the lower-dimension landscape
and easy optimization problems. In that case, Lmod is assigned to a high value. In contrast, Lmod is
set to lower value when the brightness visibility decreases in the high dimensional and complex
optimization problems. The impacts of environmental factors also affect the brightness visibility of
iFA. Thus, two environmental variables are introduced, including ambient darkness (σ1) and ambient
fogginess (σ2). The connection between these two variables can be expressed as follows:
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ζ =
1

1 + e

−

 σ2

σ1 ln
(
igen

) 
(9)

where igen denotes the generation number varying between 0 and iMaxGen. The brightness of fireflies
can be written as follows:

β(r) = β0
Proposede−γrm

, (m ≥ 1) (10)

where the attractiveness for r = 0 is represented by β0; γ is the absorption coefficient of light, r is the
distance between fireflies. The distance between two fireflies, ri j is based on the cartesian coordinate
system that can be written as follows:

ri j = ‖xi − x j‖ =

√∑
d
k=1

(
xi,k − x j,k

)2
(11)

where xi,k and x j,k are the spatial coordinate of the i-th and j-th fireflies towards the k-th component.
The proposed attractiveness of fireflies (β0

Proposed) is defined in the following equations:

β0
Proposed = (β0 × Lmod) + ζ when rand ≤ ζseed (12)

β0
Proposed = β0 when rand > ζseed (13)

If the ambient darkness increases, the contributions from the second term of Equation (12) will
be reduced, resulting in a lower environmental effect on β0

Proposed. In opposition, if the intensity of
ambient darkness decreases, then the impact of the environment becomes stronger, yielding lower
brightness visibility of fireflies. The rise of ambient fogginess in the environment leads to a stronger
impact of the environmental factor (ζ) on the proposed brightness of fireflies (β0

Proposed).
During the early iteration of iFA, the fireflies are located far away from one another, and accordingly,

the effect on environmental factors becomes stronger. As the iteration starts to increase, the fireflies
are situated close to each other, and subsequently their brightness visibility increases. In this case,
the environmental factor has less impact on the brightness visibility of iFA. Therefore, a probability
index (ζseed) is formulated using igen and normalized between 0 and 1.

ζseed = 1−
igen

iMaxGen
; 1 ≤ igen ≤ iMaxGen (14)

If the random number rand is equal to or lower than ζseed, then Equation (12) will be executed;
otherwise, Equation (13) will be selected. The brighter firefly j is attracted by the lesser bright firefly i,
as expressed by,

xi_new = xi_old + β
Proposed
0 e−γrm

ij
(
x j − xi_old

)
+ α ∈i (15)

where α is the randomization parameter and ∈i defines the random numbers located between ‘0’
and ‘1’.

The pseudocode of iFA is illustrated below:
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Algorithm 1 Improved Firefly Algorithm (iFA)

Start
Define the fitness function f (x), x = (x1, . . . , xd)

T

Create initial population of fireflies i = 1, 2, . . . , Sizepopulation
Assign γ α β0 Lmod σ1 and σ2

Assess fitness function of individual fireflies f (x), i = 1, 2, . . . , Sizepopulation
While t < Maxgenertion
Assess ξseed with Equation (14)
if ξseed ≥ rand

Assess β0
Proposed with Equation (12)

else
Assess β0

Proposed with Equation (13)
end if

for i = 1 : Sizepopulation
for j = 1 : Sizepopulation

if f
(
x j

)
> f (xi)

Move firefly i toward j
End if
Update the attractiveness of fireflies (β) with Equation (10)
Assess new solutions and update light intensity with Equation (15)
end for j

end for i
Rank the fireflies and find the current best population
t = t + 1

end while

3. Lithium-Ion Battery Experiments and Data Preparation

This section covers the type of lithium-ion cells used in this research, collected dataset,
experimental arrangement, experimental procedures, data partition, and evaluation criteria.

3.1. Lithium-Ion Battery Cell

In this research, two popular EV lithium-ion battery cells are used; one is a 3200 mAh rated
NCR18650B manufactured by Panasonic and the other is a 2600 mAh rated ICR18650-26F developed
by Samsung. The positive electrodes of NCR18650B and ICR18650-26F are made using LiNiCoAlO2

(LiNCA) and LiNiMnCoO2 (LiNMC), respectively, while the graphite is used as a negative electrode
in both batteries. LiNMC is popular due to its extended lifespan, while LiNCA offers a high level of
specific energy. Table 1 provides the information and specifications of the two lithium-ion batteries [6].

Table 1. Specifications of the lithium-ion battery.

