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Abstract: Metaheuristic and exact methods are one of the most common tools to solve Mixed-Integer
Optimization Problems (MIPs). Most of these problems are NP-hard problems, being intractable to
obtain optimal solutions in a reasonable time when the size of the problem is huge. In this paper,
a hybrid parallel optimization algorithm for matheuristics is studied. In this algorithm, exact and
metaheuristic methods work together to solve a Mixed Integer Linear Programming (MILP) problem
which is divided into two different subproblems, one of which is linear (and easier to solve by exact
methods) and the other discrete (and is solved using metaheuristic methods). Even so, solving this
problem has a high computational cost. The algorithm proposed follows an efficient decomposition
which is based on the nature of the decision variables (continuous versus discrete). Because of
the high cost of the algorithm, as this kind of problem belongs to NP-hard problems, parallelism
techniques have been incorporated at different levels to reduce the computing cost. The matheuristic
has been optimized both at the level of the problem division and internally. This configuration offers
the opportunity to improve the computational time and the fitness function. The paper also focuses
on the performance of different optimization software packages working in parallel. In particular,
a comparison of two well-known optimization software packages (CPLEX and GUROBI) is performed
when they work executing several simultaneous instances, solving various problems at the same time.
Thus, this paper proposes and studies a two-level parallel algorithm based on message-passing (MPI)
and shared memory (Open MP) schemes where the two subproblems are considered and where
the linear problem is solved by using and studying optimization software packages (CPLEX and
GUROBI). Experiments have also been carried out to ascertain the performance of the application
using different programming paradigms (shared memory and distributed memory).

Keywords: parallel algorithm; exact methods; Mixed Integer Problems; MILP
decomposition; matheuristics

1. Introduction

Mixed Integer Linear Programming (MILP) models deal with mathematical optimization linear
problems involving two families of variables: discrete and continuous. The computation related with
this problem is high when the number of variables increases.

Mixed Integer Linear Programming (MILP) problems are well-known in the literature of
mathematical programming and they have been very useful for modelling classical problems
in operations research (knapsack, inventory, production, location, allocation, scheduling, etc.).
These classical problems, at the same time, are currently being used for making decisions in a wide
variety of contexts (military, banking, business, etc.). Their great utility for modelling very popular
problems is one of the reasons why many researchers have been interested in proposing different
algorithms for solving MILP problems. Indeed, some of these problems, such as the famous Traveling
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Salesman Problem (TSP), are combinatorial optimization problems classified as NP-hard and are
therefore, difficult to solve when the size of the problem is large (see [1]).

In practice, two types of algorithms are used to solve MILP problems: exact methods and
metaheuristic algorithms. On the one hand, the exact methods (for example, branch and bound,
simplex, etc.) allow to determine the optimal solution of the problem being studied. In fact,
these algorithms ensure optimality. However, they are not generally applicable for large problems
and are known to be time-consuming for big or more complex databases. On the other hand,
metaheuristics do not guarantee the optimality of the found solution but can be implemented
when the instance to be solved becomes too large or difficult for exact methods. Two categories
of metaheuristics are usually considered: single-solution algorithms (local search, tabu search, etc.) and
population-based algorithms (evolutionary algorithms, swarm optimization, etc.) [2]. Nevertheless,
a recent approach, called matheuristics that combines the two philosophies (Pradenas et al. [3],
Li et al. [4]), i.e., exact methods and metaheuristics, has been proposed in the literature in an attempt
to provide a more efficient solution method (see, for example [5,6]).

Matheuristic methodology has been introduced to find approximate solutions in a reasonable
time for MILP problems (see [7]). In this paper, a parallel algorithm for a new matheuristic algorithm is
proposed and studied taking into account an MILP-based decomposition [8], where the main problem
is decomposed into two hierarchical subproblems where different families of optimization algorithms
are used. This decomposition is based on the nature of the decision variables: continuous and discrete.

Overall, the matheuristic methods have been designed by investigating differing cooperation
between metaheuristics and exact methods, to find the best combination to solve an MILP problem.
A general classification of existing approaches combining exact methods and metaheuristics for MILP
optimization is presented in [9].

The matheuristic algorithm studied in this paper uses an integrative combination, in which the
metaheuristic provides information for the exact method, which solves the problem by providing
new information to the metaheuristic. The main idea is to reduce the problem into much smaller
subproblems which can be solved exactly by state-of-the-art mathematical programming algorithms.
The variables and the constraints are partitioned into two sets, decomposing the main problem into
two hierarchical subproblems: The metaheuristic fixes the decision variables in one set and the exact
method optimizes the problem over the other set.

