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Abstract: This paper proposes a novel Bare-Bones Particle Swarm Optimization (BBPSO) algorithm
for solving high-dimensional problems. BBPSO is a variant of Particle Swarm Optimization (PSO)
and is based on a Gaussian distribution. The BBPSO algorithm does not consider the selection of
controllable parameters for PSO and is a simple but powerful optimization method. This algorithm,
however, is vulnerable to high-dimensional problems, i.e., it easily becomes stuck at local optima
and is subject to the “two steps forward, one step backward” phenomenon. This study improves
its performance for high-dimensional problems by combining heterogeneous cooperation based
on the exchange of information between particles to overcome the “two steps forward, one step
backward” phenomenon and a jumping strategy to avoid local optima. The CEC 2010 Special
Session on Large-Scale Global Optimization (LSGO) identified 20 benchmark problems that provide
convenience and flexibility for comparing various optimization algorithms specifically designed for
LSGO. Simulations are performed using these benchmark problems to verify the performance of the
proposed optimizer by comparing the results of other variants of the PSO algorithm.

Keywords: bare-bones PSO (BBPSO); cooperative PSO (CPSO); high-dimensional optimization;
large-scale global optimization; particle swarm optimization (PSO)

1. Introduction

Many optimization problems in modern engineering, e.g., optimal design and scheduling
problems, must be solved with finite resources that should be used efficiently. In particular, most of
these problems are high-dimensional and complex [1-3]. Therefore, the recent focus of optimization
techniques has been on solving complex and high-dimensional problems, as described in [4-8§].

The Particle Swarm Optimization (PSO) algorithm [9,10] is a metaheuristic inspired by the social
behavior of birds flocking or fish schooling; the algorithm was created by simplifying this social
behavior. In the algorithm, the so-called particles find a population of candidate solutions to a given
optimization problem by moving in a search space according to simple mathematical formulas that
are related to the particles” positions and velocities. The PSO algorithm can search the solution spaces
of optimization problems with few or no assumptions about the problems, even those that involve
searching relatively large spaces. Additionally, to be solved using the PSO algorithm, a problem need
not be differentiable, and PSO can be robustly used with problems that include uncertainties such
as noise or changes over time. Therefore, PSO algorithms are widely and frequently used to solve
optimization problems because they are simple to implement, stable, and high-performing.
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There have been many studies of PSO, which has great utility. Among these studies, there are
several investigations into improving the convergence of the PSO algorithm and selecting the optimal
PSO parameters [11-14]. Generally, the standard PSO algorithm has four primary user-controlled
parameters. The selection of these parameters is known to have a considerable influence on the
optimization algorithm’s performance. PSO typically uses a uniform distribution to generate random
numbers. However, the authors of [15,16] have demonstrated that escaping local optima is difficult
for this PSO algorithm. Therefore, there have been many studies on PSO variants that use Gaussian
distributions [16-18], which can reduce or remove some of the parameters. Of these algorithms,
the Bare-Bones PSO (BBPSO) algorithm [19] is the simplest, and it can be intuitively understood and
easily implemented without considering the parameter settings by sampling new particle positions
from a Gaussian distribution whose mean is given by the average of the globally and locally best
positions and whose standard deviation is given by the distance between the globally and locally best
positions. Therefore, the BBPSO algorithm has attracted much interest from researchers. This algorithm,
however, can become stuck at local optima when solving high-dimensional problems with many
local optima, as mentioned in [17], and is subject to the “two steps forward, one step backward”
phenomenon. This paper attempts to solve these problems and proposes an effective BBPSO-based
optimizer for high-dimensional problems that combines heterogeneous cooperation based on the
exchange of information between particles and a jumping strategy to avoid local optima. Figure 1
shows a brief summary of the goal and main idea for the development of the proposed Heterogeneous
Cooperative BBPSO with Jumping (HCBBPSO-Jx) algorithms.

Goal : Apply Bare Bones PSO (BBPSO)[D] to High-Dimensional Problems

Strengths of that Weaknesses for those
* Simplest of the PSO variants 1) Easy to stuck in local optima
¢ Intuitive understanding 2) Increase of the function
* Easy implementation evaluation due to “two steps
* No considering the parameter forward, one step backward”
setting of standard PSO phenomenon

overcoming 1) with Swarm Q (BBPSO-Jx < BBPSO + Jump strategy!!”)
and 2) with Swarm P (CBBPSO € BBPSO + Cooperative concept *™)
and Exchange Information between Swarm P and Swarm Q

> Heterogeneous Cooperative BBPSO with Jumping (HCBBPSO-Jx)

Figure 1. The goal of the proposed Heterogeneous Cooperative Bare-Bones Particle Swarm Optimization
with Jumping (HCBBPSO-Jx) algorithms: to apply the simplest and powerful BBPSO [19] to
high-dimensional problems, overcoming several weaknesses with jump strategy [17], cooperative
concept [20], and exchange information between heterogeneous swarms.

The remainder of this paper is organized as follows: In Section 2, detailed mathematical models
of the standard PSO and BBPSO algorithms are briefly introduced, and the cooperative learning
and jumping strategies are described. Section 3 provides a detailed explanation of the proposed
HCBBPSO-Jx algorithms. In Section 4, we verify the performance of the HCBBPSO-Jx algorithms
using the 20 benchmark functions provided by the IEEE Congress on Evolutionary Computation 2010
(CEC 2010) Special Session on Large-Scale Global Optimization (LSGO) to provide convenience and
flexibility for comparing various optimization algorithms. Using these large-scale global optimization
problems, we compare the results with those of the other PSO variants. Finally, Section 5 concludes
this paper.
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2. Background Knowledge

2.1. The Particle Swarm Optimization (PSO) Algorithm

This section describes the mathematical model and the search procedure of the standard PSO
algorithm. First, let f : R” — R be the cost or objective function that we should minimize. A candidate
solution takes the form of a vector of real numbers, and the output of the function is a real number,
which is the value of the objective function for the given candidate solution. The goal of this
optimization problem is to find a solution x* such that f(x*) < f(x) for all x in the search space,
which is bounded by the values b; and b,,.