Parameters LiNiCoAlO2 LiNiMnCoO2

Nominal capacity (Ah) 3.2 Ah 2.6 Ah
Nominal Voltage (V) 3.6 3.7
Min/Max voltage (V) 2.5/4.2 2.75/4.2

Charging method CC-CV CC-CV
Charging time (hours) 4 3
Charging current (mA) 1625 1300

Specific Energy (Wh/kg) 200–260 150–220
Weight (g) 48.5 47.0

Lifespan (cycles) 500 1000–2000
Thermal runaway (temperature) 150 ◦C 210 ◦C
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3.2. Battery Experimental Setup

A lithium-ion battery test bench model is established to monitor the key parameters including
capacity, current and voltage, power, and cycle number. The developed test bench model is separated
into two sections: one is the hardware section and the other is the software section, as depicted
in Figure 2. The hardware section includes two segments; the measurement unit and the control
unit. The measurement unit is designed using NEWARE BTS-4000 and LiNCA, LiNMC battery cells.
The maximum capacity of voltage and current for NEWARE BTS-4000 are 5 V and 6 A, respectively.
The NEWARE BTS-4000 has 8 channels that are independent of each other and it is capable of sensing
and recording the battery parameters each second with an accuracy of ±0.05% full scale (FS) [34].
The control unit can keep the charging and discharging voltage under the defined cut-off values,
thus protecting the battery from overcharging and over-discharging issues. In contrast, the software
section includes the battery testing system (BTS) software version 7.6 related to NEWARE BTS-4000
hardware and MATLAB 2015a. Both pieces of software are installed on the host computer. Each step
of the SDT and HPPC experiment is executed though the BTS software. After, the recorded data are
transferred to the host computer. Besides, the charging and discharging control of LiNCA and LiNMC
batteries are implemented through the appropriate software function of the BTS software. Finally,
MATLAB 2015a software is used to execute the iFA-based TDNN algorithm code to examine SOC.
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3.3. Battery Experimental Tests

The validation of the proposed algorithm is performed using a static discharge test (SDT) and
a hybrid pulse power characterization (HPPC) test. Besides, the noise test and aging cycle tests are
carried out to check the SOC accuracy against uncertainties. Before the experiments begin, the battery is
completely charged, and accordingly, the initial SOC is assigned to 100%. The Samsung ICR18650-26F
battery is used to explain the steps of each experimental test. These steps can also be applied to
a Panasonic NCR18650B while maintaining the manufacturer’s requirements in terms of current
and voltage.

(1) SDT SDT uses the constant discharge current of the lithium-ion battery to evaluate SOC.
The operation of SDT is explained using the steps mentioned below.
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i. Firstly, a constant current (CC) of 1.3 A (0.5 C) is applied to charge the battery fully until
the charge voltage increases to the maximum threshold of 4.2 V.

ii. Then, a constant voltage (CV) of 4.2 V is applied until a drop in the charge current to
0.13 A (0.05 C) is achieved.

iii. The battery being tested is kept idle for 1 h.
iv. A discharge current of 2.6 A (1 C) is applied until the voltage is reduced to 2.75 V.
v. The test ends if the battery voltage reaches the minimum threshold of 2.75 V; otherwise,

step ii will continue.

(2) HPPC test The HPPC test consists of the array of charge and discharge current pulses arranged
in an orderly manner. The following steps are used to describe the operation of HPPC.

i. The CC-CV method is employed to charge the battery completely until the battery current
decreases to 0.13 A (0.05 C).

ii. The battery being tested is kept idle for 1 h.
iii. A discharge current of 1.3 A (0.5 C) is applied for 10 s.
iv. The battery being tested is kept idle for 3 min.
v. A charge current of 1.3 A (0.5 C) is applied for 10 s.

vi. The battery is kept idle for 3 min.
vii. A discharge current of 0.65 A (0.25 C) is applied for 24 min to decrease the SOC capacity

of the battery by 10%.
viii. The experiment ends if the battery voltage reaches the lower cut off voltage; otherwise,

step iii will start again.

(3) Noise test

The accuracy of SOC could deviate due to electromagnetic interference (EMI) noises and sensor
precision. EMI noises take place when the switching of the power converter is operated at a high
frequency, and hence they may combine with the measured current and voltage signals. On the
other hand, current and voltage sensors have a common issue, equipment error, which leads to errors
in measurements. Thus, this research work considers both EMI impacts and sensor precision by
adding random noises and bias noises, respectively, to evaluate the proposed model’s suitability in the
real-world environment. Accordingly, the positive bias noises of 0.1 A and 0.01 V are injected into
the current and voltage measurements, respectively. At the same time, the random noises having
amplitude values of 0.1 A and 0.01 V are included in current and voltage measurements, respectively.

(4) Aging cycle test

Battery aging is a significant index term used to evaluate performance after continuous
charge-discharge cycles. Usually, the capacity of the battery declines with the rise of aging cycles.
However, capacity degradation does not occur in the same way in different types of lithium-ion
batteries. In this research, LiNCA and LiNMC battery cells are employed to assess the aging effect on
performance and predictable capacity, as well as to evaluate SOC. Four milestones of aging cycles are
selected to validate the accuracy and robustness of the proposed method including 50, 100, 150, and
200 cycles. The steps of the aging cycle are highlighted as follows:

i. Firstly, the complete charge operation is executed based on the CC-CV method with a constant
charge current of 1.3 A (0.5 C) until the battery voltage reaches 4.2 V. After, the charge voltage
of 4.2 V is kept constant until the charging current declines to 0.13 A (0.05 C).

ii. The idle operation of the battery is performed for 15 min.
iii. A constant discharge current of 2.6 A (1 C) is applied until the battery voltage decreases

to 2.75 V.
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iv. The lowest point of the discharge voltage (2.75 V) of the battery is checked. The one aging
schedule is completed when the battery reaches a cut-off voltage of 2.75 V; otherwise, step iii
will begin again.

v. After the completion of one aging cycle, the battery is kept in an idle operation stage for
one hour.

vi. Step i starts again to perform the second aging cycle test. The process continues until the
defined cycles are achieved.