Some popular techniques found in the literature to solve these problems using decomposition
approaches that exploit the problem structure [10] are studied, such as constraint decomposition
approximation (cutting plane methods) [11] or inner approximation (Dantzig-Wolfe method) [12,13]
and variable decomposition methods ([14,15]). Variable decomposition methods are considered in
this paper.

There are different methodologies to design metaheuristics. Some design parameters
determine the characteristics of each metaheuristic. Those parameters are framed into different
search components: initialization, improvement, selection, combination and stopping criteria.
Several methodologies [16] have been generalized to matheuristics, in which exact optimization
is combined with a set of metaheuristics. Nevertheless, this paper does not focus in obtaining the best
metaheuristic algorithm for the problem, but assumes that the best metaheuristic for the problem is
known and focuses on the parallelization of the mathehuristic algorithm.

The parallel algorithms studied in this paper are based on message-passing and shared-memory
paradigms since they are the most extended scheme of parallel algorithms in the literature. In the
experiments, message-passing (MPI) [17] and OpenMP [18] are the two APIs used to developed the
algorithms as they are extended library routines over C and C++.

Nowadays, usually HPC systems integrate both shared and distributed memory architectures.
For such hybrid architectures, one can perform hybrid parallel programming by combining different
parallel programming models that are used at different architectural levels within a single code.
This can offer the program a greater degree of parallelism as well as better performance.
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The NP-hard problem proposed requires the evaluation of a large space of solutions, which
requires too much time and computation. Therefore, one way to reduce the cost is to divide this space
into different sections, and explore them in parallel. Furthermore, the problem proposed requires
evaluating numerous MILP problems to obtain a final solution, which, being independent of each
other, can be evaluated in parallel. Thus, we have achieved two ways of optimizing computation
time using two levels of parallelism: the problems to be evaluated, and the search space for solutions
by problem.

In this paper, the main contribution is related with the throughput of a parallel algorithm solving
a combination of MILP problems, using several optimization packages in the literature (CPLEX [19]
and GUROBI [20]). We evaluate two parallel paradigms (MPI and OpenMP) to obtain the best
configuration of resources that combines both paradigms by resorting to the use of two optimization
software packages (CPLEX and GUROBI), obtaining the lowest time possible to solve a combination of
MILP problems.

The organization of the paper is as follows. In Section 2.1, the proposed decomposition of MILP
problems is presented. Section 2.2 details the matheuristic strategy combining linear continuous
programming and discrete metaheuristics. In Section 3, we will focus on the parallel algorithm. Finally,
Section 4 gives some computational experiments.

2. Related Work

2.1. MILP-Based Decomposition

Let us consider the following linear problem (LP):

max {cx : Ax ≤ b, x ≥ 0, x ∈ Rn} (1)

where A is a m× n matrix, c a n-dimensional row vector, b a m-dimensional column vector, and x a
n-dimensional column vector of continuous variables. If we add the restriction that certain variables
must take integer values, a Mixed Integer Linear Program (MILP) appears, which could be described
as follows:

max cx + hy
s.t.
Ax + Gy ≤ b
x ≥ 0, x ∈ Rn

y ≥ 0, y ∈ Zp

(2)

where A is a m × n matrix, G is m × p matrix, h is a p row-vector, and y is a p column-vector of
integer variables.

An MILP problem is defined as a problem where discrete variables (y), which are restricted to
integer values, and continuous variables (x), which can assume any value on a given continuous
interval, are combined with integrality constraints.

Solving large-scale and complex instances using MILP techniques is not efficient in terms of
search time. Indeed, large MILP problems are often difficult to solve by exact methods, due to the
complexity of solving an optimization problem which includes integer and continuous variables. It is
possible to solve large MILP problems by dividing them into smaller subproblems, and then solve
them individually.

Figure 1 shows how a general MILP problem is decomposed into two hierarchical subproblems
with different complexities:

• The subproblem (P1), which includes the discrete variables, is a computationally complex problem
when it is large and an exact method is used for solving it. In this case, metaheuristic approaches
could be more efficient than exact methods.
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• The subproblem (P2), which includes the continuous variables, is a linear continuous problem
that is easy to solve with exact methods.

MILP Problem
Max(x,y) cx + hy
s.t.
Ax + Gy ≤ b
x ≥ 0
y ≥ 0

P1 (y) [x fixed]
Discrete variables
Metaheuristic

P2 (x) [y fixed]
Continuous variables
Exact method

Figure 1. MILP problems decomposed into two subproblems.

