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Abstract: The formulation of a maximum power point tracking (MPPT) control strategy plays
a vital role in enhancing the inherent low conversion efficiency of a photovoltaic (PV) module.
Keeping in view the nonlinear electrical characteristics of the PV module as well as the power
electronic interface, in this paper, a hybrid nonlinear sensorless observer based robust backstepping
super-twisting sliding mode control (BSTSMC) MPPT strategy is formulated to optimize the electric
power extraction from a standalone PV array, connected to a resistive load through a non-inverting
DC–DC buck-boost power converter. The reference peak power voltage is generated via the
Gaussian process regression (GPR) based probabilistic machine learning approach that is adequately
tracked by the proposed MPPT scheme. A generalized super-twisting algorithm (GSTA) based
differential flatness approach (DFA) is used to retrieve all the missing system states. The Lyapunov
stability theory is used for guaranteeing the stability of the proposed closed-loop MPPT technique.
The Matlab/Simulink platform is used for simulation, testing and performance validation of the
proposed MPPT strategy under different weather conditions. Its MPPT performance is further
compared with the recently proposed benchmark backstepping based MPPT control strategy and the
conventional MPPT strategies, namely, sliding mode control (SMC), proportional integral derivative
(PID) control and the perturb-and-observe (P&O) algorithm. The proposed technique is found to have
a superior tracking performance in terms of offering a fast dynamic response, finite-time convergence,
minute chattering, higher tracking accuracy and having more robustness against plant parametric
uncertainties, load disturbances and certain time-varying sinusoidal faults occurring in the system.

Keywords: backstepping; buck-boost; DC–DC converter; differential flatness approach (DFA);
maximum power point tracking (MPPT); photovoltaic (PV); sliding mode control (SMC);
super-twisting algorithm (STA)

1. Introduction

Electrical energy production has been a challenging task throughout history. With the
industrialization of countries, the energy demand is growing proportionally. Most of the energy
production nowadays comes from depleting fossil fuels causing environmental concerns in terms of
greenhouse gas emission, global warming and increased pollution. Furthermore, due to the economic
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and petroleum crisis nowadays, together with increasing efforts for environmental protection, scientific
research has now focused on the development of so-called alternative or renewable energy sources [1,2].

Among different forms of the alternative energy sources, electricity generation from solar energy
through photovoltaic (PV) cells is regarded as the fast developing technology due to considerable
reduction in its equipment cost. It is a naturally and abundantly available clean energy, distributed all
over the earth, and can compete with other sources of energy production [2,3]. Despite all the stated
attractive attributes of the PV cells, its energy conversion efficiency is still very low. The PV cell has
a nonlinear current-voltage and power-voltage (i.e., I − V and P− V, respectively) characteristics
that vary considerably with the ambient environmental conditions (i.e., temperature and irradiance).
Only, under a uniform solar irradiance, the PV cell exhibits a unique operating point, called the
maximum power point (MPP), where the maximum voltage and current (i.e., VMPP and IMPP,
respectively) occurs. This makes the maximum power extraction from the PV cell quite a challenging
task under inconsistent atmospheric conditions. Hence, to maximize the efficiency and to extract and
transfer the maximum possible power from the PV cell to a load, a sophisticated control strategy is
needed, known as the maximum power point tracking (MPPT). The MPPT strategy matches the load
resistance with the source (PV cell) resistance, thus forcing the PV cell to operate on the MPP and
ensuring the maximum power extraction, despite ambient atmospheric variations or the load. The PV
system operation in the MPPT mode also, indirectly, reduces the total number of PV cells required and,
hence, its total cost. [4–7].

The MPPT algorithm is typically integrated into the power electronic converter serving as a
hardware interface between the PV cell (source) and the load. This algorithm continuously alters the
duty cycle, d, of the power converter switches and adapts the PV system operating point (MPP or VMPP)
to the varying atmospheric conditions, thus ensuring the optimal power extraction from it [8–11].

To maximize the power output of a PV system, conventionally, hill climbing strategies are used.
These strategies include a number of variants of the two basic algorithms, such as: Perturb-and-observe
(P&O) and incremental conductance (IncCond). Both of these stated strategies try to find the MPP of
the PV system by introducing oscillations in the output, even if the MPP is reached. Thus, the overall
efficiency of the PV system is reduced. However, the IncCond algorithm causes less oscillations than
the P&O. Similarly, under rapidly varying atmospheric conditions, the IncCond algorithm performs
better than the P&O technique. However, it needs additional control circuitry for proper operation,
thus making its implementation more complex [12].

Owing to the nonlinear nature of the electrical characteristics of the PV cell and power converter,
different nonlinear MPPT control strategies have been reported in the available scientific literature.
In [13], a conventional backstepping based nonlinear MPPT scheme has been proposed for a standalone
PV system. However, a significant steady-state error was observed in the output during MPP
tracking. This issue has been addressed in [12] through integral backstepping based nonlinear MPPT
algorithm, where the output tracking error was reduced to a minute level due to the integral action.
Similarly, another nonlinear robust backstepping based MPPT paradigm has been proposed in [14].
This stated strategy not only dealt efficiently with the simultaneous variation of the temperature
and irradiance, but also it offered significant robustness against time-varying sinusoidal faults and
parametric uncertainties occurring in the system.

In the context of nonlinear control, the backstepping strategy belongs to the recursive control
design. It acquires its name from the recursive nature of the controller design, where the design process
starts with an inner scalar equation that steps-back towards the external control input after passing
through a chain (or sequence of integrators). Its application is based on designing a nonlinear controller
recursively by choosing some of the system state variables as the virtual controllers, followed by
designing intermediate control laws for these selected virtual controllers. Its attractive attributes are
fast dynamic response, external disturbance rejection, robustness to system parametric uncertainties
as well as modeled and unmodeled system dynamics. It has the capability of canceling out all the
destabilizing effects (i.e., forces or terms) appearing throughout the domain [15,16].
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Another well-established nonlinear MPPT control strategy is the conventional sliding mode
control (CSMC). It is a robust control strategy based on the variable-structure control (VSC) theory.
The key to CSMC implementation is the reduction of the higher order complex closed-loop system to
the first order, namely the sliding variable along with its derivative. Consequently, the plant order is
reduced, thus the main control design is focused on the reduced plant dynamics. The main attributes
of the CSMC include: Simple implementation, good dynamic response, external disturbance rejection
and low sensitivity to (internal) plant parametric uncertainties (or variations). However, the main
negative aspect of the first-order CSMC is the high-frequency oscillations in the system states, called the
chattering phenomenon, resulting from the switching action of the discontinuous control signal as
well as other non-idealities (e.g., hysteresis, time-delays, unmodeled system dynamics etc.) [17–19].
The chattering leads to a low control accuracy, increased heat losses in the power electronic circuits,
and high wear and tear in case of moving mechanical parts [20].