3.4. Dataset Training and Testing

The dataset achieved from the battery test bench is split into two groups; training and testing.
The data partition is performed based on the cross-validation method using a 70-30 ratio [35].
The training operation is implemented in the offline phase while testing operation and SOC estimation
is performed in the online phase. To improve training accuracy and speed, the dataset is normalized
within the boundary of [−1, 1], as represented by the equation below,

x′ =
2(x− xmin)

xmax − xmin
− 1 (16)

where xmax and xmin are the maximum and the minimum values of variable x, respectively.
The maximum iterations and performance goal are set to be 1000 and 0.000001, respectively. The learning
rate is considered as 0.5. The host computer has sufficient computational power with 12 GB random
access memory (RAM). The current and voltage load profiles of SDT and HPPC for the LiNCA and
LiNMC batteries are shown in Figures 3 and 4, respectively. In this research, the positive current
and negative current correspond to the charging process and the discharging process, respectively.
The relationship between SOC and voltage is established where voltage increases with the rise of SOC,
as illustrated in Figure 5.
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3.5. Measurement of SOC Effectiveness

The performance of the iFA-based TDNN algorithm is assessed by comparison with reference
SOC values achieved through the CC method with an adjustable current sensor. The different statistical
error rate terms shown in (17)–(22) are used to check the accuracy of the proposed algorithm [35].
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N
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(
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)
(20)
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1
N

∑
N
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∣∣∣∣∣∣SOCai − SOCesi

SOCai

∣∣∣∣∣∣ (21)

SD =

√
1

N − 1

∑
N
i=1

(
SOC error− SOC error

)2
(22)

where SOCa is the actual/reference SOC and SOCes is the estimated SOC by the proposed algorithm,
N is the number of the data sample, MSE is mean square error, MAE is mean absolute error, MAPE is
mean absolute percentage error, SD is the standard deviation, and SOCerror is the average error of SOC
estimated values.

4. Design and Implementation of iFA Based TDNN Algorithm for SOC Estimation

The proposed algorithm is designed based on three vital components, including input dimension,
fitness function, and constraints of optimization. The iFA determines the suitable values of the
hyper-parameters which include the UTD and HNs while achieving the minimum value of the fitness
function and satisfying all constraints in the optimization during the iterative method.

4.1. Input Information

The input information consists of a matrix that is designed using the number of rows and columns
and defines the dimension and boundary of the hyperparameters. The number of problem dimension is
characterized by the number of rows, while the population of hyperparameters is outlined by the
number of columns in the matrix, as represented by the equation below:
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Di j =



X11 X12 X13

X21 X22 X23

X31 X32 X33

. . .

. . .

. . .

X1 j
X2 j
X3 j

X41 X42 X43
...

...
...

Xi1 Xi2 Xi3

. . .

. . .

. . .

X4 j
...

Xi j


(23)

where Di j represents the matrix of the input data which can be defined by i and j, where i = 1, 2, . . . . . . , P,
with P representing the population number; j = 1, 2, . . . . . . , N, with N denoting the problem dimension.

4.2. Fitness Function

The fitness function helps to achieve precise SOC estimation outcomes by finding the appropriate
values of hyperparameters. The iFA aims to obtain the lowest error rate of fitness function through
iterations that correspond to the optimum values of the UTD and HNs. Lithium-ion battery SOC
estimation has a high volume of datasets where SOC error is distributed randomly. Thus, root means
square error (RMSE) is selected as the fitness function which is shown in the following equation:

Objective f unction = min (RMSE) (24)

4.3. Optimization Constraints

The optimization constraints are determined by assigning the upper and lower number of the
UTD and HNs of the

TDNN algorithm. If the population of hyperparameters is located outside the boundary, then the
accuracy of iFA could deviate which may result in unsatisfactory performance during SOC estimation.
Therefore, the values of hypermeters are checked in each iteration. If any values are located outside
the boundary, then values will be reproduced and updated accordingly. The constraints of the
hyperparameters must satisfy the following equation:

Xk−1
i, j < Xk

i, j < Xk+1
i, j (25)

The above equation indicates that the value Xk
i, j of the hyperparameter should be placed between

Xk−1
i, j and Xk+1

i, j .

4.4. Execution Process of iFA Based TDNN Algorithm

The implementation of the TDNN-iFA begins with the collection of battery datasets, including
current and voltage, through experimental tests. After that, iFA is employed to find the appropriate
value of UTD and HNs based on the lowest value of the fitness function. Finally, the accuracy and
robustness of SOC estimation are assessed using different performance indicator terms. The proposed
method is then advanced into different tests and uncertainties. The flow diagram of the proposed
algorithm is shown in Figure 6. The methodology of the TDNN-iFA algorithm is divided into
three stages.

In stage I, a battery test bench model is built to carry out the experiments as well as collect battery
data. Then, data is pre-processed through normalization. After, the data is separated into training and
testing groups.