2.2. Matheuristic Methodology

A matheuristic algorithm is defined as an algorithm which is made up of the combination of
metaheuristics and exact methods. Thus, it is an optimization algorithm produced by the combination
of metaheuristics and mathematical programming techniques. It can be the optimization of any
mathematical problem which can be divided into different subproblems, where the main criteria are
the nature of its variables.

In this work, a matheuristic algorithm is proposed to solve the problem shown in Figure 1,
where the model is divided into two different subproblems, one of which is linear and the other
discrete. The linear problem is easier to solve by exact methods, and the other subproblem can be
studied using metaheuristic methods.

Whether or not the functions incorporated in the metaheuristic are executed (namely,
initial population, improvement, selection, crossing and diversification), will depend on the selected
metaheuristic. For example, an evolutionary algorithm (EA) does not use the improvement step,
or a Greedy Randomized Adaptative Search Procedure (GRASP) does not use the crossover function.
In this work, a parameterized scheme [21] that was previously studied by the authors in [16], is used
to set the best metaheuristics.

Following the generation of the initial population by a metaheuristic, an exact method is involved
to solve the subproblems generated. In this method, relaxation or decomposition techniques of the
mathematical model are used. Relaxation methods consist of relaxing a strict requirement in the
target optimization problem. This approach consists of ignoring the integrity constraints of an integer
program and solving it using LP solvers. For that, the metaheuristic generates the decision variables
and shares this information with the exact method.

Handling the constraints in the proposed decomposition methodology is a critical issue.
The infeasible solutions generated by the exact method are evaluated and classified by assigning
them a value based on certain parameters of the exact method. This parameter is related to the amount
of restrictions that these solutions do not meet, and is modeled with a numeric value. This fitness
penalty-based value is assigned to infeasible solutions. When this value is close to 0 it means that
the solution is close to be a feasible solution. This implies that it requires fewer changes than other
infeasible solutions to reach the feasible search.

A certain number of elements from both groups (feasible and infeasible solutions) are selected from
the initial population and are used to generate new solutions through crossover and diversification
functions. All these new generated solutions are also evaluated and improved in order to maximize the
number of feasible solutions. When the algorithm uses the exact method, only the discrete variables
in P1 can be used in the crossover function. The new variables generated are used to obtain a new
solution solving P2 by the exact method. Those steps of the algorithm are repeated in a given number
of iterations. Algorithm 1 shows the scheme of the main matheuristic algorithm. This algorithm
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defines the parts involving the metaheuristic and the exact method. Every time that a model must
be solved, the exact method is included, but if the model does not need to be solved, and only one
solution is going to be evaluated, the metaheuristic is able to work alone.

Algorithm 1: Parallel matheuristic algorithm

input : Problems(x, y)
output :Best solution in each of the problems

Fix the metaheuristic parameters;
for k = 1 to TotalProblems do in parallel

//Create Sk set of solutions for problem k-th;
for j = 1 to Populationk do in parallel

Fix discrete variables vdj of problem P1;
Obtain continuous variables vcj solving P2 through exact method;
Sk ← [Solutionj := (vdj, vcj)];
if Solutionj is not feasible then

Improve Solutionj using the best neighbourhood algorithm;
end

end
not EndCondition //Select SSk subset of Sk such as |SSk| > 1;
for w = 1 to Combinationk do in parallel

Select s1, s2 ∈ Sk randomly ;
Combine vd1 and vd2 the discrete variables of s1 and s2 saving as the discrete variables of a new

solution sw;
Obtain vcw continuous variables of sw solving P2;
if Fitness(w) > Fitness(r1) & Fitness(w) > Fitness(r2) then

SSk ← sw;
end

end
//Improve SSk subset of Sk;
for w = 1 to Improvek do in parallel

Select sw ∈ SSk randomly ;
REPEAT:;
Modify vdw using the best neighbourhood algorithm and obtain vcw solving P2 through exact
method;

UNTIL Fitness(sw) increase achieve EndConditions;
end
//Diversify SSk subset of Sk;
for w = 1 to Diversi f icationk do in parallel

Select sw ∈ SSk randomly ;
Modify randomly vdw of sw;
Obtain vcw solving P2 through exact method;

end
Include SSk in Sk;
BestSolutionk ← s ∈ Sk such as Fitness(s) ≥ Fitness(w)∀w ∈ Sk ;

end

3. Parallel Algorithm

The parallel algorithm proposed is schemed in two levels. The first one considers the solutions
of different independent MILP problems at the same time and the second one, the execution of each
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solution of the mathehuristic algorithm. Thus, this scheme has the advantage of distributing the
processors depending on the number of independent problems which must be solved and the number
of solutions proposed for the matheuristic algorithm. Figure 2 shows the proposed scheme.