To attenuate chattering, several nonlinear higher order sliding mode control (HOSMC) strategies
can be found in the available literature, such as the super-twisting algorithm (STA) [21]. The STA is
a second-order SMC strategy where the control signal appears in the first derivative of the sliding
variable. Moreover, unlike other second-order SMC strategies, it is applicable to a system (of any order,
in general). Some of the main features of the STA are given as follows [18,19,22,23]:

1. It offers a finite-time convergence of the output as well its derivative to the origin.
2. It can compensate those perturbations/uncertainties that are Lipschitz
3. It requires the information of the output only (the sliding variable)
4. It introduces an extra integrator (dynamic extension) to the control structure in such a manner that

the discontinuous control term is hidden behind this integrator. Thus, it artificially increases the
plant relative degree and generates a continuous control signal, thereby attenuating chattering.

Motivation and Significant Contributions

The main motivation of this article is to formulate an MPPT control strategy for a PV system
with minute chattering and at the same time offering a high precision performance under different
atmospheric conditions and internal as well as external disturbances.

For this purpose, a hybrid sensorless observer based nonlinear robust backstepping super-twisting
sliding mode control (BSTSMC) MPPT paradigm is proposed in this article for delivering an
optimum power from a PV array to a resistive load through a DC–DC converter. The reference
peak power voltage is generated via the Gaussian process regression (GPR) based probabilistic
machine learning approach that is adequately tracked by the proposed MPPT scheme. A generalized
super-twisting algorithm (GSTA) based differential flatness approach (DFA) is used to observe all
the missing system states. The Lyapunov stability theory is used for guaranteeing the stability
of the proposed closed-loop MPPT technique. The MPPT performance of the proposed control
strategy is simulated, tested, validated and compared with the recently proposed benchmark
backstepping [13] based MPPT strategy and conventional SMC, PID and P&O based MPPT techniques,
in Matlab/Simulink, under simultaneous variation of the temperature, irradiance and load. It is
observed that the proposed BSTSMC based MPPT technique offers a superior tracking performance in
terms of offering a fast dynamic response, finite-time convergence, minute chattering, higher tracking
accuracy and having more robustness against plant parameters perturbations, load disturbances and
certain time-varying sinusoidal faults occurring in the system.

As per the available scientific literature, following are the significant contributions made by this
research article:

1. To the best of the authors knowledge, model based backstepping STA, for MPPT control of the
PV system, has never been applied before.

2. The authors also claim that the DFA based observer using GSTA has never been implemented for
states retrieval before.
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3. The GPR based voltage generation trajectory also contributes to the scientific literature.

The entire article is organized as follows: Section 1 covers the introduction and background
literature review to this article. Section 2 is dedicated to the PV system modeling. Section 3 discusses
the PV array reference peak power voltage generation. Section 4 describes the averaged state-space
modeling of the DC–DC converter. Section 5 presents the differential flatness based system states
observer design. Section 6 is about the proposed MPPT control scheme design. Section 7 discusses the
performance validation of the proposed MPPT scheme in Matlab/Simulink. Finally, Section 8 presents
concluding remarks to this article.

2. Phtovoltaic Array Mathematical Modeling

A PV cell generates electricity (DC) from sunlight using the photoelectric effect. For getting
an increased voltage and current output, PV cells are connected in series and parallel combination,
respectively. Series connection of PV cells forms a PV module or panel, series connection of PV modules
constitutes a PV string, while parallel connection of PV strings makes a PV array.

Depending on their complexity and accuracy, a PV cell can be represented by several different
equivalent circuit models, including: Single-diode, two-diode and three-diode equivalent circuit model.
Taking into account its simplicity and reasonable accuracy, the most commonly used equivalent circuit
model is the single-diode model of the PV cell [24], as illustrated in Figure 1. Where, Rs and Rp

indicate the PV cell equivalent series and shunt resistances, respectively. Normally, Rs << Rp, where
Rs exists due to the metallic leads resistances, while Rp due to the leakage current of the PN-junction.
Furthermore, Iph, ID, Ip, I and V are the photon-generated current, diode current, current through the
equivalent shunt-resistance, cell output current and cell output voltage, respectively. Mathematically,
the PV cell output current can be worked out from Figure 1 by applying Kirchhoff’s current law at the
junction, as follows:

I = Iph − I0

[
e

q
AkT (V+IRs) − 1

]
︸ ︷︷ ︸

ID

− V + IRs

Rp︸ ︷︷ ︸
Ip

(1)

In Equation (1), ID indicates the Shockley diode equation, I0 represents the diode leakage
(or reverse saturation) current, q equals the electron charge (1.6× 10−19 C), k is the Boltzmann constant
(1.38× 10−23 J/K), T represents the PN-junction temperature (in Kelvin) and A denotes the diode
ideality factor (or constant), where usually: 1 ≤ A ≤ 1.50.

Figure 1. Single-diode equivalent circuit model of a photovoltaic (PV) cell.

For practical applications, many PV cells are connected in series and parallel combination to
obtain higher voltage and current output, respectively. Suppose, Np and Ns be the number of parallel
connected PV modules and series connected PV cells, respectively. Then, the mathematical relation
between the PV array output current, ipv, and output voltage, vpv, can be expressed as follows [25]:

ipv = Np Iph − Np I0

[
e

q
AkT

( vpv
Ns +

ipv Rs
Np

)
− 1
]
−

Np

Rp

(
vpv

Ns
+

ipvRs

Np

)
(2)
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In this work, a user-defined PV array with a total power output of 24.880 W is employed.
Overall, it has 16 PV modules, where 4 modules are connected in a series combination in each string,
and then 4 strings are connected in a parallel combination to constitute the complete PV array. Table 1
describes various electrical and physical parameters of the PV array, under standard test conditions
(STC), i.e., 25 ◦C and 1000 W/m2. Moreover, the PV array electrical characteristics (I −V and P−V),
are‘depicted in Figure 2.

Figure 2. Electrical characteristics of the PV array.

3. Reference Voltage Generation via Gaussian Process Regression

The MPPT controller must continuously track the PV array output voltage, vpv, to its reference,
VMPP or vr

pv for delivering the maximum available power to the load. Because, the reference
voltage varies with the inconsistent weather conditions, that is, the temperature, (T, ◦C), and solar
irradiance, (G, W/m2). Different approaches have been used to estimate/learn the PV array
reference peak power voltage, such as regression plane [12,13], Takagi-Sugeno-Kang based adaptive
NeuroFuzzy Inference System (ANFIS) [14] and Gaussian process regression (GPR) based learning
approaches [26]. In this article, a GPR based probabilistic machine learning procedure is employed for
VMPP estimation/learning of the PV array.