Algorithm 1 shows the process of the standard PSO algorithm [9,10]. The parameter Np is the
size of the population (called a swarm in the PSO algorithm) or the number of particles. As mentioned
above, the parameters w, ¢p, and ¢, represent the inertia weight and the acceleration constants,
respectively. Each particle has a position x;(k) € R" in the search space and a velocity v;(k) € R",
at time k. The vector p;(k) is the best known position of particle i, and the vector g (k) is the best
known position of the entire swarm at time k. These are also called “pj,s;” and “gpest,” respectively.

Before the algorithm begins, each particle’s position and velocity are initialized with uniformly
distributed random vectors, ie., x;(1) ~ U(b;,b,) and v;(1) ~ U (— by —by|, [by —by]),
respectively. The vector p;(1) is first initialized with the vector x;(1). Finally, the vector g(1) is
initialized with the best of the vectors p(1).

Algorithm 1 Standard PSO Algorithm.
1: SetParameters(Np, w, ¢y, ¢g);
2: Initialize(x(1), p(1), g(1), v(1));
3 k= 1;
4: while Termination condition does not meet do
5: fori =1to Np do

> Np: # of Particles

6: ford =1tondo > n: Dimension of Problem
7: rp, 1g ~ U(0,1);
8: k=k+1;
9: Update(v; 4(k)); > Using Equation (1)
10: end for
1 Update(xi(k)); > Using Equation (2)
i f(E0) < f(5,(K) then
13: pi(k) « x;i(k); > Update ppeq;
14: 1ff(ﬁ( ) < f(g(k)) then
15: g(k) < p;(k); > Update g5
16: end if
17: end if
18: end for
19: end while
20: return g (k); > Best Found Solution

Next, the particles search begins. For each dimension of each particle, an element v; 4 is determined
as follows:

via(k+1) = wo; g(k) + @prp (pia(k) — x;a(k)) + @gre (ga(k) — x;,4(k)), 1

where the parameters r, and 7y are uniformly distributed random numbers in the range [0, 1],
ie., U(0, 1). In the first part of Equation (1), the inertial weight w represents the amount of momentum
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the particles have. The second part is the “cognition” part, which represents the independent behavior
of each particle. The final part is the “social” part, which represents the collaboration among the
particles. The constants ¢, and ¢, determine the relative influences of the cognition and social parts,
and eventually, pull each particle toward position pyes; and gpest-

The next position of particle i, x;(k + 1), is calculated using Equation (1) as follows:

xi(k+1) = x;(k) + v;(k+1). )
Subsequently, if the value of f(x;(k)) is smaller than the value of f(p,(k)), then the vector
p;(k) is updated to x;(k). In addition, if the value of f(p;(k)) is smaller than the value of f(g(k)),
then, the vector g (k) is updated to p; (k).
This process is repeated until a termination criterion is met, e.g., the maximum number of
iterations or a solution with an acceptable objective function value is reached.

2.2. The Bare-Bones PSO (BBPSO) Algorithm

As mentioned above, the BBPSO algorithm does not have to set up the parameters w, ¢y,
and ¢g, unlike the standard PSO algorithm. In the BBPSO algorithm, the next position of a particle
is determined by sampling a Gaussian distribution whose mean is given by the average globally
best position of the swarm(s), gpest, and the personally-best position of the particle, py.s; and whose
the standard deviation given by the absolute difference between gy,.5; and ppes;. For each element
(or dimension) of a particle, the next position is determined in the BBPSO algorithm using the following
equations instead of using Equations (1) and (2), which are for the standard PSO algorithm:

%ia(k+1) = N (uia(k),0%(K)) ©)
_ gak) +pia(k)
pia(k) = % 4)

0ia(k) = [ga(k) — pia(k)|, ©)

where N ( wia(k), ‘Tizd(k)) is a random number generator based on a Gaussian distribution with mean

ti 4(k) in Equation (4) and standard deviation 0; 4(k) in Equation (5) for the d-th dimension of the
particle i. Except for the above step, the procedure is equivalent to that of the standard PSO algorithm.

2.3. The Cooperative Approach

Generally, in population-based algorithms, including the PSO algorithm, an agent in one
population represents an intact n-dimensional candidate solution. In the standard PSO algorithm,
there is one swarm of Np particles, each of which has n components, that attempts to find an
optimal n-dimensional solution. However, in this case, the algorithm frequently undergoes the
“two steps forward, one step backward” phenomenon described in [20], especially when it is solving a
high-dimensional problem. This appearance of this phenomenon means that although the fitness of
a particle (or a candidate solution vector) may be considerably improved during the next time step,
some of its components may have been changed from a better value to a rather poor value. Indeed,
an improvement in two components (two steps forward) overrules a potentially good value for a single
component (one step backward) for a problem with a three-dimensional solution vector. Eventually,
valuable information is unintentionally lost.

