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Abstract: Integration is a key way to improve the switching frequency and power density for a DC-DC
converter. A monolithic integrated GaN based DC-DC buck converter is realized by using a gate
driver and a half-bridge power stage. The gate driver is composed of three stages (amplitude amplifier
stage, level shifting stage and resistive-load amplifier stage) to amplify and modulate the driver
control signal, i.e., CML (current mode logic) level of which the swing is from 1.1 to 1.8 V meaning
that there is no need for an additional buffer or preamplifier for the control signal. The gate driver can
provide sufficient driving capability for the power stage and improve the power density efficiently.
The proposed GaN based DC-DC buck converter is implemented in the 0.25 µm depletion mode
GaN-on-SiC process with a chip area of 1.7 mm × 1.3 mm, which is capable of operating at high
switching frequency up to 200 MHz and possesses high power density up to 1 W/mm2 at 15 V output
voltage. To the authors’ knowledge, this is the highest power density for GaN based DC-DC converter
at the hundreds of megahertz range.

Keywords: bootstrapped capacitor; DC-DC buck converter; depletion-mode GaN HEMT; MMIC;
power density

1. Introduction

The increasing requirements of power consumption, high power density and high operational
frequency of modern applications have been appealing for converters with much smaller size
and higher switching frequency. The demanding for a reduced converter volume is stimulated,
especially, by the information technology applications where the rapid development of integrated
circuit technology had aroused more compact systems with higher power dissipation [1]. A small
volume means high power density which is equivalent to greater design freedom, lower installation
cost and more system robustness. Traditional DC-DC converters are mostly implemented in the process
of Si MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with extremely low RON (on-state
resistance) and high efficiency performance over hundreds of kilohertz [2–7] However, they can not
operate at very high switching frequency with desirable power density due to the large parasitic
capacitors [8]. Under such circumstances lots of efforts have been put in GaN based switching DC-DC
converters [9,10] for higher operating frequency, breakdown voltage and power density performance
comparing to the counterparts of Si devices [11,12].

For the GaN based switching DC-DC converter, depletion-mode devices usually have lower
ON-resistance and smaller parasitic capacitance [13], which is more suitable for high frequency and
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high power density demanding converters. To further use those merits, it is necessary to realize full
integration of the DC-DC converter containing the power switching stage and gate driver. Then the size
of the converter chips as well as the parasitic capacitance coming from the devices or introduced
by the external package can be dramatically decreased. With discrete devices, Miguel R et al. [9]
illustrated a high efficiency demonstrator which can operate at 10–40 MHz switching frequency,
Nicolas et al., reported a converter operating at 50 MHz with a preamplifier to amplify the control signal
(after amplifying, the swing is 6.27 V) [14] and for a higher frequency range Ming-Jie et al. demonstrated
a converter that can operate at 300 MHz with an additional buffer for a control clock signal [15] but with
low power density, i.e., 4.16 × 10−6 W/mm2. To realize the monolithic integrated GaN based DC-DC
converter and improve operating frequency, Zhang et al. [10] used three circuit topologies at 100 MHz
with a level shifter matching network to transmit the control signal (the swing is 5 V) generated by
FPGA (Field Programmable Gate Array). Pilsoon et al. [16] reported a converter that can work at
high switching frequency, i.e., 680 MHz with no need for a gate driver, but only with 0.24 W/mm2

power density using the 0.25 µm GaN-on-SiC process. As enumerated, though the converters that can
operate at hundreds of megahertz range have been realized no matter in integrated or discrete form,
the gate control signal in some of them still need to be modified by additional buffer or a preamplifier
and the power density is still very low at such a frequency range. This paper concentrates on the highly
integrated GaN based DC-DC converter which can be controlled directly by the current mode logic
(CML) level signal of which the swing is 0.7 V (from 1.1 to 1.8 V), operating at high switching frequency
and possessing high power density. Two converter topologies with and without a bootstrapped
capacitor structure are designed and analyzed. The driver integrated in the converter can amplify the
CML level control signal (swing is 0.7 V) to a driving signal (swing is close to 25 V). The demonstrated
GaN based DC-DC converter with a bootstrapped capacitor structure possesses higher performance
comparing to the converter without bootstrapped capacitor in terms of efficiency and both of them
exhibit 15 V of output voltage, 2.2 W of output power and 1 W/mm2 of power density working at
200 MHz switching frequency. It is the first time that a GaN based DC-DC converter exhibits 1 W/mm2

at hundreds of megahertz with the CML level control signal to the authors’ knowledge.
This paper is organized as follows: Section 2 shows the working principal and simulated results of

the driver and the integrated converters. Section 3 presents the experimental results of both converters.
Conclusion and discussion are given in Section 4.