In stage II, the implementation of TDNN starts with assigning the epoch number, performance
goal, and learning rate. Subsequently, the process of iFA starts with the selection of suitable iteration
number, population size, input dimension, fitness function, and optimization constraints. At first,
the initial population of iFA is generated and the fitness function is assessed. After, the light intensity of
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the firefly is evaluated based on the fitness function, and accordingly, the best population is determined.
Later, the probability index and proposed attractiveness are assessed using Equations (12) and (13).
Next, the movement of the firefly from the brighter one toward the less-bright one is estimated. Later,
attractiveness among fireflies is evaluated and light intensity is updated using Equations (10) and
(15), respectively. The aforementioned processes continue until the highest number of iterations is
completed. Finally, the optimal values of UTD and HNs are found and consequently proceed to the
TDNN algorithm. Accordingly, the TDNN training process is executed using the LM method using
Equations (3)–(8). Afterward, the network parameters of TDNN are updated using the backpropagation
learning rule. Finally, the output of TDNN is computed using Equation (1).Electronics 2020, 9, x FOR PEER REVIEW 13 of 25 
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In stage III, the TDNN-iFA algorithm is verified through SDT and HPCC experiments based on
statistical error rate terms, as indicated in Equations (17)–(22). In line with that, the effectiveness of the
TDNN-iFA algorithm is assessed under EV drive cycles and varying temperature situations. Besides,
the robustness of the proposed method is evaluated against the uncertainties, including noise tests and
the aging cycle tests.

5. SOC Experimental Results and Validation

This section describes the experimental results of SOC estimation under different chemistries of
lithium-ion battery cells. Also, the validation of SOC is carried out under EV drive cycles, noise effects,
and aging impacts.

5.1. Assessment of Fitness Function and Optimal Parameter

The fitness function is evaluated using the optimization response curve in SDT and HPPC
experiments for LiNCA and LiNMC batteries, as presented in Figures 7 and 8, respectively.
The fitness function performance of iFA is compared with FA and particle swarm optimization
(PSO). The optimization curve is generated using a population of 50 and 500 iterations.
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The optimal values of UTD and HNs are determined via the response curve for optimization by
identifying the lowest point of the fitness function. For example, in SDT, iFA achieves the lowest fitness
function after 74 and 78 iterations for the LiNCA and LiNMC battery, respectively, which are smaller
than the FA and PSO algorithms. The corresponding iteration number delivers the fitness functions of
0.177% and 0.125% and provides the best values of the UTD and HNs of 2, 3, and 12, 15, respectively.
Likewise, in the HPPC test, iFA demonstrates excellent solutions in obtaining the minimum value of
the fitness function compared to FA and PSO algorithms achieving 0.292% and 0.276% after 45 and 39
iterations, respectively, for the LiNCA battery and LiNMC battery. Accordingly, the optimal values of
UTD and HNs of 4, 5, and 10, 18 are obtained after 45 and 39 iterations, respectively. The appropriate
values of the UTD and HNs in SDT and HPPC tests are summarized in Table 2.

Table 2. Optimum hyperparameters of the TDNN-iFA algorithm in SDT and HPPC tests.

Battery Test Optimal Hyperparameters LiNCA Battery LiNMC Battery

SDT
UTD 2 3
HNs 12 15

HPPC
UTD 4 5
HNs 10 18

5.2. Experimental Verification Results

The performance of the iFA-based TDNN algorithm is verified using SDT and HPPC experiments
and results are compared and analyzed with three commonly-reported data-driven algorithms; namely,
the backpropagation neural network (BPNN) and radial basis function neural network (RBFNN) and
Elman neural network (ENN). The comparative analysis is performed using a similar length of input
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datasets for training and testing. In addition, iFA is employed to update the number of HNs of BPNN,
RBFNN, and ENN to achieve unbiased comparison.

(1) SOC Estimation in LiNCA Battery

The SOC is examined for the LiNCA battery using the TDNN-iFA algorithm under SDT and
HPPC experiments, as depicted in Figures 9 and 10, respectively. It is observed that the reference SOC
values are placed adjacent to estimated SOC values which proves that the proposed approach obtains
accurate solutions. The results of RMSE, MAE, MAPE, and SD also demonstrate the superiority of the
iFA-based TDNN algorithm over iFA-based BPNN, iFA-based RBFNN, iFA-based ENN as denoted
in Table 3. In SDT, RMSE is estimated to be 0.5844% in the proposed algorithm, which is a 32.2%,
54.9%, and 19% decrease when compared to the iFA-based BPNN, iFA-based RBFNN, iFA-based
ENN, respectively. Moreover, the proposed algorithm computes MAE of 0.2374% which is reduced by
60.8%. 78.7% and 56.7% from those obtained from the iFA-based BPNN, iFA-based RBFNN, iFA-based
ENN, respectively. Similarly, MAPE is declined by 29.9%, 54.1% and 38.7% in comparison to those
values derived using the iFA-based BPNN, iFA-based RBFNN, iFA-based ENN. Besides, the proposed
method has a maximum SOC error under 3%; however, high fluctuations are observed in iFA-based
BPNN, iFA-based RBFNN, iFA-based ENN, having SOC error of [−5.19%, 6.45%], [−4.36%, 8.89%] and
[−3.32%, 2.26%], respectively. The proposed algorithm is also dominant in HPPC test and possesses a
lower error rate than those from iFA-based BPNN, iFA-based RBFNN, iFA-based ENN methods.
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Table 3. SOC performance evaluation in the LiNCA battery.