One solution to the “two steps forward, one step backward” problem is to evaluate the objective
function more frequently, perhaps each time a component in the candidate solution vector is updated,
which results in much quicker feedback. However, in this case a problem remains. The function is
only evaluated for a complete n-dimensional solution vector. Therefore, after a specific component
is updated, the values of the n — 1 other components of the candidate vector still need to be
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chosen. One method of overcoming these problems proposed in [20], the Cooperative PSO (CPSO)
algorithm, employs a cooperative approach. In the CPSO algorithm, unlike the standard PSO
algorithm, the solution vector is split into its components so that K swarms of Np particles containing
[n/K]-dimensional or |7 /K |-dimensional components, where K is a pre-determined parameter called
the split factor, are optimized. This approach effectively increases the solution diversity and the
amount of information exchanged to avoid the “two steps forward, one step backward” phenomenon.

2.4. The Jumping Strategy

When variants of the PSO algorithm are applied to optimization problems with many local
optima in a high-dimensional search space, they may become stuck at the local optima. The jumping
strategy [17,21-23] was proposed to escape from local optima, and promising results have been
obtained. This strategy has been implemented as a mutation operator in Evolutionary Algorithms
(EAs) based on a Gaussian and Cauchy probability distributions.

The goal of the jumping strategy is to allow particles in PSO algorithms to escape from local
optima to which they are prematurely attracted. The motion of the particles in this situation stagnates
with no improvement in their fitness. Whether a particle is stagnating can be determined by monitoring
its fitness, and then, the stagnating particles move to a new point that is selected using the jumping
strategy. This aim can be accomplished by introducing a stagnation interval (C,; for each particle in
this paper), which monitors the fitness of each particle, and increasing it by one during each iteration
until its value reaches a pre-determined maximum number of iterations, which is called the maximum
stagnation interval in [17] (MF in this paper).

When the particle should jump to a new point, its next position is determined by choosing
between Gaussian and Cauchy jumps as follows:

xi(k+1) = p;(k) - (1474 -N(0,1)) 6)

xXi(k+1) = p;(k) - (1+7-C(0,1)) @)

where the parameter 7 is for scaling and the vector p.(k) is the best known position of particle i.
In Equation (6), N(0,1) is a random number generated using a Gaussian probability distribution with
a mean of 0 and a standard deviation of 1. In Equation (7), C(0, 1) is a random number generated
using a Cauchy probability distribution with 7y = 1 centered at the origin and described by

f(x):m, — 00 < x < 0. ®)

3. Heterogeneous Cooperative BBPSO with Jumping (HCBBPSO-Jx) Algorithms

Algorithm 2 shows detailed pseudo-code for the Heterogeneous Cooperative BBPSO with the
jumping (HCBBPSO-Jx) algorithms proposed in this paper. The proposed algorithms consist of
three main parts: a cooperative BBPSO step, a BBPSO with jumping step, and a cooperative part in
which information is exchanged between two heterogeneous algorithms. First, the parameters for the
HCBBPSO-Jx algorithms are initialized. The matrices x and y contain the current position vectors of the
particles in swarms P and swarm Q, respectively. Additionally, the matrices p and q (the bottom matrices
in Figure 2) include the py,; information of swarms P and swarm Q, respectively. The vector § p (the top
vectors in Figure 2) stores the gp,; information of swarms P and the vector §Q stores that of swarm Q.

3.1. The Cooperative BBPSO (CBBPSO) Step

Once the necessary parameters for the HCBBPSO-Jx algorithms have been initialized,
the Cooperative BBPSO (CBBPSO) step is performed. This step introduces the aforementioned
cooperative approach. It has been modified for use in high-dimensional problems as shown in
lines 7-18 of Algorithm 2. Unlike the CPSO algorithm [20], the HCBBPSO-Jx algorithms are based on
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the BBPSO algorithm instead of the traditional PSO algorithm, i.e., they use the equation of motion
from the BBPSO algorithm, Equation (3), to move the particles. This method is simpler and more robust
than that of the PSO algorithm. Additionally, the algorithm uses the P swarms, which are K swarms of
Np particles, as shown in Figure 2a. Here, the constant K is a pre-determined parameter called the
split factor, as it is in the CPSO algorithm. From the constant K, the parameter K; is calculated as
Ki = mod(n, K). Then, the parameter Kj is K — Kj. Of the K P swarms, Kj contain particles that have
K¢ dimensions, where Ko = [1n/K]. The particles in the remaining K, swarms have Kp-dimensional
components, where Kr = |n/K]. That is to say, an n-dimensional solution vector is divided into
Kj Kc-dimensional components and K, Kp-dimensional components, where n = K¢ x K; 4+ K¢ X Kj.
In addition, to reduce the Number of Function Evaluations (NFEs), the proposed algorithm uses a
double if statement for updates (lines 10-15 of Algorithm 2).

As in [20], for cooperation (or, more precisely, information exchange) between swarms,
a “blackboard,” which is a shared memory in which particles can post or read hints, is used. To establish
this blackboard, the algorithm introduces a context vector, shown at the top of Figure 2a, which selects
the globally best particle from each of the K P swarms, and is used to evaluate the particles. To evaluate
all of the particles in the s-th swarm, the other n — Kx components in the context vector are kept
constant while the 1 + (s — 1)Kx-th to the sKx-th components of the context vector are replaced by
each particle from the s-th swarm in turn. The function g(s, zs) shown (and in lines 10 and 12 of
Algorithm 2) plays this role to create an n-dimensional vector that is evaluated.

N

B(S/ZS) = (gp,lr Tty gP,(sfl)KX/ Zs, gP,SKX/ Tty gP,n) (9)

The subscript X of Ky is determined as follows: for the s-th swarm, if s € {1, ---,K;j} then
X=Cand X =Fifse {K;+1, --- ,K}.