A set of solutions is created in each problem. Each solution contains discrete and continuous
variables solving the two problems described in Figure 1. The discrete variables are set and the
continuous variables are obtained using the discrete variables and lineal programming. When the
initial set of solutions Sk is created, a number of valid and invalid solutions, selected randomly from the
reference set, are improved. A valid solution is considered when the continuous variables are obtained
and the problem is feasible. Other solutions (infeasible ones) are considered invalid. The algorithm
works with valid and invalid solutions improving the fitness value from the first one, and converts
invalid solutions into valid ones.

The improvement function is developed following the variable neighbourhood search. It explores
distant neighbourhood solutions of the currently selected solution. If an improvement is made, the old
solution is replaced by this new one. The local search method is applied repeatedly to improve the
selected solutions in the neighbourhood, obtaining local optima. At this point, a certain number of
the best valid and invalid solutions are selected from the reference set Sk, creating a new subset SSk.
A combination function is applied to these selected solutions. It combines pairs of solutions randomly
chosen from those previously selected. The combination is performed mixing the discrete variables
using a binary mask, and then, the continuous variables are obtained through linear programming.
Using this combination, new solutions are generated, but only the valid solutions are included in the
reference set SSk.

In the implementation of the parallel algorithm, both shared memory (OpenMP) and
message-passing (MPI) schemes have been proposed according to the following ideas: MPI is used
in the first level of parallelization where the different independent MILP problems are considered.
Therefore, the total number of MILP problems are distributed between the processor and the resources
assigned to MPI. On the other hand, OpenMP is used in the internal algorithms. Then, the different
parts of the matheuristic are parallelized using the processors and the resources assigned to OpenMP.

Inputs
n Problems
q = MPI processes
p = OpenMP threads
q× p = processes × threads

MPI distribution
Process rank 0 solves n/q
problems

....
MPI distribution
Process rank q solves n/q
problems

OpenMP
Thread 0 ...

OpenMP
Thread p

OpenMP
Thread 0 ...

OpenMP
Thread k

Outputs
Fitness and time for all n Problems

Figure 2. The parallel algorithm scheme based on resource decomposition in two levels.

In the literature, there are several mathematical methods that can solve both mixed integer
linear programming and linear programming problems. In the algorithm developed in this paper,
an MILP-based decomposition is used to divide the main problem, which is difficult to solve,
into smaller LP-type problems that are easier to solve. In this regard, an exact method able of
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optimally solving numerous LP problems is needed. For this task, two well-known optimization
software packages, CPLEX and GUROBI, are evaluated to measure their performance in combination
with our parallel algorithm.

4. Experimental Results

In this section, a computational experiment is carried out by applying the Algorithm 1 on an
MILP problem associated with a modern Data Envelopment Analysis (DEA) technique. This is a
non-parametric technique whose objective is to determine the technical efficiency of a set of n firms (in
general, a set of Decision Making Units—DMUs), which use m inputs to produce s outputs (see [22])

In particular, we focus our attention on the MILP problem proposed in [23] in the context of
DEA. A formalization of the problem is described as follows. Let us assume that data on m inputs
and s outputs for n homogeneous DMUs are observed. For the j-th DMU, these are represented by
zij ≥ 0, i = 1, . . . , m and qrj ≥ 0, r = 1, . . . , s. The DEA model that should be solved for evaluating the
performance of DMU k is as follows:

max
{

βk − 1
m ∑m

i=1
t−ik
zik

}
s.t.

βk +
1
s ∑s

r=1
t+rk
qrk
≤ 1 (c.1)

−βk − 1
s ∑s

r=1
t+rk
qrk
≤ −1 (c.2)

−βkzik + ∑n
j=1 αjkxij + t−ik ≤ 0 ∀i (c.3)

βkzik −∑n
j=1 αjkxij − t−ik ≤ 0 ∀i (c.4)

−βkqrk + ∑n
j=1 αjkyrj − t+rk ≤ 0 ∀r (c.5)

βkqrk −∑n
j=1 αjkyrj + t+rk ≤ 0 ∀r (c.6)