Definition 1. A Gaussian process (GP) can be defined as the collection of random variables, where any finite
number of those random variables have a joint Gaussian distribution [27].

The GPs put a prior over functions in order to obtain posterior over functions, for some data
being observed. When some random function f (x) follows a GP, it is indicated by a combination of a
mean function and a covariance (or kernel) function, as follows:

f (x) ∼ GP
(
µ(x),K

(
x, x′

))
where f (x) and GP indicate a real process and a Gaussian process, respectively, x and x′ are the
arbitrary input variables (normally represented as vectors, because there are many input variables),
µ(x) = E[(x)] represents the mean function, E[(x)] is the expectation of (x) and K(x, x′) =

E [( f (x)− µ(x)) ( f (x′)− µ (x′))] describes the covariance (or kernel) function evaluated at x and
x′, which is sometimes also known as the kernel trick.

Definition 2. A function K, capable of mapping a pair of input arguments x and x′ into R (real numbers) is
known as a kernel [27].

The covariance function encodes all of the assumptions about the function to be learnt,
thus making it a crucial ingredient in GP predictor. Any function could be selected as a valid covariance
function, as long as its resulting covariance matrix remains positive semi-definite. Nonetheless, in some
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learning processes, the input arguments are not necessarily vectors. For such scalar inputs, the most
commonly used kernel function is the squared exponential kernel (KSE). It is expressed as follows:

cov
(

f (x), f
(

x′
))

= KSE
(
x, x′

)
= exp

(
− r2

2`2

)
= exp

(
−|x− x′|2

2`2

)
(3)

where parameters r and ` represent the radial basis function and characteristic
length-scale, respectively.

It can be seen in Equation (3) that the covariance between the outputs is expressed as a function
of the inputs. It means that the covariance, for this particular covariance function, reaches almost
unity between the output variables, if the corresponding inputs are close enough. On the other hand,
it decreases if the distance between the inputs increases.

In this article, a GPR based VMPP learning process is carried out in Matlab/Simulink using
the Regression Learner App. In this process, GPR learns three different variables at a time, that is,
it takes the two atmospheric variables (i.e., temperature and solar irradiance) as two input arguments
(i.e., known predictors or data) and then maps these variables to their corresponding VMPP (i.e., known
response). A trained GPR model, based on the squared-exponential kernel function, is obtained that
renders new predicted responses for any new input data.

For GPR based VMPP learning process, the VMPP data is recorded by entering the user-defined
PV array specifications, given in Table 1, in Matlab/Simulink. During this process, the temperature
is perturbed from 0 ◦C to 75 ◦C in uniform steps of 1 ◦C. On the other hand, the solar irradiance is
perturbed from 1 W/m2 to 1000 W/m2, in uniform steps of 1 W/m2. As a result, about 76,000 VMPP
data points are recorded. The concept of GPR based VMPP learning workflow is depicted in Figure 3.
Moreover, the predicted response of the trained GPR model against the true (or actual) response is
depicted in Figure 4. As, the predicted response closely matches the true response (i.e., the diagonal
line), it indicates that the prediction error is very small and the learning process renders a good trained
GPR model. This trained GPR model then generates the reference voltage, VMPP, during simulation
for any combination of input temperature and irradiance levels that is tracked by the MPPT controller.
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Figure 3. Gaussian process regression (GPR) based VMPP learning workflow.
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Figure 4. Predicted and true response comparison of the trained GPR model.

4. State-Space Averaged Discrete-Time Bilinear Equivalent Circuit Modeling of the Cascaded
Non-Inverting DC-DC Buck-Boost Power Converter

For operating the PV array at its MPP, irrespective of inconsistent atmospheric conditions,
the MPPT control algorithm is integrated into the power electronic converter serving as a hardware
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interface between the PV array (source) and the load. This algorithm constantly adjusts the duty cycle,
d, of the power converter switches and adapts the PV array operating point (VMPP) to the varying
atmospheric conditions, thus ensuring the optimal power extraction from it [8].

Several well-known versions of the DC–DC power converters have been employed as the
hardware interface between the PV array and the load, specifically, conventional buck-boost converter,
Cuk converter, and single-ended primary inductor (SEPIC) converter. However, all the stated converter
variants are prone to high switching stresses, and consequently lower efficiency. Moreover, the output
voltage polarity is reversed with respect to the input voltage polarity (or the output voltage polarity
is negative with respect to the common ground), specifically in case of the conventional buck-boost
converter and the Cuk converter. These stated issues are resolved by using a cascaded non-inverting
DC–DC buck-boost (CCNI-BuBo) converter, which is a cascaded combination of a buck converter and
a boost converter. Its output voltage is either less than, or higher than in magnitude than its input
voltage. Moreover, the output voltage polarity is the same with respect to the input voltage polarity.
It has two controllable switches (S1 and S2), an inductor (L) and two capacitors (C1 and C2) in its circuit.
It can be operated in three separate modes, that is, the buck mode (when S1: Switching and S2: OFF),
the boost mode (when S1: ON and S2: Switching) and the buck-boost mode (when both S1 and S2:
Simultaneously switching) [28].

Conventionally, the switching power converters have time-variant nonlinear response. So, to give
a better physical insight into a converter operation and properties, different equivalent circuit
modeling techniques are used. If the accuracy is not a big concern, a converter can be approximately
represented by its continuous, time-invariant and linear equivalent circuit model using the small-signal
approximation that are easier to analyze. Since, a switching power converter basically behaves as a
sampled system, hence, for a higher level of accuracy it must be represented by its state-space averaged
discrete-time bilinear equivalent circuit model that includes the product of the duty cycle, d, and system
states [29,30].