Swarms P for CBBPSO
( Context Vector for P \ Swarm Q for BBPSO-Jx

4 )

> gbm vector of Q

One «
Particle > One <
One < : Particle
Swarm i I : ]
Eprl' cee pNPK R VR R o - ™ One <
Swarm

v, ‘INO

.y i
¥ K, swarms with | n/ K |(= K, ) dimensions
% swarms with (n/ K ] dlmensmns

(a) Swarms P for Cooperative BBPSO (CBBPSO) (b) Swarm Q for BBPSO with Jump (BBPSO-Jx)

Figure 2. The configurations of gj.s; and py,s for the HCBBPSO-Jx algorithms: (a) swarms
P: K swarms of Np particles; in the cooperative BBPSO (CBBPSO) step, the P swarms consist
of Ky [n/K]-dimensional swarms and K, |n/k]|-dimensional swarms, i.e., K = K; + K; where
K1 =mod(n, K); (b) swarm Q: an n-dimensional swarm of N particles for the BBPSO algorithms with
Jumping (BBPSO-Jx) (one particle = one row vector).

3.2. The BBPSO with Jumping (BBPSO-]x) Step

As the second step, to achieve robust heterogeneous cooperation for solving high-dimensional
problems, the proposed HCBBPSO-Jx algorithms introduce the BBPSO algorithm with a jumping strategy.
Figure 2b displays the configuration of the gp.s; and ppes; of the swarm Q, which is the general form
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of the PSO variants. The standard BBPSO algorithm may become stuck at a local optimum when
solving a high-dimensional problem with many local optima. In this case, as mentioned in Section 2.4,
the jumping strategy enables particles to escape from the local optima. If there is no improvement for the
j-th particle, then, the update failure counter, Cr j, is increased by one during each iteration until it reaches
the predefined maximum allowable number of update failures, Mr. After reaching the maximum number
of failures, M, the particle jumps to a new point using Equation (6) or (7). After the performances of two
cases, which use Gaussian and Cauchy probability distributions, have been compared, the best jumping
strategy for the proposed HCBBPSO-Jx algorithms is identified in Section 4.

Algorithm 2 HCBBPSO-Jx Algorithms (for x, C: Cauchy, G: Gaussian).

1: SetParameters(Np, K, Ng, 11, MF); > Set parameters
> K: split factor, Mr: # of maximum allowable update failure, #: jump scaling factor, n: dimension of given problem
2: k=1;
3: Ky = mod(n, K); K = K —Ky; K¢ = ceil(n/K); Kp = floor(n/K);
> For spliting into solution vector components for CBBPSO

4: Initialize(x(1), p(1), gp(1), y(1), (1), go(1), Cr); -
> Initialize swarms P and swarm Q, Cr: Counter vector for update failure
while Termination condition does not meet do
k=k+1;
VY Cooperative BBPSO Step YV

7: fors =1to Kdo

A

> For s-th swarm with K¢ dimensions if s € {1, ---,K;} and Kp dimensions ifs € {K; +1, --- ,K}

8: D=[1+(s— 1)Ky : sKx; >X=Cifse{l, ---,K;}and X = Fifs € {K; +1, --- K}

9: fori=1to Np do R > For each particle
10: if f(B(D,x;,p(k))) < f(B(D, pip(k))) then
11: piD (lj) « x;p(k); B > Update py,s; components (or particle) of swarms P
12: if f(B(D, pip(k))) < f(B(D,gp,p(k))) then
13: gp,p(k) < pip(k); > Update g5 components of swarms P (K¢ or Kr components of context vector)
14: end if
15: end if
16: end for )
17: xp(k) ~ N(pp(k),op(k)); > Moving swarm using Equations (3)-(5) for swarms P
18: end for

YY BBPSO with Jump Step YV

19: for j = 1to Ng do > For each particle
20: if Crj < M then > Perform original BBPSO
21: ﬁj(k) ~ N(p;(k), o;(k)); > Moving swarm using Equations (3)-(5) for swarm Q
22: else > Perform jump
23: gp/‘ — OL
24: Yj k) ~ qj(k) -(1+1n-C(0,1)); > C(0,1) for Cauchy jump or N(0,1) for Gaussian jump
25: end if
26: fors =1to K do > Information exchange from swarms P to swarm Q
27: D=[1+(s— 1)Ky : sKxl; >X=Cifse{l, ---,K;}and X = Fifs € {K; +1, --- K}
28: m ~ U(1, Ng); > Integer uniform distribution with range [1, Np]
29: ym,D(k) < 8P.D (k)/
30: end for .
31: if f(y;(k) <Af(qj(k)) then
32: q (k) = y]-(k); > Update py.s; vector (or particle) of swarm Q
33: if £(4,(0)) < (g (k) then
34: golk) qj(k); > Update gj,; vector of swarm Q
35 end i
36 else
37 CF,j FCFJ-FL
38 end if
39 end for
40: ford =1tondo > Information exchange from swarm Q to swarms P
41: m ~ U(1, Np); > Integer uniform distribution with range [1, Np]
42: Xim,d (k) <~ 80d (k)/
43: end for

44:  g(k) « min(gp(k), go(k))
45: end while
46: return g(k); > Best found solution
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3.3. The Steps Involving Cooperation by Exchanging Information between the CBBPSO and
BBPSO-Jx Algorithms

The final part of the HCBBPSO-]x algorithms is where heterogeneous cooperation between the
CBBPSO step and the BBPSO with jumping step occurs in the HCBBPSO-Jx algorithms; information
from the previous two steps is exchanged, as shown in lines 26-30 and 40-43 of Algorithm 2. In this
step, information is exchanged once per iteration when n components that are randomly selected from
the matrices x and y, each corresponding to a component of its gy, are substituted. This step helps
increase the diversity of the solutions searched.