SOC Method BPNN-iFA RBFNN-iFA ENN-iFA TDNN-iFA

Load Profile SDT HPPC SDT HPPC SDT HPPC SDT HPPC

RMSE (%) 0.8620 1.4124 1.2961 2.5155 0.7215 1.6524 0.5844 0.8512
MSE (%) 0.0074 0.0199 0.0168 0.0633 0.0052 0.0273 0.0034 0.0072
MAE (%) 0.6059 0.6659 1.1145 1.997 0.5479 1.2294 0.2374 0.4652

MAPE (%) 3.6939 6.2650 5.6405 10.4826 4.2235 7.5826 2.5864 3.5624
SD (%) 0.8610 1.1685 1.2815 2.4878 0.6876 1.4869 0.5841 0.8505

SOC error bound (%) [−5.19, 6.45] [−5.45, 9.98] [−4.36, 8.89] [−15.28, 12.32] [−3.32, 2.26] [−5.09, 7.17] [−2.58, 2.05] [−4.31, 4.73]
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(2) SOC Estimation in LiNMC Battery

The performance of SOC estimation results is also evaluated for the LiNMC battery under SDT
and HPPC experiments, as illustrated in Figures 11 and 12, respectively. From Table 4, it can be
observed that RMSE is decreased by 60.3%, 70.8%, and 49.7% in the proposed algorithm under SDT
compared to the iFA-based BPNN, iFA-based RBFNN, iFA-based ENN, respectively. Similarly, 76.2%,
84.3%, and 68.6% reductions are reported in the proposed algorithm in comparison to iFA-based BPNN,
iFA-based RBFNN, and iFA-based ENN, respectively, while calculating MAE. Besides, the iFA-based
TDNN method demonstrates excellent results in the aspects of SOC error, MSE and MAPE. For instance,
the maximum SOC error is noted to be 1.38% in the proposed approach, while it is 3.31%, 5.44%,
and 3.02% in iFA-based BPNN, iFA-based RBFNN, and iFA-based ENN, respectively. The proposed
algorithm also obtains a narrow SOC error in the HPPC test, obtaining a maximum SOC error of
4.23%. Since TDNN has few mathematical complications in the testing stage, the execution time is
small, indicating less than 30 milliseconds and 0.5 s in SDT and HPPC tests, respectively. In conclusion,
the aforesaid accurate outcomes and fast computation time in the testing phase demonstrate the
suitability of TDNN-iFA algorithms in real-time BMS.
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5.3. SOC Estimation under EV Drive Cycles and Temperatures

The accuracy and effectiveness of the iFA-based TDNN approach for SOC estimation are further
evaluated under different EV drive cycles. EV drive cycle data are obtained on LiNMC battery with
a rated capacity of 2.0 Ah [36]. The DST, FUDS, and US06 drive schedules are employed to assess
the accuracy and robustness of the proposed method, as depicted in Figure 13. The aforementioned
drive cycles are diverse in terms of current and voltage values. DST relates to the battery charging
and discharging under the dynamic phase, FUDS relates to EV driving in urban areas and US06
corresponds to high acceleration driving with quick speed fluctuation. It is noticed that SOC estimation
results under DST, FUDS, and US06 drive cycles are found to be located very near to the reference
SOC values which confirms high robustness and low estimation error. In all drive cycles, SOC error is
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restricted under ±5%. Moreover, the temperature effects; 0 ◦C, 25 ◦C and 45 ◦C are taken into account
under DST, FUDS, and US06 drive cycles, as shown in Figure 14. It is observed from Figure 13 that,
iFA-based TDNN achieves RMSE and MAE below 0.8% and above 6%, respectively in DST drive cycle
at 0 ◦C. The RMSE and MAE in the FUDS cycle are slightly higher than the DST cycle, indicating below
0.9% and 0.8%, respectively at 0 ◦C. US06 cycle obtains the highest error rates among all drive cycles
due to high fluctuation of current values with RMSE and MAE below 1% and 0.8% respectively. It is
observed that error rates in all drive cycles decrease with the rise of temperature from 0 ◦C to 45 ◦C.
For instance, RMSE in DST cycles is achieved to be over 0.6% at 25 ◦C while it is below 0.6% at 45 ◦C.
In the US06 cycle, iFA-based TDNN has MAE below 0.8% at 25 ◦C; however, MAE drops at 45 ◦C,
indicating under 0.6%.

Table 4. SOC Performance Evaluation in LiNMC Battery.