In this research work, the state-space averaged discrete-time bilinear equivalent circuit modeling
technique is employed to develop an equivalent circuit model for the CCNI-BuBo converter serving as
power electronic interface between the PV array and the resistive load, RL, as illustrated in Figure 5.
Different significant parameters of the converter are expressed in Table 1. Let the converter operates in
the continuous conduction mode (CCM), then, there are two different switching modes of operation
for the CCNI-BuBo converter. That is, Mode 1: Both S1 and S2 are ON, while both D1 and D2 remain
OFF. Mode 2: Both S1 and S2 remain OFF, while both D1 and D2 are ON. That is, the converter is
operated in the buck-boost mode. Now, the state-space model for operation in Mode 1 of the stated
converter, in compact vector-matrix form, can be expressed as follows:

v̇pv

i̇L

v̇C2


︸ ︷︷ ︸

ẋ

=


0 − 1

C1
0

1
L 0 0

0 0 − 1
RLC2


︸ ︷︷ ︸

Aon


vpv

iL

vC2


︸ ︷︷ ︸

x

+


1

C1

0

0


︸ ︷︷ ︸
Bon

[
ipv

]
︸ ︷︷ ︸

w
(4)

[
vpv
]︸ ︷︷ ︸

y1

=
[

1 0 0
]

︸ ︷︷ ︸
Con

 vpv

iL
vC2


︸ ︷︷ ︸

x

(5)
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Similarly, the state-space model for operation in Mode 2 of the stated converter, in compact
vector-matrix form, can be expressed as follows:

v̇pv

i̇L

v̇C2


︸ ︷︷ ︸

ẋ

=


0 0 0

0 0 − 1
L

0 1
C2
− 1

RLC2


︸ ︷︷ ︸

Aoff


vpv

iL

vC2


︸ ︷︷ ︸

x

+


1

C1

0

0


︸ ︷︷ ︸
Boff

[
ipv

]
︸ ︷︷ ︸

w
(6)

[
vpv
]︸ ︷︷ ︸

y2

=
[

1 0 0
]

︸ ︷︷ ︸
Coff

 vpv

iL
vC2


︸ ︷︷ ︸

x

(7)

In Equations (4)–(7), Aon and Aoff are the system matrices, Bon and Boff are the input column
vectors and Con and Coff are the output row vectors for Mode 1 and 2, respectively. Moreover, x is
the state-variable vector indicating the input and output capacitor voltages and inductor current, w is
the input disturbance vector representing the source (PV array) current, and y is the output vector
denoting the PV array output voltage.

Now taking the weighted averages of Aon and Aoff, Bon and Boff, and Con and Coff with an
appropriate duty ratio, d, as follows:

A = (d)Aon + (1− d)Aoff

B = (d)Bon + (1− d)Boff

C = (d)Con + (1− d)Coff

 (8)

Now, the state-space averaged discrete-time bilinear equivalent circuit model of the CCNI-BuBo
converter can be expressed as follows:


v̇pv

i̇L

v̇C2


︸ ︷︷ ︸

ẋ

=


0 0 0

0 0 − 1
L

0 1
C2
− 1

RLC2


︸ ︷︷ ︸

Ao f f =Ac


vpv

iL

vC2


︸ ︷︷ ︸

x

+




0 − 1

C1
0

1
L 0 0

0 0 − 1
RLC2


︸ ︷︷ ︸

Aon

−


0 0 0

0 0 − 1
L

0 1
C2
− 1

RLC2


︸ ︷︷ ︸

Aoff


︸ ︷︷ ︸

Bcb


vpv

iL

vC2


︸ ︷︷ ︸

x

d(t) +




ipv
C1

0

0


︸ ︷︷ ︸
Bonw

−


ipv
C1

0

0


︸ ︷︷ ︸
Boffw


︸ ︷︷ ︸

Bc

d(t) +


1

C1

0

0


︸ ︷︷ ︸
Boff

[
ipv

]
︸ ︷︷ ︸

w

(9)
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Since,Aon 6= Aoff, hence the state-space averaged discrete-time equivalent circuit model of the
CCNI-BuBo converter, expressed in Equation (9), is bilinear. It can be simplified as follows:

ẋ = Aoff x + (Aon −Aoff)︸ ︷︷ ︸
Bcb

x d +Bc d(t)︸ ︷︷ ︸
Bu

+Boff w︸ ︷︷ ︸
Bw

(10)

Equation (10) is in the form of a standard bilinear continuous-time system, where d(t) = u(t)
indicates the input to the system, Bcb is the matrix of the bilinear terms (x, d), Bw is the matrix of
input disturbances and Bu is the matrix of control inputs.

Let, vpv = vC1 = x1, iL = x2, and vC2 = vR = x3. These notations will be used in the forthcoming
sections. Different significant parameters of the CCNI-BuBo DC–DC converter are specified in Table 1.

5. Differential Flatness Based States Observer Design

Usually all the system state variables are available during the implementation of most of
the control methodologies. However, some technical and economical constraints may inhibit the
availability of the system states. An observer (or differentiator) can be employed for estimating the
derivative of a missing/non-measurable system state variable. The main drawback of a (conventional)
differentiator is that it increases the high frequency gain. Furthermore, a pure differentiator is not
proper (or causal), and in case of a disturbance (e.g., a change or spike or noisy environment), it causes
a theoretically infinite control signal. This phenomenon is termed as the chaos in the scientific literature.
In general, a differentiator may either be exact or robust alone, but not both simultaneously. It requires
a trade-off between exactness and robustness to simultaneously offer both with respect to the input
noises and possible measurement errors [31]. For this reason, in this article, both the essential features
are integrated into a single differentiator that accurately estimates the system state variables. This stated
differentiator is based on a generalized STA (GSTA) that uniformly demonstrates robustness as well as
exactness with a finite-time convergence [32].

Such that, for an ith differentiator, an estimation (or observation) error can be defined as follows:

ζ1 = xi − x̂i (11)

where xi and x̂i are the actual and the estimated (or observed) values of x,
respectively. Moreover, the observed output states of the differentiator, in compact vector-matrix
notation, can be expressed as follows:[ ̂̇xî̇xi+1

]
=

[
−ciφi (ζi)

−ci+1φi+1 (ζi)

] [
x̂i+1

0

]
(12)

where, i = 1, 2, 3, x̂i+1 is the estimated value of xi+1, and ci and ci+1 are the positive design constants.
Since, the system under consideration possesses three state variables (x1, x2 and x3), hence, using the
stated strategy in Equation (12) ̂̇x1, ̂̇x2 and ̂̇x3 are obtained from a set of three differentiators, respectively.

The terms, φi (ζi) and φi+1(ζi), appearing in Equation (12), are defined as follows:

φi(ζi) = |ζi|
1
2 sign(ζi) + λ|ζi|

3
2 sign(ζi) (13)

and
φi+1(ζi) =

1
2

sign(ζi) + 2λζi +
3
2

λ2|ζi|2sign(ζi) (14)

where, λ ≥ 0 is a scalar quantity. Putting λ = 0 in Equation (13) and (14) recovers the standard robust
exact differentiator, via the SMC technique, as proposed in [31]. The higher-degree terms, that is,
|ζi|

3
2 sign(ζi) and |ζi|2sign(ζi), provide the differentiator with a uniform convergence. It means that the
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convergence time of the differentiator will be bounded by a constant. Moreover, it will be independent
of any initial conditions.