Like other variants of the PSO algorithm, the above three-step process is repeated until a
termination criterion is met, e.g., the maximum number of iterations or a solution with an acceptable
objective function value is reached.

4. Comparative Simulations

This section presents the results of the simulations and a discussion of comparable simulations
performed using five variants of the PSO algorithm. The goal is to verify the performance of the
proposed HCBBPSO-]x algorithms by applying them to the 20 1000-dimensional benchmark functions
from the CEC 2010 Special Session. The CEC 2010 Special Session on Large-Scale Global Optimization
(LSGO) identified 20 benchmark problems [24] that provide convenience and flexibility for comparing
various optimization algorithms that are specifically designed for large-scale global optimization.
The test suite includes four types of high-dimensional problem: (1) separable functions; (2) partially
separable functions, which have a small number of dependent variables, and all of the remaining
variables are independent; (3) partially separable functions that consist of multiple independent
subcomponents, each of which is m-nonseparable; and (4) fully nonseparable functions. The detailed
mathematical formulas for and properties of these functions are described in [24]. Section 4.1 describes
the simulation environment and setup. Section 4.2 describes the comparative results evaluated using
the Formula One point system, which is the method used in the LSGO challenge posed in the CEC
2010 competition. Finally, Section 4.3 is dedicated to reporting the results of the best algorithm tested
in the comparative simulations using the method that represented the results of the LSGO competition.

4.1. The Simulation Environment and Setup

The simulations were conducted using the 20 1000-dimensional minimization problems from
CEC 2010. For each problem, the simulation was run 25 times for statistical accuracy. The simulation
terminated when the maximum number of function evaluations (MaxNFEs), which was set to 3 x 10°
for all of the trials, was reached. The simulator and algorithm used in this simulation were implemented
in MATLAB for 32-bit Windows 8.1. All of the simulations were performed on four computers with an
Intel @ 3.07 GHz processor and 4 GB of RAM. For fairness, each computer only ran simulations for the
following pre-assigned functions: fi~ fs5 on COM1, fg~ f19 on COM2, f11~f15 on COM3, and fi6~ f20
on COM4.

For comparison, the five variants of the PSO algorithm included the two groups of algorithms
shown in Table 1. The first group included three algorithms that are associated with the proposed
HCBBPSO-]x algorithms: The cooperative PSO-Hg (CPSO-Hk) algorithm, which was the most robust
of the CPSO variants proposed in [20] and was obtained by combining the CPSO-Sk algorithm with
the PSO algorithm and Bare-Bones PSO with Cauchy and Gaussian jumping (BBPSOjumpC and
BBPSOjumpG, respectively) algorithms [17], which improved the ability of the BBPSO algorithm
to escape from local optima. The second comprised well-known variants of the PSO algorithm.
The Adaptive PSO (APSO) algorithm [25] used a parameter adaptation scheme and elitist learning
strategy to improve the PSO algorithm. The Comprehensive Learning PSO (CLPSO) algorithm [26]
improved the diversification ability of the PSO algorithm by using comprehensive learning, in which
all of the historically best information on the other particles was used to update a particle’s velocity.
All of the algorithms used the same parameters in all of the simulations; these are shown in the table.
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The parameters for each algorithm were assigned the values that resulted in the best performance and
that were recommended in the literature. In addition, to achieve a fair test, the initial population size
was set to 50 for each algorithm. All of the search parameters were initialized using a uniform random
process within the search space.

Table 1. Parameter setting of each algorithm for comparative simulation with Particle Swarm
Optimization (PSO) variants.

Algorithm Parameter Value
HCBBPSO-]Jx Number of particles in Swarms P (Np) 25
x=CorQG) Split factor (K) 50
Number of particles in Swarm Q (Ng) 25
Jump scaling factor (17) 1.1
Number of maximum allowable update failure (MF) 5
CPSO-Hg [20] Number of particles in each algorithm (CPSO-Sx and PSO respectively) 25
Split factor (K) 6
Weight for previous velocity (w) 0.72
Coefficient of cognition term (c7) 1.49
Coefficient of social term (c3) 1.49
BBPSOjumpx [17] Number of particles 50
(x=CorQG) Jump scaling factor (1) 1.1
Number of maximum allowable update failure (Mf) 5
APSO [25] Number of particles 50
Weight for previous velocity 0.9

Coefficient of cognition term

Coefficient of social term

CLPSO [26] Number of particles 50
wo 0.9
w1 0.4
Coefficient of cognition term 1.49445
Coefficient of social term 1.49445
Refreshing gap (m) 7
Vinax = —Viin (xiL, x’il: Lower and upper bound of i-th dimension) O.2(xil — xi)

4.2. The Results of Comparing the Simulations Performed by the PSO Algorithm Variants

Table 2 shows the results of the simulations performed by the variants of the PSO algorithm after
evaluation using the scoring system from the CEC 2010 LSGO Challenge. The scoring system used in
the CEC 2010 LSGO Challenge was as follows: for each algorithm, a table of the type shown in Table 7
that contains 300 competition categories was formed. The competition categories were 20 functions
(fi~ f20), 3 limits on the NFEs (1.2 x 10°, 6.0 x 10°, and 3.0 x 10°), and 5 statistical values (best, median,
worst, mean, and standard deviation) at each limit on the NFEs for each of the 25 runs. Then, the LSGO
Challenge applies the Formula One point system to the data from the challenge participants in each
of the 300 categories. Table 3 shows the points for each ranking in the Formula One point system.
The winner received 25 points and other rankers received differentiated points according to ranking.
Like the CEC 2010 LSGO Challenge, in this simulation, the smaller measured values in all of the
categories, the higher the ranking and the more points. In particular, a small standard deviation means
that the performance was more reliable. Eventually, the participant with the highest total score wins.
In the results of the evaluation using this scoring system, the proposed HCBBPSO-JG algorithm was
the best of the participating algorithms. In addition, the HCBBPSO-JG algorithm performed better
than the HCBBPSO-JC algorithm that was proposed alongside it.
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Table 2. The results of applying the scoring system from the CEC 2010 LSGO Challenge to the results
of the simulations performed by variants of the PSO algorithm.