2. GaN Based Switching DC-DC Converter

As shown in Figure 1, the monolithic integrated GaN based switching DC-DC converter
is composed of three parts: half-bridge switching power stage (transistors THS and TLS),
gate drivers (the triangle parts) and inductive filter network (LR and CR). The driver for THS is
a high side driver and the other one is a low side driver. In such a structure implemented with D-mode
(normally on) GaN HEMT (High Electron Mobility Transistor), the design of the high side driver is
quite a challenging issue. It is because the high side transistor THS need a high driving voltage swing
from−5 V (to turn it off) to the required output voltage (to turn it on) whereas a comparatively small
voltage swing from −5 to 0 V is needed for the low side transistor TLS. This section demonstrated two
approaches to achieve the difficult target with small swing control signal at a very high frequency and
high power density.Electronics 2020, 9, x FOR PEER REVIEW 3 of 12 

 

Driver

DriverVL

Vin

THS

TLS

VSS

VH

VSW LR

CR R

VOUT
1.1V
1.8V

1.1V
1.8V

 
Figure 1. GaN switching DC-DC topology. 
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Figure 2. Schematic of the driver including a high side driver (VOUT3 to drive THS) and low side driver 
(VOUT4 to drive TLS). 

For the 1st stage, its function is to amplify the driver’s CML level control signal (of which the amplitude 
is from 1.1 to 1.8 V) to a bigger swing (5 V). Additionally, for the 2nd stage, it will shift the pulse from the output 
of the 1st stage to a suitable level, which can offer enough driving ability to drive the third stage to be the ON 
state and OFF state. Additionally the third part of the driver is a resistive-load amplifier stage to amplify the 
signal from the output of the 2nd stage to drive the power stage. Compared to discrete converters which use 
bias tree to enlarge a driving signal in [14] and a hybrid gate driver in CMOS (Complementary Metal Oxide 
Semiconductor) [15], and integrated converters [10] with an external level shifter matching network, the 
proposed driver in this paper can be controlled directly by the CML level signal. The driver has less demand for 
a drivers’ control signal and the 1st and 2nd stage can offer over a 4 V swing for the input of the 3rd stage. 
Subsequently T4 and T5 in the 3rd stage will turn on and off more thoroughly, which means the driver owns 
much more powerful driving capability. In such situation, the power stage will possess better time domain 
performance and higher power density. To the authors’ knowledge, it is the first time to report the proposed 
three stages driver structure in the DC-DC converter. 

Figure 1. GaN switching DC-DC topology.



Electronics 2020, 9, 1540 3 of 13

2.1. Driver Design

The schematic of the driver is illustrated in Figure 2 consisting of the first amplitude amplifier
stage, the second level shifting stage and the third resistive-load amplifier stage. It can provide a
suitable driving signal for THS (close to 25 V swing) and TLS to turn them on and off by amplifying and
modulating the very small CML level control signal (0.7 V swing), which can solve the challenging
issue of the switching DC-DC converter. The 1st and 2nd stage of both side driver have the completely
identical topology, devices (no matter passive or active components) and bias voltage (VDD× or VSS×)
as shown in Figure 2.
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Figure 2. Schematic of the driver including a high side driver (VOUT3 to drive THS) and low side driver
(VOUT4 to drive TLS).

For the 1st stage, its function is to amplify the driver’s CML level control signal (of which the
amplitude is from 1.1 to 1.8 V) to a bigger swing (5 V). Additionally, for the 2nd stage, it will shift
the pulse from the output of the 1st stage to a suitable level, which can offer enough driving ability
to drive the third stage to be the ON state and OFF state. Additionally the third part of the driver
is a resistive-load amplifier stage to amplify the signal from the output of the 2nd stage to drive the
power stage. Compared to discrete converters which use bias tree to enlarge a driving signal in [14]
and a hybrid gate driver in CMOS (Complementary Metal Oxide Semiconductor) [15], and integrated
converters [10] with an external level shifter matching network, the proposed driver in this paper can
be controlled directly by the CML level signal. The driver has less demand for a drivers’ control signal
and the 1st and 2nd stage can offer over a 4 V swing for the input of the 3rd stage. Subsequently T4

and T5 in the 3rd stage will turn on and off more thoroughly, which means the driver owns much
more powerful driving capability. In such situation, the power stage will possess better time domain
performance and higher power density. To the authors’ knowledge, it is the first time to report the
proposed three stages driver structure in the DC-DC converter.