SOC Method BPNN-iFA RBFNN-iFA ENN-iFA TDNN-iFA

Load Profile SDT HPPC SDT HPPC SDT HPPC SDT HPPC

RMSE (%) 0.7775 1.2989 1.0576 2.1121 0.6137 1.0272 0.3084 0.7937
MSE (%) 0.0065 0.0169 0.0112 0.0446 0.0038 0.0106 0.0009 0.0063
MAE (%) 0.6091 0.4222 0.9242 1.6669 0.4620 0.7265 0.1452 0.3283

MAPE (%) 3.7937 7.7595 7.1818 14.3527 4.2617 7.2337 2.1826 5.5247
SD (%) 0.7770 1.2982 1.0556 2.1115 0.6123 0.9818 0.3041 0.7940

SOC error bound (%) [−2.94, 3.31] [−5.47, 15.87] [−2.97, 5.44] [−10.87, 6.04] [−1.62, 3.02] [−5.24, 8.04] [−1.18, 1.38] [−3.32, 4.23]Electronics 2020, 9, x FOR PEER REVIEW 18 of 25 

 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 13. SOC and SOC error estimation results: (a,b) DST, (c,d) FUDS, and (e,f) US06 at 25 °C. 

 

Figure 14. SOC performance comparison under different temperatures and EV drive cycles. 

5.4. SOC Robustness Validation Against Noise Effects 

The robustness of the iFA-based TDNN algorithm for SOC estimation is validated against both 

bias noise and random noise, as presented in Figure 15 and Table 5. The results reveal that the 

0

0.2

0.4

0.6

0.8

1

RMSE MAE RMSE MAE RMSE MAE

DST FUDS US06

E
rr

o
r 

(%
)

0° C 25° C 45° C

Figure 13. SOC and SOC error estimation results: (a,b) DST, (c,d) FUDS, and (e,f) US06 at 25 ◦C.



Electronics 2020, 9, 1546 18 of 24

Electronics 2020, 9, x FOR PEER REVIEW 18 of 25 

 

  
(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 13. SOC and SOC error estimation results: (a,b) DST, (c,d) FUDS, and (e,f) US06 at 25 °C. 

 

Figure 14. SOC performance comparison under different temperatures and EV drive cycles. 

5.4. SOC Robustness Validation Against Noise Effects 

The robustness of the iFA-based TDNN algorithm for SOC estimation is validated against both 

bias noise and random noise, as presented in Figure 15 and Table 5. The results reveal that the 

0

0.2

0.4

0.6

0.8

1

RMSE MAE RMSE MAE RMSE MAE

DST FUDS US06

E
rr

o
r 

(%
)

0° C 25° C 45° C

Figure 14. SOC performance comparison under different temperatures and EV drive cycles.

5.4. SOC Robustness Validation against Noise Effects

The robustness of the iFA-based TDNN algorithm for SOC estimation is validated against both
bias noise and random noise, as presented in Figure 15 and Table 5. The results reveal that the
combination of bias and random noise has a small influence on SOC estimation with regard to RMSE,
MAE, and SOC error. It is noticed that the addition of bias and random noises elevates the SOC error
bound a bit; however, SOC error rates have stayed inside the reasonable range. For example, iFA-based
TDNN achieves the maximum SOC error of 3.5% and 5.8% in SDT and HPPC load profiles, respectively,
for the LiNMC battery. In line with that, the proposed method obtains RMSE of 0.558% and 1.112%,
respectively. The results are also satisfactory in the LiNCA battery, where the maximum SOC error is
reported to be 4% and 6.3% in SDT and HPPC tests, respectively. The aforementioned results prove
that the iFA-based TDNN algorithm demonstrates strong robustness against biased noises and random
noises toward accurate SOC estimation.
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LiNMC battery.
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Table 5. SOC estimation with noise effect under SDT and HPPC tests.

Test Battery
0.01 V/0.1 A Bias Noise and 0.01 V/0.1 A Random Noise

RMSE (%) MAE (%) SOC Error (%)

SDT
LiNCA 0.765 0.482 [−3.9, 4]
LiNMC 0.558 0.386 [−2.9, 3.5]

HPPC
LiNCA 1.287 0.852 [−5.2, 6.3]
LiNMC 1.112 0.728 [−5.1, 5.8]

5.5. SOC Robustness Validation against Aging Impacts

The comparative performance between LiNCA and LiNMC batteries is further examined using
the aging cycle test. The current and voltage characteristics of LiNCA and LiNMC batteries for one
aging cycle are shown in Figure 16.
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Figure 16. One aging cycle test: (a) the LiNCA battery and (b) the LiNMC battery.

The performance degradation of LiNCA and LiNMC batteries is assessed using discharge capacity
and cycle life under four milestone aging cycles; 50 cycles, 100 cycles, 150 cycles, and 200 cycles,
as depicted in Table 6. The discharge capacity denotes the current capacity of the lithium-ion battery
after certain aging cycles while cycle life compares the present capacity of an aged battery cell with the
capacity of a new battery cell. The results indicate that the capacity of LiNCA falls faster than LiNMC
battery, which means LiNCA performs poorly under many aging cycles. In contrast, LiNMC shows
strong adaptability and robustness against many aging cycles. For instance, the LiNCA battery has
a capacity of 2763 mAh after 200 aging cycles, which is reduced by 9.5% in comparison to the value
obtained after 50 aging cycles. However, only a 3.6% decrease in capacity is noted in the LiNMC
battery. The results of the cycle life are also satisfactory in the LiNMC battery under many aging cycles.
For example, LiNMC has a cycle life of 95.756% after 200 aging cycles; nevertheless, the cycle life of
LiNCA is reduced quickly and estimated to be 85.923%.