Note that the tuning parameters (c1, c2 and λ) of the three GSTA based differentiators and their
convergence analysis, using standard test input signals are given in Table A1 and Figures A1 and A2,
in Appendix A, respectively.

Differential Flatness Approach

The flatness concept has been derived from the differential algebra. In nonlinear control system
theory, a flat system is the one that is equivalent to a linear system. In other words, the system
dynamics render the ability to support an accurate linearization. This linearization process is supported
by a special dynamic feedback mechanism called the endogenous feedback. A system satisfying
the flatness property is termed as a differentially-flat system or simply flat system. One major
property of a flat system is that the system states and the input variables can be written directly,
(without requiring any integration of a differential equation), in terms of a particular set of variables
called the flat (or linearized) outputs, along with a finite number of their derivatives [33]. In other
words, without needing any integration, all the system state variables and inputs can be extracted
from the flat outputs.

Once ̂̇x1, ̂̇x2 and ̂̇x3 are obtained from a set of three differentiators, in the next step, the differential
flatness approach (DFA) is applied on these stated differentiators to recover the (actual) missing system
states x2 f and x3 f from ̂̇x1, ̂̇x2, respectively. The implementation of the DFA is illustrated in Figure 5.

If 
vpv = vC1 = x1

iL = x2

vC2 = vRL = x3

d = u

Equation (9) can be re-written as follows:

ẋ1 =
−ux2

C1
+

ipv

C1

ẋ2 =
ux1

L
+

(u− 1) x3

L

ẋ3 =
(1− u) x2

C2
− x3

RLC2

Then, the DFA can be applied by rewriting the first two equations of the previous set of equations,
as follows:

x2 f =
C1

u

(
−̂̇x1 +

ipv

C1

)
(15)

and

x3 f =
L

(u− 1)

(
−ux̂1

L
+ ̂̇x2

)
(16)

Now, these two (actual) missing system states (i.e., x2 f and x3 f ), recovered through the
DFA, and called the flat or linearized (output) states, are applied as inputs to the differentiators.
The Matlab/Simulink implementation of the DFA based states observer design along with the proposed
MPPT strategy is illustrated in Figures 6 and 7.
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6. Backstepping Based Super-Twisting Sliding Mode MPPT Control Design

This section covers the formulation of the nonlinear BSTSMC based MPPT paradigm for
maximizing the power extraction from the PV array. Note that this design procedure uses the observed
values of the system state variables (i.e., x̂1, x̂2 and x̂3) instead of the actual (or true) states. The proposed
MPPT controller constantly adjusts the duty cycle, d, of the CCNI-BuBo converter switches and adapts
the PV system operating point (MPP or VMPP) to the varying atmospheric conditions, thus ensuring
the optimal power extraction from it.

The proposed BSTSMC law is composed of the backstepping based equivalent control
law, ueq, and the super-twisting sliding mode based discontinuous control law, udisc.

6.1. The Backstepping Based Equivalent Control Law

The backstepping based equivalent control law is designed in the following two step:

Step 1:

The proposed control system design is initiated by defining the PV array output voltage tracking
error, ε1, as follows:

ε1 = v̂pv − vr
pv = x̂1 − xr

1 (17)

In Equation (17), x̂1 is the PV array observed output voltage and xr
1 = vr

pv is the reference
(or desired) output voltage, that must be tracked by x̂1. The goal is to drive the error ε1 to the origin
(equilibrium point), O, asymptotically.

Differentiating Equation (17) with respect to time, and substituting v̇pv = ̂̇x1 from Equation (9),
it yields:

ε̇1 = ̂̇vpv − v̇r
pv = ̂̇x1 − ẋr

1 = −ux̂2

C1
+

ipv

C1
− ẋr

1 (18)

For guaranteeing the convergence of the error ε1 to the equilibrium point, selecting a Lyapunov
function candidate, Vf 1, that must satisfy three conditions, namely: (i) Vf 1 must be positive definite (ii)
Vf 1 must be radially unbounded, and (iii) Vf 1 must have a negative definite time derivative, in order
to guarantee the local asymptotic stability of the system [34,35].

The selected Lyapunov function, Vf 1, along with its time derivative, V̇f 1, are expressed in
Equation (19) and (20), respectively, as follows:

Vf 1 =
1
2

ε2
1 (19)

and

V̇f 1 = ε1ε̇1 = ε1

(
−ux̂2

C1
+

ipv

C1
− ẋr

1

)
(20)

For V̇f 1 to be negative definite, the following condition must be satisfied:(
−ux̂2

C1
+

ipv

C1
− ẋr

1

)
= −κ1ε1 (21)

where κ1 is a positive design constant.
Substituting Equation (21) into (20) yields:

V̇f 1 = ε1ε̇1 = ε1

(
−ux̂2

C1
+

ipv

C1
− ẋr

1

)
= −κ1ε2

1 (22)

Suppose the second state of the system, that is, the inductor current, îL = x̂2, be a virtual control
input [15,16]. Then the stabilization function, say β , that serves as a reference (or desired) current
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for the inductor current, x̂2, can be obtained by equating Equations (20) and (22) and then deducing
x̂2 = β as follows:

β =
1
u
(
C1κ1ε1 + ipv − C1 ẋr

1
)

(23)

Step 2:

To track x̂2 to its reference β, another error, ε2, is defined as follows:

ε2 = x̂2 − β

or x̂2 = ε2 + β

}
(24)

Substituting x̂2, from Equation (24) into (18) and then simplifying by substituting β from
Equation (23), it yields:

ε̇1 = −u(ε2 + β)

C1
+

ipv

C1
− ẋr

1 = −κ1ε1 −
uε2

C1
(25)

Substituting Equation (25) into (20), it yields:

V̇f 1 = −κ1ε2
1 −

uε1ε2

C1
(26)

Applying the quotient rule of derivatives, calculating the time derivative of Equation (23) and
simplifying by substituting β from Equation (23) and ε̇1 from Equation (25), it gives:

β̇ =
1
u

[
−C1κ2

1ε1 + i̇pv − C1 ẍr
1

]
− κ1ε2 −

u̇β

u
(27)

Taking the time derivative of ε2 in Equation (24) gives: ε̇2 = ̂̇x2 − β̇, and substituting ̂̇x2 = ̂̇iL and
β̇ from Equations (9) and (27), respectively, it gives:

ε̇2 =
ux̂1

L
+

(u− 1)x̂3

L
− 1

u

(
−C1κ2

1ε1 + i̇pv − C1 ẍr
1

)
+ κ1ε2 +

u̇β

u
(28)

Now, selecting another composite Lyapunov function candidate, Vf 2, that will guarantee the
convergence of both the errors ε1 and ε2, as well as the asymptotic stability of the system to the
equilibrium point, under the same assumptions as those made for Vf 1 [34,35].