A simplified diagram for the operation of the high side driver is shown in Figure 3 and the low
side driver has the same structure and operation mode except for the inverted input signal so it has
been hided due to the area limit. When VH is high(1.8 V), T1 is ON of which the ON-state resistor is
RT1, on and VOUT1(output of the 1st stage for the high side driver) is close to VSS1 as shown in Figure 3a
and VOUT1 (output of the 1st stage for the low side driver) is close to VDD1. For the second level
shifting stage, transistor T3 is equivalent to a current source(IT3) for the connection of its gate and
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source which means the VGS of T3 is zero so that T3 will maintain the ON state and the bias current can
be figured out by

I ≈
1
2

W
L
µnCox(0−VTH)

2 (1)

where W, L, µn and Cox are the technology parameters. For the Schottky diodes D1-D6, each of them
have the same voltage decrement, set to VD which is 2 V at 20 mA bias current, the total voltage
decrement of the six diodes is 6 × VD. The magnitude of the voltage decrement can be controlled by
adjusting the diameter of the diodes to get the proper VOUT2 (output of the 2nd stage) by

VOUT2 =
(
VOUT1 −VGS,T2

)
− 6×VD (2)
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Figure 3. Simplified diagram for the operation of the high side driver, (a) VOUT3 output high level
(close to VDD2) and (b) VOUT3 output low level (close to VDD2).

Additionally then, comparatively low VOUT of the 2nd stage will be transmitted to the left side of
the third stage and control T4 to turn off, which make the VOUT3 (output of left side for the 3rd stage)
output a high level voltage nearly approaching VDD2 (bias voltage of the left side for the 3rd stage).
Simultaneously the low side driver accepts a low level signal (1.1 V) and outputs a low level voltage
which is VOUT4 (output of right side for the 3rd stage) closing to VSS3 (common bias voltage of the 3rd
stage). Vice versa, when VH is low (1.1 V) and VL is high (1.8 V) as shown in Figure 3b, VOUT3 will be
close to VSS3 and VOUT4 will be close to GND.

The rise and fall time of the output waveform are optimized through adjusting the resistors of
each stage. So for the 1st stage, the load resistor R1 will determine the rise time of VOUT1 (output of the
1st stage) thereby affecting the counterpart of VOUT for the converter. Figure 4a shows the simulated
waveform of VOUT1 under conditions of different R1. Making a compromise between the frequency
performance and power dissipation, we chose R1 equaling to 500 Ω. As for load resistors in the third
differential stage, with the same standpoint like the 1st stage, we chose 500 Ω for R3 in the left side and
250 Ω for R4 in the other side. The simulated output waveforms of both side with different resistors are
shown in Figure 4b,c. After confirming the value of all the resistors, the simulated optimized results
for driver are shown in Figure 5 proving that the demonstrated gate driver can satisfy the demand for
a high swing of the high side power transistor THS at 200 MHz, not to mention TLS.
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Figure 5. The simulated results of gate driver: (a) VOUT1 (VOUT of the 1st stage), (b) VOUT2 (VOUT of
the 2nd stage) and (c) VOUT3 and VOUT4 (VOUT for the left and right side of the 3rd stage respectively).