−∑m
i=1 νikzij + ∑s

r=1 µrkqrj + djk ≤ 0 ∀j (c.7)
∑m

i=1 νikzij −∑s
r=1 µrkqrj − djk ≤ 0 ∀j (c.8)

−νik ≤ −1 ∀i (c.5)
−µrk ≤ −1 ∀r (c.6)

−djk ≤ −Mbjk ∀j (c.7)
αjk ≤ M(1− bjk) ∀j (c.8)

bjk = 0, 1 ∀j (c.9)
−βk ≤ 0 (c.10)
−t−ik ≤ 0 ∀i (c.11)
−t+rk ≤ 0 ∀r (c.12)
−djk ≤ 0 ∀j (c.13)
−αjk ≤ 0 ∀j (c.14)

(3)

where M is a positive big number. For this particular MILP problem, the vector of continuous variables
x consists of (βk, t−ik , t+rk, djk and αjk), while the vector of integer variables consists exclusively of bjk.

In DEA, each DMU has an MILP problem to be solved. Regarding the data, in our simulations,
the m inputs and s outputs of each of the n DMUs are generated randomly but take into account
that the production function that governs the production situation is the Cobb–Douglas function [24],
which is well-known in microeconomics.

For all the experiments, the IBM ILOG CPLEX Optimization Studio (CPLEX) and the GUROBI
Optimizer v.8.1 are used with a Free Academic License. The experiments are executed in a DELL
PowerEdge R730 node with 2 Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz (Santa Clara, USA),
with 20 cores (40 threads) at 2.4 GHz and 25 MB SmartCache memory. A comparative analysis of
both optimization solvers in terms of capabilities showing different features of their architectures is
shown in [25].
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Experiments were performed to analyze the performance of the proposed algorithm using
different parallelism tools. In addition, the performance of the different optimization packages when
they are executed in parallel is analyzed. A fixed configuration of parameters for each metaheuristic
function (population, combination, improvement, diversification and EndCondition in Algorithm 1)
is used for conducting all the experiments. Parameters have been established based on previous
analysis and experiences of the authors. Those parameters are: population = 310, combination = 49,
improvement = 17, diversification = 10, EndCondition = 10 iterations (or five without improving).

In this paper, several DEA problems (model (3)) have been generated randomly with different
sizes, so that the analyses are not dependent on the size of the problem. The problem sizes generated
are the following:

• Size 1: m = 3/n = 50/s = 1
• Size 2: m = 4/n = 50/s = 2
• Size 3: m = 5/n = 250/s = 3

In the first experiment, the performance of the different optimization packages are analyzed.
At this point, these optimization packages are evaluated solving several problems simultaneously;
conflicts and problems of the optimization packages when they are executed simultaneously are also
studied, using multiple instances at the same time through several threads.

Figure 3 shows the time that each optimization package takes for solving a single problem
(in milliseconds) when, at the same time, there are different instances doing the same job when varying
the number of processors. The time is always measured in processor number 0, for the execution of the
same problem. At this point, just a single problem is executed (DMU 1 of n). It can be seen that, as more
executions are performed simultaneously, the more the computing time increases. This is because the
number of instances that can be simultaneously executed with these optimization packages are not
unlimited. After a certain number of executions, the software starts to suffer delays. Analyzing the
graph, it can be seen that from 10 simultaneous instances until 40, the computation time increases.
This means that the improvement in computing time, when the number of resources increases, starts
to decrease when using more than a number of processors which depends on the problem size.
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10ptNumber of processors
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Figure 3. Computational time solving a unique LP problem in multiple processors using CPLEX and
GUROBI solvers. The evaluated problems are: Size 1 with CPLEX (C_1), Size 2 with CPLEX (C_2),
Size 2 with CPLEX (C_3), Size 1 with GUROBI (G_1), Size 2 with GUROBI (G_2) and Size 3 with
GUROBI (G_3).
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Another objective of the experiments is to compare how the proposed exact methods behave
(CPLEX and GUROBI) according to the parallelization strategy. At this point, only the problem with
size 1 (m = 3, n = 50 and s = 1) is analyzed in the following experiments. The results obtained are
similar to the other sizes. Figure 4 shows the execution cost obtained when using the optimization
packages and solving the problem shown in expression (3) with different paradigms of parallelism,
solving all the DMUs included in the main problem. In this experiment, the parallelization levels
(see Figure 2) have been executed separately. In the first instance, all the processors have been allocated
to the highest level of parallelization (MPI), where the different problems to be solved among the
available cores are divided. In the second instance, the processors have been allocated to the second
level of parallelization (OpenMP). A previous work [26] shows that using OpenMP in the high level
of parallelization is worse than using MPI and thus, this experiment is not considered in this paper.
As a final result, a complete comparison of the levels of parallelism is presented, with the different
proposed optimization packages in each level. It can be observed how, in terms of performance,
a greater improvement in computing time is obtained using the second level of parallelism (OpenMP),
and, in addition, when using CPLEX, the computational time is lower than when using GUROBI.
However, as already mentioned, a convergence can be seen when more than 10 cores are used. This is
because, despite the improvement due to the division of problems and the optimization of internal
functionalities, by increasing the number of simultaneous instances, the optimization packages interfere
with each other.