This newly selected Lyapunov function, Vf 2, along with its time derivative, V̇f 2, are expressed in
Equations (29) and (30), respectively, as follows:

Vf 2 = Vf 1 +
1
2

ε2
2 (29)

and

V̇f 2 = V̇f 1 + ε2ε̇2 = −κ1ε2
1 + ε2

[
ux̂1

L
+

(u− 1)x̂3

L
− 1

u

(
−C1κ2

1ε1 + i̇pv − C1 ẍre f
1

)
+

κ1ε2 +
u̇β

u
− uε1

C1

] (30)

For V̇f 2 to be negative definite, the following condition must be satisfied:

V̇f 2 = −κ1ε2
1 − κ2ε2

2 (31)

where both κ1 and κ2 are positive design constants.
Now, comparing Equations (30) and (31) and working out u̇, it gives:

u̇ = −u
β

[
κ2ε2 +

ux̂1

L
+

(u− 1)x̂3

L
− 1

u

(
−C1κ2

1ε1 + i̇pv − C1 ẍre f
1

)
+ κ1ε2 −

uε1

C1

]
(32)
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Simplifying Equation (32) it yields the backstepping based equivalent control law, ueq, as follows:

u̇eq =
1
β

[
−ε2 (κ1 + κ2) u− ε1

(
C1κ2

1 −
u2

C1

)
− u2 x̂1

L
− u(u− 1)x̂3

L
+ i̇pv − C1 ẍr

1

]
(33)

where β 6= 0.

6.2. The Super-Twisting Sliding Mode Based Discontinuous Control Law

Now, the super-twisting sliding mode based discontinuous control law, udisc, is designed as
follows [18]:

u̇disc = −κ3

√
|ε1|sign (ε1)− κ4

∫
sign (ε1)dt (34)

where κ3 and κ4 are positive design constants.

6.3. The Proposed Mppt Control Law

Finally, the proposed BSTSMC based MPPT law, uT , is given as follows:

u̇T = u̇eq + u̇disc = −κ3

√
|ε1|sign (ε1)− κ4

∫
sign (ε1)dt +

1
β

[
−ε2 (κ1 + κ2) u− ε1

(
C1κ2

1 −
u2

C1

)
− u2 x̂1

L
− u(u− 1)x̂3

L
+ i̇pv − C1 ẍr

1

] (35)

Different design constants of the BSTSMC law (i.e., κ1, κ2, κ3 and κ4) are expressed in Table 1.
In Equation (35), (0 < uT < 1). As lim

t→∞
vpv = VMPP. In the same way, as lim

t→∞
Ppv = PMPP. Note that

the proposed BSTSMC based MPPT law, uT , constantly adjusts the duty cycle, d, of the CCNI-BuBo
converter switches, S1 and S2, as shown in Figure 5, and adapts the PV system operating point (MPP
or VMPP) to the varying atmospheric conditions, thus maximizing its power output.

The implementation of the BSTSMC based MPPT law, uT is illustrated in Figure 8, where each
step includes the dynamics of the previous subsystem(s). The Matlab/Simulink implementation of the
proposed MPPT strategy along with the DFA based states observer strategy is illustrated in Figures 6
and 7.

Note that the stability analysis of the zero dynamics state, x3, is given in Figures A3 and A4 in
Appendix B.
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Figure 5. The overall closed-loop control system for the proposed maximum power point tracking
(MPPT) strategy.
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Figure 6. Matlab/Simulink model of the proposed MPPT scheme with main parts.

Figure 7. Matlab/Simulink model of the proposed differential flatness based states observer.

Figure 8. Block diagram for implementation of three-step backstepping super-twisting sliding mode
control (BSTSMC) based MPPT law.
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Table 1. Complete parameters of the PV system.

Name Quantity Value

PV
A

rr
ay

Series cells/PV module 72
Parallel cells/PV module 1

No. of modules/PV string 4
No. of strings/PV array 4

No. of modules/PV array 16
Single module output power 1555 W

24.880 W
102.60 V
15.16 A
165.80 V
17.56 A

 @
ST

C

PV array output power
Module voltage at MPP
Module current at MPP

Module open-circuit voltage
Module short-circuit current

D
C

–D
C

C
on

ve
rt

er

Input capacitor, C1 1 mF
Output capacitor, C2 48 µF

Inductor, L 2 mH
MOSFET Switching frequency, fsw 5 kHz

Load resistance, RL 50, 40, 60 Ω

C
on

tr
ol

le
r

(B
ST

SM
C

) Constant, κ1 100
Constant, κ2 100,000
Constant, κ3 4
Constant, κ4 8

7. MPPT Performance Evaluation in Matlab/Simulink

This section covers the performance validation of the proposed MPPT controller in
Matlab/Simulink platform under five different case studies, described below:

Case 1: Performance evaluation test under simultaneous variation of the temperature, irradiance
and load

Case 2: Performance evaluation test for robustness against faults under simultaneous variation of the
temperature, irradiance and load

Case 3: Performance evaluation test for robustness against plant parametric uncertainties under
simultaneous variation of the temperature, irradiance and load

Case 4: Performance comparison with conventional MPPT schemes under simultaneous variation of
the temperature, irradiance and load

Case 5: Performance comparison with conventional MPPT schemes for robustness against faults under
simultaneous variation of the temperature, irradiance and load

The total simulation time, t, is chosen to be short (i.e., 0.3 s) for each case study to indicate
the fast response time of the proposed MPPT controller. The overall simulation time is further
subdivided into three equal time intervals of 0.1 s each. Moving from one sub-interval of time to
another, the temperature, irradiance and load resistance are varied in a quick succession as follows:

• Sub-interval 1 (0→ 0.1 s): (25 ◦C, 1000 W/m2, 50 Ω)
• Sub-interval 2 (0.1→ 0.2 s: (65 ◦C, 850 W/m2, 40 Ω)
• Sub-interval 3 (0.2→ 0.3 s): (25 ◦C, 650 W/m2, 60 Ω)

The temperature and irradiance profiles are illustrated in Figure 9.
The simulation with and without states observer was run on a computing machine with Intel(R)

Core (TM) i5-6200 CPU @2.30 GHz (4 CPUs), ∼2.40 GHz, 8 GB RAM, 6th generation. On this system,
a 0.3 s simulation took 20 s without flatness-based observer, and 20.001 23 s with flatness-based observer.
It shows that the observer is computationally not costly and hence offers a negligible computational
cost. Therefore, its implementation is highly justified in this application.