Table 6. Battery performance degradation in the LiNCA battery and LiNMC battery.

Aging Cycles Battery Discharge Capacity (mAh) Cycle Life (%)

50
LiNCA 3052 95.107
LiNMC 2515 97.889

100
LiNCA 2951 91.282
LiNMC 2477 97.231

150
LiNCA 2850 88.629
LiNMC 2460 96.931

200
LiNCA 2763 85.923
LiNMC 2425 95.756



Electronics 2020, 9, 1546 20 of 24

At first, the LiNCA and LiNMC batteries are cycled for a definite number of cycles. Afte the
completion of the aging cycle test, the lithium-ion battery is loaded with the HPPC test. The performance
of the TDNN-iFA model is tested with the HPPC experimental dataset of aged LiNCA and LiNMC
batteries for 50, 100, 150, and 200 cycles. The results of SOC and SOC errors under 50, 100, 150, and 200
aging cycles for LiNCA and LiNMC battery are presented in Figures 17 and 18, respectively. Moreover,
the results of the RMSE, MAE, and SOC error bound are depicted in Table 7.Electronics 2020, 9, x FOR PEER REVIEW 21 of 25 
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instance, at 50 aging cycles, the LiNCA battery has RMSE of 0.933%, while this is 0.821% in the 
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Figure 17. Aging performance for the LiNCA battery: (a) SOC estimation under 50 cycles, (b) SOC
estimation under 100 cycles, (c) SOC estimation under 150 cycles, and (d) SOC estimation under 200
cycles; (e) SOC error under 50 cycles, (f) SOC error under 100 cycles, (g) SOC error under 150 cycles,
and (h) SOC error under 200 cycles.
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Table 7. Performance assessment of LiNCA and LiNMC batteries under aging cycles.

Aging Cycles Battery RMSE (%) MAE (%) SOC Error (%)

50
LiNCA 0.933 0.717 [−3.4, 6.7]
LiNMC 0.821 0.623 [−5.5, 5.7]

100
LiNCA 1.525 0.923 [−3.6, 7.6]
LiNMC 0.864 0.685 [−5.8, 6]

150
LiNCA 1.878 1.338 [−6.8, 8.8]
LiNMC 0.927 0.742 [−6.5, 6.2]

200
LiNCA 2.614 1.785 [−7.8, 9.9]
LiNMC 1.046 0.825 [−6.7, 6.4]
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It is observed that the LiNCA battery has higher error rates than the LiNMC battery. For instance,
at 50 aging cycles, the LiNCA battery has RMSE of 0.933%, while this is 0.821% in the LiNMC battery.
A similar type of results is also noticed in the MAE and SOC error rates. Moreover, the SOC error
range is found to be [−3.4%, 6.7%] in the LiNCA battery, while that for LiNMC is [−5.5%, 5.7%].
SOC error rates move up as the aging cycle increases from 50 to 100. For example, in the LiNMC battery,
the MAE is calculated to be 0.685% at 100 cycles, while it is 0.623% at 50 cycles. Under 100 aging cycles,
the LiNMC battery delivers better solutions than the LiNCA battery, achieving a maximum SOC error
and RMSE of 6% and 0.864%, respectively. The assessment of iFA-based TDNN algorithm for SOC
estimation is further conducted under 150 aging cycles for LiNCA and LiNMC batteries. The results
show that the proposed model tracks the reference SOC precisely for both the LiNCA battery and
LiNMC battery. Like previous aging cycles, the LiNMC battery is also dominant over the LiNCA
battery in providing a low error rate. The LiNCA battery has a SOC error range of [−6.8%, 8.8%] while
that for LiNMC is [−6.5%, 6.2%]. Besides, the LiNMC battery obtains low RMSE and MAE, indicating
0.927% and 0.742%, respectively.

The SOC evaluation of the LiNCA battery and LiNMC battery is further verified under 200
aging cycles. It is observed that the accuracy of the LiNCA battery drops significantly when it is
deeply cycled. The results indicate that SOC error range and RMSE is attained to be [−7.8%, 9.9%],
and 2.614% respectively, for the LiNCA battery. However, the LiNMC battery delivers outstanding
SOC estimation results under 200 aging cycles, with a SOC error limit and RMSE of [−6.7%, 6.4%],
and 1.046%, respectively.

To test the LiNCA and LiNMC batteries at a higher number of cycles, the verification of SOC
estimation by the proposed algorithm is carried out under 400 and 600 cycles. The results indicate that
the cycle life of LiNCA and LiNMC batteries under 400 cycles is 73.685% and 91.597%, respectively. It is
reported in the literature that a lithium-ion battery with a cycle life below 80% is declared unsafe and
unserviceable [37]. In this regard, LiNCA batteries are no longer usable, and accordingly a replacement
is needed. In contrast, the LiNMC battery has a cycle life well above 80% and hence is used for
algorithm validation and analysis. At 400 aging cycles, the LiNMC battery achieves RMSE and MAE
of 1.327% and 1.128%, which are raised by 21.2% and 26.8%, respectively, compared to the values
obtained under 200 aging cycles. Moreover, the LiNMC battery illustrates satisfactory performance
under 600 aging cycles, indicating cycle life, RMSE, and MAE values of 88.257%, 1.582%, and 1.368%,
respectively. These results show that LiNCA batteries are not appropriate for a high number of aging
cycles above 400. Nevertheless, LiNMC batteries are outstanding even if the aging cycles increase to
600, demonstrating high adaptability and robustness for EV operation.