2.2. Converter Design

After verifying the function and driving capability of the driver, the power stage was integrated
with the driver in one chip to decrease the parasitic parameters. Figure 6 shows the schematic of
the monolithic integrated GaN based DC-DC converter. Due to the area limit, this schematic just
draws the high side driver and simplifies the 1st and 2nd stage of the low side driver with a rectangle.
The half-bridge power stage was composed of the high side transistor THS and the low side transistor
TLS. The gate of THS and TLS was connected to VOUT3 (output for the left side of the 3rd stage) and
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VOUT4 (output for the right side of the 3rd stage) respectively. When THS once receives a high level of
gate voltage, which comes fromVOUT3 closing to Vin (18 V), it will be the ON state, meanwhile the
TLS receives a low gate voltage and turns off, eventually the output level will be high, at 15 V in this
paper. To maintain the floating gate voltage of THS when it is ON, VDD2 (18.5 V) was set to be slightly
bigger than Vin (18 V). Vice versa, when VOUT3 is low and VOUT4 is high, the output voltage of the total
circuit will be low to 0 V because the source of TLS is GND. Figure 7 shows the simulated waveform
of VSW (black solid line). The result proved that the designed converter could transfer 18 V to 15 V
with the CML level control signal at 200 MHz. However, the simulated VDD2 was near or bigger than
Vin and the simulated power dissipation for the left side of the 3rd stage was 0.53 W resulting in the
deterioration of the overall efficiency.
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So to reduce this part DC power dissipation, this paper proposed another topology with a
bootstrapped capacitor as shown in Figure 6 (include the red bold line path). The red components
(protect Schottky diode Dp and bootstrapped capacitor CB) and bold line form the so called bootstrapped
path. The only difference in topology of the two types of converters is whether they have bootstrapped
capacitor CB and the protecting diode Dp (the red bold line path) or not. When TLS is turned on,
CB will be charged to VDD2 (which is 3 V in the simulated result of the bootstrap topology) and the
output voltage level will be nearly zero. Then after TLS was turned off, VOUT of the converter increased
so VB (the upper plate potential of CB) increased too, to maintain the charge between the two plates of
CB. Additionally different results of the output for the third stage (VOUT3) were given with different CB

values, this paper eventually chose 100 pf for a better time domain and bootstrapped performance as
depicted in Figure 8. The VDD2 of the converter with a bootstrapped capacitor (CB) was much smaller
(3 V) than the counterpart in the converter without a bootstrapped capacitor (18.5 V) in the simulated
result. The simulated power dissipation for the left side of the 3rd stage was 0.12 W, which was much
smaller than the counterpart in the converter without CB (0.53 W). With small VDD2, the output of the
left side for 3rd stage could still satisfy the demanding swing for THS. The simulated output waveform
of the switching node (VSW) for the converter with bootstrapped capacitor is shown in Figure 7 at
200 MHz. Meanwhile in Figure 7 the output high level of the converter with CB was slightly bigger
than the converter without CB. That is because the driver of the converter with CB had a much more
powerful driving capability. Both of them had over 2.2 W output power at 200 MHz in the simulated
results and can be driven simply by the CML level control signal.
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3. Experiment Results

The designed GaN based DC-DC converter is realized in the process of 0.25 µm GaN-on-SiC and
the detailed description of the process can refer to [17]. The epitaxial structure of the AlGaN/GaN
HEMT consists of a 3in SiC substrate, a 2 µm GaN buffer, a 1nm AlN interlayer, a 23 nm Al0.23Ga0.77N
barrier and a 2-nm GaN cap. The gate width of T1, T4, T5 and T2, T3 was 2 × 125 µm and 20 µm
respectively. The radius of the Schottky diodes used for level shifting was 20 µm. For the power
stage, the gate width of THS and TLS was both 8 × 125 µm to meet the demanding for a low output
capacitor and low RON. The test of the converters was carried out by mounting the chips on PCB,
which were connected through bonding wires. The CML level control signal (1.1–1.8 V) was generated
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by an Agilent 81250 Parallel Bit Error Ratio Tester(PBER) with a sampling rate of 10.6 Gbps. The DC
power supply was supported by HP4142B and HP6654A and the output waveform was measured by a
50 Ω-high-speed Lecroy SDA 816Zi-A oscilloscope with a 40GS/s sampling rate in the time domain.