Electronics 2020, 9, 1543 18 of 30

7.1. Performance Evaluation Test under Simultaneous Variation of the Temperature, Irradiance and Load

This test is carried out to evaluate the performance of the proposed MPPT technique under
simultaneous variation of the atmospheric conditions and the load.

In Figure 10, the PV array output voltages are compared for the three MPPT candidates. It can be
observed that the proposed BSTSMC based MPPT candidate offers a superior tracking performance
with very a fast rise time, fast settling time and minute chattering. The conventional SMC strategy
exhibits considerable chattering, while the backstepping strategy continuously renders steady-state
error during MPP tracking. For change in the atmospheric conditions as well the load, after every
0.1 s, the proposed scheme performs the best by converging the PV array output voltage to its
reference, VMPP, earlier than the other two MPPT candidates. Similarly, Figure 11 illustrates the the
PV array output powers comparison for each candidate MPPT strategy. Again, the proposed MPPT
technique has the best tracking performance in terms of having faster rise time, faster convergence and
minute chattering.

The actual and the observed system states are compared in Figure 12, from which it can be
concluded that the GSTA based DFA is accurately retrieving the system states.
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Figure 9. Irradiance and temperature profiles for MPPT controller.
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Figure 10. PV array output voltage comparison in Case 1.
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Figure 11. PV array output power comparison in Case 1.
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Figure 12. Actual and observed system states comparison in Case 1.

7.2. Performance Evaluation Test for Robustness against Faults under Simultaneous Variation of the
Temperature, Irradiance and Load

In this test, the robustness of the proposed MPPT candidate is evaluated against multiple
sinusoidal faults occurring in the CCNI-BuBo converter, under simultaneous variation of the
environmental conditions and the load.

For this purpose, time-varying sinusoidal faults are injected into the DC–DC converter input and
output voltages (i.e., x̂1 and x̂3, respectively). Under fault injections, x̂1,new = x̂1 + δx̂1 = x̂1 +

0.5u
C1

sin(t),
and x̂3,new = x̂3 + δx̂3 = x̂3 +

55u
C1

sin(t). Furthermore, δx̂1 remains active from 0.16–0.18 s only,
while δx̂3 from 0.06-0.08 s only.

For each MPPT candidate, the PV array output voltages, under faults, are compared in Figure 13.
It is evident that at the onset of faults, both the backstepping and the conventional SMC schemes
deviate from the VMPP, thereby losing tracking. Rather, the SMC technique doesn’t track the VMPP,
during the sub-interval 3 (0.2→ 0.3 s) with (25 ◦C, 650 W/m2, 60 Ω). However, the proposed MPPT
technique remains almost unaffected during faults and still tends to adequately keep tracking the VMPP.
This confirms the robustness of the proposed MPPT strategy against the injection of time-varying
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sinusoidal fault voltages in the PV array output voltage (i.e., converter input voltage) and converter
output. Similarly, Figure 14, provides a comparison of the PV array output powers, under faults,
for each MPPT candidate. Again, the proposed MPPT strategy remains almost unaffected in case of
faults, while the other two MPPT strategies deviate from the PMPP, thus losing tracking. Hence, it can
be concluded that the proposed MPPT strategy is more robust than the other two MPP candidates.
Figure 15 depicts a comparison of the actual and the observed system states under faults. It is evident
that the GSTA based DFA is accurately observing the system states.

7.3. Performance Evaluation Test for Robustness against Plant Parametric Uncertainties under Simultaneous
Variation of the Temperature, Irradiance and Load

This test covers the the sensitivity analysis of the proposed MPPT scheme against the plant
(DC–DC converter) parametric uncertainties under simultaneous variation of the atmospheric
conditions and the load.

For this purpose, parametric uncertainties are introduced into the inductor (L) and output
capacitor (C2) of the DC–DC converter. Such that L is increased by 25 times, while C2 is decreased by
100 times with the end result: Lnew = 50 mH and C2,new = 0.48 µF. Furthermore, Lnew remains effective
from 0.06–0.08 s only, while C2,new remains effective from 0.16–0.18 s only.

In Figure 16, the PV array output voltages are compared, under uncertainties, for each
MPPT candidate. It can be seen that both the capacitive and inductive uncertainties greatly
deteriorate the MPPT performance of the backstepping as well the conventional SMC techniques.
However, the proposed MPPT technique shows more robustness by remaining almost unaffected
during plant parametric uncertainties. Similarly, Figure 17 shows the PV array output powers
comparison for each MPPT scheme, under plant parametric uncertainties. Again, it can be observed
that the backstepping technique has the worst performance, while the proposed MPPT scheme has
the best performance under parametric uncertainties. The actual and the observed system states are
compared in Figure 18 under plant parametric uncertainties. It is evident that the GSTA based DFA is
accurately estimating the system states.
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Figure 13. PV array output voltage comparison in Case 2.
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Figure 14. PV array output power comparison in Case 2.
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Figure 15. Actual and observed system states comparison in Case 2.
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Figure 16. PV array output voltage comparison in Case 3.



Electronics 2020, 9, 1543 22 of 30

0 0.05 0.1 0.15 0.2 0.25 0.3

t (s)

0

0.5

1

1.5

2

2.5

3

P
p

v
 (

W
)

10
4

Backstepping

SMC

BSTSMC

0.16 0.17 0.18 0.19 0.2
1.4

1.6

1.8
10

4

0.06 0.065 0.07 0.075 0.08
2.47

2.48

2.49
10

4

Figure 17. PV array output power comparison in Case 3.
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Figure 18. Actual and observed system states comparison in Case 3.

7.4. Performance Comparison with Conventional MPPT Schemes under Simultaneous Variation of the
Temperature, Irradiance and Load

In this test, the effectiveness and MPPT performance of the proposed MPPT scheme is compared
with the conventional PID and P&O based MPPT schemes, under simultaneous variation of the
atmospheric conditions and the load.

The irradiance, temperature and load profiles are kept the same as previous. The PV array output
voltages and powers comparison, shown in Figures 19 and 20, respectively, demonstrate that both the
conventional PID and P&O based MPPT schemes exhibit a lot of oscillations around the VMPP during
their steady-states. This is practically undesirable. On the contrary, the proposed MPPT scheme offers
the best MPPT performance, thus, completely outmatching the conventional MPPT techniques.
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Figure 19. PV array output voltage comparison in Case 4.
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Figure 20. PV array output power comparison in Case 4.