Ranking 1st 2nd 3rd 4th 5th 6th 7th
Algorithm HCBBPSO-JG HCBBPSO-JC BBPSOjumpC BBPSOjumpG CLPSO CPSOz APSO
Total Score 5474 5357 4276 4233 4131 2517 2212

Table 3. The results of applying the scoring system from the CEC 2010 LSGO Challenge to the results
of the simulations performed by variants of the PSO algorithm.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Points 25 18 15 12 10 8 6 4 2 1

Tables 4-6 provide the results of the 25 runs of each variant of the PSO algorithm used in the
comparison process when the NFEs counter reached = 3.0 x 10° for the 20 functions. We conducted
several statistical hypothesis tests on these results. First, we performed the Friedman rank test on the
data from all of the algorithms. Next, if there was a significant difference at the 5% significance level,
we performed the Wilcoxon signed-rank test on the best algorithm, i.e., the HCBBPSO-JG algorithm, as
well as the other algorithms and marked the results of each statistical significance test with its p-value
and sign in the tables; the sign “+” means that the HCBBPSO-JG algorithm was significantly better
than the algorithm compared to it, the sign “~” means that the two were not significantly different,
and the sign “—" means that the HCBBPSO-]G algorithm was significantly worse than the algorithm
compared to it. The results of the Friedman rank test show that there were significant differences in
the data from all of the algorithms at the p-value ~ 0 < 0.05 significance level; therefore, the Wilcoxon
signed-rank test was performed on the HCBBPSO-JG algorithm and the other algorithms. In the tables,
the measured value of each function written in bold in colored cells represents the value of the best
algorithm for each statistical value.

In these comparative results, the proposed HCBBPSO-]x algorithms performed better than the
other algorithms; they won for a total of 12 functions in terms of the mean NFEs, which is similar to the
results obtained using the CEC 2010 LSGO Challenge scoring system. In particular, the HCBBPSO-JG
algorithm stayed ahead of the HCBBPSO-JC algorithm with significant differences in the three functions
f7, f16, and f17. However, the HCBBPSO-]x algorithms were the weakest of the variants of Rastrigin’s
function, i.e., f2, f5, fi0, and fi5. The cause of this phenomenon can be understood by examining
the convergence curves shown in Figure 3. We know from the curves for f», f5, fi0, and fi5 that the
HCBBPSO-]JG algorithm prematurely converged to a local optimum only for the functions that were
connected to Rastrigin’s function. The first cause for this result was to simulate all algorithms using
the same total number of particles in order to ensure fairness in comparison simulation. The total
number of particles directly affects the increase or decrease of NFEs (Number of Function Evaluations)
of an algorithm because one particle must use at least one function evaluation to be evaluated for the
solution it finds itself. Therefore, it cannot be a fair comparison if simulations are performed with
different particle size. The second reason for these results is that the optimal parameter value for the
parameter split factor K, which governs the performance of the HCBBPSO-Jx algorithms, was not used.
Selecting this parameter K is very hard because it depends on the problems that want to be solved.
In particular, the problems to solve with the algorithms proposed in this paper are high-dimensional
problems with high complexity. Therefore, the issue of selecting optimal parameter values for the
proposed HCBBPSO-Jx algorithms is to be left behind for further in-depth research later as the further
works of this paper.
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Table 4. A comparison of the results of simulations performed by variants of the PSO algorithm. The best, median, worst, mean, standard deviation, p-value,
and significance sign of the 25 runs when the NFEs counter reached 3.0 x 10° for the functions fi~ f7 are reported. The p-value was determined using the Wilcoxon
signed-rank test between the best algorithm (HCBBPSO-]JG) and the others. The significance sign “+” means that the HCBBPSO-JG algorithm was significantly better
than the algorithm compared to it, the sign “~” means that the two were not significantly different, and the sign “—" means that the HCBBPSO-JG algorithm was
significantly worse than the algorithm compared to it. The measured value written in bold in colored cells for each function represents the value of the best algorithm
for each statistical value.

Algorithm fi f2 f3 fa fs fe fr
APSO Best 592x10° 237x10*  199x10' 891 x10? 294x10® 226x10°  1.86x 108
Median 7.66 x 10°  242x10* 215x10' 155x108 385x108 198x107 523 x 108
Worst 363 x 1011 244x10* 215x100 296x101¥  655x108  211x107 138 x 10°
Mean  7.02x 100 242 x10* 213x10' 167 x10%  4.02x108 149 x107  6.45 x 108
Std 145 x 101 217 x 102 430x107! 540x102 9.82x107 831x10°  3.68 x 108
p-value 6.10x107° 610x107° 6.10x107° 610x107° 854x107* 6.39x 107! 6.10x 107>

(Sign) (+) (+) (+) (+) (-) (~) (+)
BBPSOjumpC Best 124 x 106 421 x10%  193x10' 149 x 102  945x107  1.03x10®  7.77 x 10*
Median 958 x 10°  450x10°  1.95x 101 271 x102 144x108 220x10°  1.67 x10°
Worst 492 x107 491 x103 197x10' 561 x102 | 2.02x108 344 x10° 733 x10°
Mean 142 x107  454x10°  195x10' 321x102 145x10%8  219x10° 224 x10°
Std 151 x 107 226x10%2 1.08x10"1 123x102 359x10"7 720x10° 1.71x10°
p-value 610x107° 610x107° 610x107° 610x107° 6.10x107° 6.10x107° 3.03 x 107!