5.6. Comparative Validation with the Existing Methods

Apart from data-driven techniques for SOC validation, the accuracy of the proposed optimized
TDNN algorithm is compared with the traditional methods and model-based approaches including
OCV, CC, KF, PF, H∞ filter, recursive least square (RLS), and observers, as illustrated in Table 8.

The key implementation factors associated with SOC estimation such as lithium-ion battery
chemistry, battery capacity, changing temperature, and validation profiles are taken into consideration
to conduct the comparative analysis. The SOC error rates are assessed under a similar type of validation
profile to carry out a fair comparative study. For instance, in 1 Coulomb (C) SDT, the proposed
method computes MAE of 0.2374% and 0.1452% in the LiNCA battery and LiNMC battery, respectively.
Nevertheless, the MAE is found to be more than 2% in unscented Kalman filter (UKF) and H∞ Filter
methods under the same load profile. The performance of the iFA-based TDNN for SOC estimation is
further examined using different EV drive cycles. It is observed that RMSE is reported below 1% in the
proposed algorithm under different EV drive cycles, while that for OCV, the unscented particle filter
(UPF), RLS, and proportional integral observer (PIO) is above 1%. In summary, the iFA-based TDNN
algorithm has proven to be excellent in terms of accuracy, adaptability, and robustness compared to the
existing notable SOC estimation techniques.
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Table 8. Comparative performance analysis between the proposed method and the existing methods.

Ref. Method Battery Chemistry Temperature Experimental
Validation Profile Error Rate

[38] OCV 1.1 Ah LiFePO4
0 ◦C to 50 ◦C at an
interval of 10 ◦C DST, FUDS RMSE 5%

[39] CC 2.3 Ah Lithium-ion cell Room temperature C-rates Charging-
discharging current MAE 1.905%

[40] UKF 24 Ah LiNMC Room temperature at
25 ◦C ± 2 ◦C 1 C SDT MAE 2.56%

Max SOC error 5.36%
[41] H∞ Filter 2.4 Ah Lithium-ion cell Constant temperature 1 C SDT MAE 3.96%
[42] UPF 10 Ah LiFePO4 −20 ◦C~50 ◦C EV operation condition RMSE 2.05%

[43] RLS 90 Ah LiFePO4 −10 ◦C~50 ◦C Urban EV drive cycle RMSE 2.3%
MAE 1.8%

[44] SMO 5 Ah Lithium polymer battery Room temperature 1 C SDT RMSE 1.8%
[45] PIO 90 Ah Lithium-ion cells 0 ◦C, 25 ◦C, 40 ◦C DST RMSE 1.2%

Proposed
Method

3.2 Ah LiNCA Room Temperature 1 C SDT, HPPC
MAE 0.2374% (SDT)

MAE 0.4612% (HPPC)

2.6 Ah LiNMC MAE 0.1452% (SDT)
MAE 0.3283% (HPPC)

2.0 Ah LiNCA 0 ◦C, 25 ◦C, 45 ◦C DST, FUDS, US06 RMSE < 1%
MAE < 0.8%

6. Conclusions

An improved data-driven algorithm using TDNN optimized by iFA is proposed to achieve accurate
SOC estimation of lithium-ion batteries. The iFA algorithm improves the computational capability of
TDNN by choosing the optimum values of UTD and HNs, thus leading to an enhancement in SOC
accuracy and robustness. For the verification, the fully developed algorithm is examined with two types
of lithium-ion battery cells under two different experiments, namely SDT and HPPC. The TDNN-iFA
algorithm achieves excellent SOC estimation results with low RMSE, SD, MSE, MAPE, and MAE,
while having a narrow SOC error below 5% in the SDT and HPPC tests. The SOC estimation results
under EV drive cycles and variable temperatures also prove the dominance of the iFA-based TDNN
algorithm where RMSE is reported under 1%. Besides, the reasonable accuracy under noise and aging
impacts illustrates the adaptability and robustness of the TDNN-iFA algorithm against uncertainties.
Furthermore, detailed comparative analysis with the existing SOC estimation techniques considering
different loads and temperatures demonstrates that the developed optimized data-driven method can
provide excellent solutions with respect to the accuracy, efficiency, and robustness. The key information,
results, and analysis achieved from this study would be important for the EV automobile industry
toward the development of an enhanced SOC estimation approach. Hence, further investigation of
SOC estimation via the optimized TDNN method will not only increase the battery life cycle but also
confirm a reliable operation of EVs, resulting in a substantial growth of the EV market. Future research
work should include the validation of iFA-based TDNN algorithm for SOC estimation of the lithium-ion
battery pack in EV applications.
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