Once the effectiveness of the parallelism has been studied, the question is raised as to how to
distribute the resources between the different parallel levels. For this, a third experiment has been
developed to find the best configuration of available resources by dividing them between both parallel
levels. The aim is find the optimal values for the variables m and k in Figure 2).

In this experiment, different possible configurations have been tested, obtaining, in each case,
the time taken by the algorithm to find the optimal solution. Therefore, after some tests, we get the
configuration that improves the best time shown in Figure 4. The time has been compared with that
obtained using all the resources in both OpenMP and MPI, where all the available cores are focused on
only one level of parallelism. These times are:

• OpenMP[CPLEX] = 43.1825 s
• OpenMP[GUROBI] = 74.3996 s
• MPI[CPLEX] = 119.4421 s
• MPI[GUROBI] = 159.6177 s

Table 1 shows the average of the time of 10 executions for each resources configuration. It is
shown that computation time is minimized when resources are divided between different levels,
compared to that obtained when all resources are provided at only one level. This proves that dividing
the parallelism into different levels, and establishing the resources in an optimal way, the performance
of the application improves. The experiments with lower times than those obtained by using MPI
or OpenMP separately (shown above) have been highlighted in bold. In this way, it can be seen that
in most of the cases, the cost using a mix parallel scheme is better than the cost of using just one of
them. It can be observed that the configurations that allocate more resources to the shared memory
level (OpenMP), such as combination 3-13 obtain better results than those that allocate more resources
to the division of problems in distributed memory, such as configuration 13-3.
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Figure 4. Performance of each level of parallelization. Comparison using all the resources with
message-passing (MPI) or OpenMP with several optimization packages (CPLEX and GUROBI).

Table 1. Comparison between several configurations with MPI and OpenMP in a hybrid mode. Time
for each solver is expressed in seconds. The number of processors used in each parallel level is
also shown.

Hybrid Parallel Configuration

GUROBI CPLEX MPI OpenMP GUROBI CPLEX MPI OpenMP

223.738316.4439 137.33343.3673 2 2 104.23158.9342 66.43685.7361 3 3
81.36665.8771 59.28391.9190 4 3 59.65672.1628 45.18892.8821 4 5
68.53903.6255 51.46023.0931 5 4 56.69612.7679 40.64291.5087 3 8
53.28532.2711 42.52531.9582 5 8 70.21436.3089 54.22842.3153 6 4
52.82862.9948 40.08092.4266 2 20 71.94964.2597 75.39474.6624 20 2
49.80651.9282 37.31632.4220 3 13 75.70564.4348 62.66442.2626 13 3
50.86752.3173 39.13781.8670 4 10 70.86394.0900 56.78642.6158 10 4

5. Conclusions and Future Works

In this paper, a parallel matheuristic algorithm for solving a set of Mixed Integer Linear
Programming (MILP) problems is presented. The algorithm put forward follows a decomposition
strategy proposed for large-scale MILP optimization problems. This decomposition is based on the
nature of the decision variables (continuous versus discrete). In the proposed algorithm, an incomplete
encoding representing only discrete decision variables is explored by metaheuristics. The encoding of
solutions is completed for the continuous decision variables by solving a linear problem.

In the implementation of the parallel algorithm, both shared memory (OpenMP) and
message-passing (MPI) schemes have been proposed in combination, in accordance with the following
ideas: MPI is used in the first level of parallelization where the different independent MILP problems
are considered and OpenMP is used for internal algorithms.

Experiment results are shown comparing cost and efficiency when processors and problem size
vary, obtaining satisfactory results in terms of solution quality and execution time. The parallel study
also focuses on the comparison of the CPLEX and GUROBI software packages since both are two of
the most used packages when solving LP problems.
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Finally, future research efforts could be aimed at determining the best metaheuristic, instead of
assuming that the best parameters have already been found.
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