First, the separated gate driver was tested, and its output waveform of the left side for the 3rd
stage is shown in Figure 9. The gate driver could offer a pulse that the voltage swing could be up to 24.1
V (from −6.4 to 17.7 V) under 1.25 MHz with 150 ns for rising time and 30.7 ns for average falling time.
The rising time was determined by R3 × COUT3 and the falling time was determined by RON × COUT3,
where R3 is the left side load resistor of the 3rd stage, RON is the ON-state resistor of left transistor of
the 3rd stage and COUT3 is the equivalent output capacitor of the output node for the left side of the
3rd stage. Due to the large time constant, the separated driver can not be tested at higher frequency.
However, the monolithic integrated converter could operate at 200 MHz resulting from the equivalent
output resistance(RE) in the VOUT3 node decreasing. Since when the driver is tested separately, its load
resistor was 1 MΩ to simulate the gate of THS leading to a large time constant (R3 × COUT3, RE was
equal to R3). While for the integrated circuit, its load resistor was 50 Ω, which means the time constant
was equal to RE × COUT3, which was much smaller than R3 × COUT3 (RE was the parallel of R3 and
oscilloscope resistor (50 Ω) here).
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Figure 9. The experimental output (VOUT3) for the left side of the gate driver where the bias voltage
(VDD2) of the left side for the 3rd stage is 18.5 V.

Figure 10 shows the prototypes for both converters. Additionally the comparison between the
experimental output waveforms of two converters and the simulated output waveform of the converter
with CB is given in Figure 11 at 200 MHz. Both of the two converters exhibited the highest experimental
output level of 15 V. Comparing with the counterparts in [10] at 100 MHz, the waveform result of this
paper was much smoother with less ripple at a higher frequency of 200 MHz. There is a phenomenon
that should be explained that the edge of simulated and experimental waveforms is not coincident very
well. Such a deviation is because the duty of the control signal generated by PBER was not literally
50% result from the coding mode of PBER. However, their qualitative behaviors are the same as shown
in the black short-dash rectangle of Figure 11.

In Figure 12, the performance of efficiency and output power for two types of switching converters
is depicted. The highest output power for the converter with a bootstrapped capacitor was 2.22 W,
consequently its power density was 1 W/mm2 and efficiency was 54.8% when Vin was 18 V. Apparently
both converters had similar output power whereas the converter with CB had higher PAE (overall
efficiency or power added efficiency) and DE (drain efficiency, i.e., power stage efficiency). It is because
the use of the bootstrapped capacitors could dramatically decrease the demand for high VDD2 (from
18.5 V in a converter without CB to 3 V in a converter with CB) to reduce the power consumption of the
driver and increase PAE over 5%.Therefore, the converter with CB, which this paper proposed, had the
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merits in requiring lower driver power dissipation and possessing higher DE and PAE, as expected,
than the counterparts of the converter without CB under the approximate output power and power
density condition.Electronics 2020, 9, x FOR PEER REVIEW 9 of 12 
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Figure 13 demonstrates the power density performance comparison between the designed
converter with a bootstrapped capacitor and the state-of-the-art buck converter. It was proven
the proposed topology with a new driver and bootstrapped capacitor possessed the highest power
density at a hundreds of megahertz range to the authors’ knowledge. Table 1 shows the summary
of the proposed circuit performance and a comparison with the previous DC-DC converters’ results,
illustrating that the designed converter of this work could be directly driven by a small control signal
(CML: swing was 0.7 V) at a hundreds of megahertz range with the highest power density.
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Table 1. Performance comparison with previous DC-DC converters.

Symbol [10] [14] [15] This Work

Technology 0.15 um GaN Discrete GaN 0.25 um GaN 0.25 um GaN
Gate driver integrated N/A CMOS driver integrated

Control signal swing 5 V 6.27 V N/A 0.7 V
Frequency 100 MHz 50 MHz 300 MHz 200 MHz

Max converter efficiency 88% 90% 47.3% 54.8%
Area 2.4 × 2.3 mm2 N/A 0.94 × 0.98 cm2 1.7 × 1.3 mm2

Power Density 0.9 W/mm2 N/A 4.4 × 10−6 W/mm2 1 W/mm2

4. Conclusions

This paper demonstrated a monolithic integrated GaN based DC-DC buck
converter, which can be directly controlled by the CML level signal of which the amplitude
was from 1.1 to 1.8 V, with bootstrapped topology transferring 18 V to 15 V. The size of the chip was 1.7
mm × 1.3 mm of which the power density was 1 W/mm2 and output power was 2.2 W with 54.8%
power stage efficiency operating at 200 MHz. To the authors’ knowledge, this was the highest power
density for a GaN based DC-DC converter at a hundreds of megahertz range by using the CML level
control signal.
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