(Sign) (+) (+) (+) (+) (=) (=) (~)
BBPSOjumpG Best 6.16 x 10°  434x10®> 191x 10" 155x10'% | 896 x107 199 x10' 586 x 10*
Median 4.85x10°  4.62x10° 193x10' 3.17x102 | 1.30x10® 226 x10°  1.87 x 10°
Worst 505 x 107  489x10%  1.95x10' 785x1012 213x108 411x10° 592 x10°
Mean  1.11x107 463 x10®3 194x10' 3.36x102 | 1.41x10% 238x10°® 228 x10°
Std 131 x 107 148 x 102 128x1071 156x1012 424 %107 9.76x10°  1.60 x 10°
p-value 610x107° 610x107° 610x107> 6.10x107° 6.10x10™° 610x107> 7.30x 102

(Sign) (+) (+) () () (=) (=) (~)
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Table 4. Cont.

3.40 x 108 144 x 101 9.67x 1012 145x 108  1.64x10%2  4.03x 108

Median  4.20 x 108 147 x 101 1.44x 1018  1.89 x 108 6.80 x 108
Worst 5.57 x 108 1.49 x 101 1.80x 101  2.46 x 108 1.62 x 10°
Mean 4.24 % 108 147 x 100 138 x 108 1.99 x 108 7.10 x 108

Std 5.95 x 107 1.41 x 101 2.13 x 10'2 1.04 x 106 2.93 x 108

p-value 610x107° 610x107* 610x107° 610x107° 610x107° 6.10x 107> 6.10 x 107>
(Sign) (+) (-) (+) (+) (=) (-) (+)
Best 116 x 1010 127 x10* 204 x 100 118 x 10 398 x10®  1.88x107  2.09 x 10°
Median  1.80 x 1010 137 x10* 205x10' 414 x10 499 %108  194x107  9.69 x 10°
Worst 284 x 1010  155x10* 205x100 1.08x10¥ 615x10% 198 x 107  1.78 x 1010
Mean  1.83x100  139x10* 205x10' 419x10®  494x10% 194x107 870 x10°
Std 547x10° 898 x10° | 5.62x10° 2 250x 108  619x107  296x10° 487 x 10°
p-value 610x107° 610x107°> 610x107° 610x107° 7.30x 1072 201x1073 6.10 x 107>
(Sign) (+) (+) (+) (+) (~) (=) (+)
Best 701x102  239x10° 266x10° 329x 10"  400x 108  188x107 | 1.39x10%
Median 3.63x 1071 272 x 103 557 x 108 198 x 107 237 x 10°

Worst 2.92 x 103 733x 108 199 x 107  2.69 x 10°
Mean 2.65 x 103 5.66 x 108 197 x 107 2.08 x 10°
Std 1.68 x 102 5.67 x 101 1.01x108  261x10°  7.51 x 10%

524x1071  1.69x1071 215 x 1072
(~) (~) (+)
251 x 103 421 %108  1.95x107  3.71 x 10*
280x10°  340x10° 884 x101 558x10%  1.98 x 107
263x1071  304x10° 518x10° 1.38x 102  7.30x10®  1.99 x 107
281x10°Y  277x10° 347 x10° 7.82x10"  554x10%8  1.97 x 107
6.88 x 10717 163 x102 855x10"1 323x101!  9.93 x 107

5/1/0 4/1/1 5/1/0 5/1/0 0/2/4 0/2/4 4/2/0

3.30 x 1071
(~)

p-value 934 x1071 1.07x 107! 454 x 107!
(~) (~) (~)
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Table 5. A comparison of the results of simulations performed by variants of the PSO algorithm. The best, median, worst, mean, standard deviation, p-value,
and significance sign of the 25 runs when the NFEs counter reached 3.0 x 10° for the functions fg~ f14 are reported. The p-value was determined using the Wilcoxon
signed-rank test between the best algorithm (HCBBPSO-]JG) and the others. The significance sign “+” means that the HCBBPSO-JG algorithm was significantly better
than the algorithm compared to it, the sign “~” means that the two were not significantly different, and the sign “—" means that the HCBBPSO-JG algorithm was
significantly worse than the algorithm compared to it. The measured value written in bold in colored cells for each function represents the value of the best algorithm
for each statistical value.

Algorithm fs fo f1o fu fi2 f13 f14
APSO Best 251 x 108 320x 1011 239x10* 218x10%2 433 x10° 3.06 x 102  3.11 x 10!
Median 1.07 x 10° 376 x 101! 243 x10* 227x102 567 x10° 343 x 102  4.24 x 101!
Worst 259 x 1010 419 x 101 248 x10* 236x10>2 3.84x10° 373x1012 449 x 101!
Mean 370 x10° 3.73x 101 243 x10* 227 x 10> 847x10° 343 x10? 4.13 x 101
Std 647 x 10° 256 x 1010 321 x10>  6.02x10° 883 x10° 1.56 x 10!  3.67 x 1010
p-value 6.10x107° 610x107° 6.10x10° 610x107° 610x107° 6.10x 107> 6.10 x 107>