7.5. Performance Comparison with Conventional MPPT Schemes for Robustness against Faults under
Simultaneous Variation of the Temperature, Irradiance and Load

This test is carried out to further compare the effectiveness of the proposed MPPT strategy with
the conventional PID and P&O based MPPT techniques, under faults and simultaneous variation of
the atmospheric conditions and the load.

The load and atmospheric conditions profiles are the same as previous. Furthermore, the faults
are the same as injected in Case 2. It is clear from the PV array output voltages and powers, depicted in
Figures 21 and 22, respectively, that the proposed BSTSMC based MPPT strategy has the best MPPT
performance and is much robust against faults than both of the conventional MPPT schemes.
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Figure 22. PV array output power comparison in Case 5.

8. Conclusions

To optimize the electric power extraction from a standalone PV array under inconsistent ambient
weather conditions that is delivering power to a resistive load through a CCNI-BuBo converter, in this
article, a hybrid nonlinear sensorless observer based robust BSTSMC MPPT strategy is proposed.
The reference peak power voltage is generated via the GPR based probabilistic machine learning
approach that is adequately tracked by the proposed MPPT scheme. All the missing system states
are retrieved through the GSTA based DFA approach. The Lyapunov stability theory is used to
guarantee the closed-loop system stability. Matlab/Simulink software platform is used for simulation,
testing and performance validation of the proposed MPPT strategy under simultaneous variation of
the temperature, irradiance and load. When the MPPT performance of the proposed MPPT scheme
is compared with the recently proposed benchmark backstepping based MPPT control strategy [13]
and other conventional SMC, PID and P&O based MPPT schemes, the proposed technique is found to
have a superior performance in terms of offering a fast dynamic response, finite-time convergence,
minute chattering, higher tracking accuracy and having more robustness against plant parameter
perturbations, load disturbances and certain time-varying sinusoidal faults occurring in the system.
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Abbreviations

The following abbreviations have been used in this manuscript:

ANFIS Adaptive NeuroFuzzy Inference System
BSTSMC Backstepping Super-Twisting Sliding Mode Control
CCM Continuous Conduction Mode
CCNI-BuBo Cascaded Non-inverting Buck-Boost
CSMC Conventional Sliding Mode Control
DFA Differential Flatness Approach
GP Gaussian Process
GPR Gaussian Process Regression
GSTA Generalized Super-Twisting Algorithm
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
P&O Perturb and Observe
PID Proportional Integral Derivative Control
PV Photovoltaic
RMSE Root Mean Square Error
SEPIC Single-Ended Primary Inductor
SMC Sliding Mode Control
STA Super-Twisting Algorithm
STC Standard Test Condition
VSC Variable-Structure Control

Nomenclature

A Diode ideality factor (or constant)
C1 Input capacitor (F)
C2 Output capacitor (F)
d Duty cycle
D1, D2 Diodes
GP Gaussian process
I PV cell output current (A)
I0 Diode leakage (or reverse saturation) current (A)
ID Diode current (A)
iL Inductor current (A)
Ip Current through the shunt resistance (A)
Iph Photon-generated current (A)
ipv PV array output current (A)
k Boltzmann constant (1.38× 10−23 J/K)
KSE Squared exponential covariance or kernel function
L Inductance (H)
` Characteristic length-scale
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Np Number of parallel connected PV modules
Ns Number of series connected PV cells
PMPP Power at maximum power point (W)
q Electron charge (1.6× 10−19 C)
r Radial basis function
Rs Series resistance (Ω)
Rp Shunt resistance (Ω)
T Temperature (◦C)
u Control input
V PV cell output voltage (V)
vC2 = vRL Load voltage (V)
Vf 1, Vf 2 Lyapunov function candidates
VMPP Voltage at maximum power point (V)
vpv = vC1 PV array output voltage (V)
vr

pv PV array reference (or desired) output voltage (V)
β Inductor current reference (A)
c1, c2 Constants
ε1 PV array output voltage error (V)
ε2 Inductor current error (A)
κ1, κ2, κ3, κ4 Constants
λ Constant
µ Mean
ζ Observation error

Appendix A. Convergence Analysis of the GSTA Based Differentiators

This appendix, covers the convergence analysis of the three GSTA based differentiators depicted
in Figure 5. This analysis is carried out by applying two standard test input signals, i.e., a unit step
signal and a sawtooth signal to the differentiators. All the three differentiators are tuned manually
and their tuning parameters are specified in Table A1. As illustrated in Figures A1 and A2, all the
three differentiators accurately estimate both the input signals with almost zero root mean square
error (RMSE), thus guaranteeing the convergence. Moreover, the stability of the differentiator is
guaranteed, if:

lim
t→∞


(

xi
xi+1

)
Step(

xi
xi+1

)
sawtooth

 =


(

x̂i
x̂i+1

)
Step(

x̂i
x̂i+1

)
sawtooth

 (A1)

Table A1. Tuning parameters of the differentiators (from left to right in Figure 5).

Name Constant Value

Differentiator-1
Constant, c1 200
Constant, c2 120
Constant, λ 50

Differentiator-2
Constant, c1 150
Constant, c2 900
Constant, λ 8

Differentiator-3
Constant, c1 15
Constant, c2 35
Constant, λ 170
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Figure A1. Convergence analysis of the differentiator for a step input signal and the
corresponding RMSE.
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Figure A2. Convergence analysis of the differentiator for a sawtooth input signal and the
corresponding RMSE.

Appendix B. Zero Dynamics State Stability Analysis

In this appendix, the stability analysis of the zero dynamics state, x3, is briefly described.
As, Equation (35) represents a three-step BSTSMC based MPPT law, hence, the following expression
gives the internal dynamics of the system:

ẋ3 =
(1− u)x2

C2
− x3

RLC2
(A2)

The zero dynamics state, x3, can be deduced by substituting both the control driven states (x1, x2)
and the applied control input (u) equal to zero into Equation (A2), thus it yields:

ẋ3 = − x3

RLC2
(A3)
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As, both the parameters C2 and RL are positive constants, thus, Equation (A3) has roots/zeros in
the left-half of the s-plane, located at − 1

RLC2
. It means that zero dynamics are exponentially stable and

the system under consideration is a minimum phase system. The convergence analysis of the zero
dynamics state, x3, is illustrated in Figure A3, while the corresponding zeros location is depicted in
Figure A4 on the s-plane, where RLC2 = τ represents the RC-time constant.
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Figure A3. Zero dynamics state, x3, convergence analysis.

Figure A4. Complex-plane for the internal dynamics.
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