(Sign) (+) (+) (+) (+) (+) (+) (+)
BBPSOjumpC Best 6.65x10°  3.80x10% | 568 x10% 154 x 10> 398x10° 397 x10* 154 x 10°
Median  7.00 x 107 640 x 108 649 x10°  1.67 x 10>  4.82x10° 933 x10* 213 x 10°
Worst 178 x108 996 x10® | 6.78 10> 184 x 102 573x10° 287 x10° 267 x 10°
Mean  7.05x 107 617 x10® | 6.33x10° 1.68 x 10> 474x10° 339x10° 215 x 10°
Std 481 x107  1.62x10%  347x10>2 839x100 536x10* 7.22x10° 295 x 108
p-value 9.46x1072 610x107° 610x107° 610x107° 610x107° 610x107° 6.10x 1072

(Sign) (~) (+) (=) (=) (+) (+) (+)
BBPSOjumpG Best 291 x 107  407x108  575x10°  154x10> 4.02x10° 373x10* 159 x 10°
Median  8.60 x 107 541 x10% | 6.31x10° 1.73x 10> 474x10° 659 x10*  2.03 x 10°
Worst  1.68x10%  1.01x10° 693x10° 183 x 10> 644x10° 219x10° 284 x 10°
Mean 758 x 107 575x10%  639x10° 171 x 10> 489x10° 888 x10*  2.08 x 10°
Std 423 x107 147 x108  419x102 920x100 7.62x10* 595x10*  3.55x 108
p-value 353x1072 610x107° 183x107* 6.10x107° 6.10x107° 610x107° 6.10x107°

(Sign) (+) (+) (=) (=) (+) (+) (+)
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Table 5. Cont.

557 x10°  8.02x 108  2.17 x 10°
596 x10°  1.02x10° 243 x 10°

693 x10°  1.31x10°  9.05 x 103
Median 160 x 107 142 x10°  9.30 x 103

Worst 186 x 10°  9.67 x 10° 6.55 x 10° 178 x 10°  2.72 x 10°
Mean 148 x10°  9.32 x 103 601 x10° 1.10x10°  245x10°
Std 1.51 x 108 1.23 x 10? 276 x10* 297 x10%  1.49 x 108

p-value 7.62x1071 610x107° 610x107° 610x107° 610x107°> 610x 1075 6.10 x 107>
(Sign) (~) (+) (+) (-) (+) (+) (+)
Best 127 x10° 124 x 1010  1.35x10* 222 x 10> 249x10° 771 x100 1.16 x 1010
Median 346 x10° 190 x 1010 145 x10* 224 x 102 290 x10° 1.30 x 1011 1.42 x 1010
Worst 226 x 100 278 x 1010 158 x10* 226x102  324x10° 3.02x 101 2,08 x 1010
Mean 523 x10° 1.88x100 145x10* 224x102 288x10° 155x101  1.54 x 1010
Std 527 x10° 387 x10° 492x102 113x10° 197 x10° 696 x 100  2.74 x 10°
p-value 610x107° 610x107° 610x107° 610x107° 610x107° 610x 107> 6.10x 107>
(+) (+) (+) (+) (+) (+) (+)
251x107 649x10°  217x102 236 x10°  9.14 x 102
715%x 103 218 x 102  3.01 x 103
7.62x10°  218x10%2 391 x 103
715%x10°  218x102  3.00 x 103

3.37 x 102 _ 459 x 102

9.72 x 107

1.68 x 108
Mean  5.58 x 107
Std 7.00 x 107

8.54 x 10°

421 %1071 542 %1071 8.04x107! 8.04x107! 946x107%2 890x107! 6.39x 107!
(~) (~) (~) (~) (~) (~) (~)
8.08x 10* | 208x107 659 x 103  2.17 x 102 8.66 x 107

1.68 x107 297 x107  723x10° 218 x 102 1.41 x 10°
158 x 108 3.67x107 779 x10°  2.18 x 10? 335x10%  1.10 x 108
397 x107  3.00x107 721x10% 218 x 102 158 x 103 9.65 x 107
530 x 107  415x10° 353x10%2 3.42x1071 7.92 x 102

3/3/0 5/1/0 3/1/2 2/1/3 5/1/0 5/1/0 5/1/0

14 of 20
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Table 6. A comparison of the results of simulations performed by variants of the PSO algorithm. The best, median, worst, mean, standard deviation, p-value,

and significance sign of the 25 runs when the NFEs counter reached 3.0 x 10° for the functions f15~ fao are reported. The p-value was determined using the Wilcoxon
signed-rank test between the best algorithm (HCBBPSO-]JG) and the others. The significance sign “+” means that the HCBBPSO-JG algorithm was significantly better
than the algorithm compared to it, the sign “~” means that the two were not significantly different, and the sign “—" means that the HCBBPSO-JG algorithm was

significantly worse than the algorithm compared to it. The measured value written in bold in colored cells for each function represents the value of the best algorithm

for each statistical value.

Algorithm fi15 f16 fi7 f1s f19 f20
APSO Best 239 x10*  422x102  1.64x10° 7.02x10? 593 x10° 7.91 x 102
Median 242 x 10*  428x10%2 513 x10° 7.60x10'2 791 x10° 837 x 10!2
Worst 250 x 10*  430x102 538 x107 7.99x102 2.81x107 854 x 102
Mean 243 x10*  428x10> 975x10° 755x1012 1.10x107 834 x 1012
Std 321 x102  1.96x10°  145x107 257 x 101 596 x10°  1.61 x 101
p-value 6.10x107° 610x107> 6.10x107° 610x107° 6.10x10° 6.10x 107°

(Sign) (+) (+) (+) (+) (+) (+)
BBPSOjumpC Best 739 x 10 345x 102  121x10° 433 x10®  310x10°  1.46 x 108
Median 795 x10°  3.62x10%2 156x10° 239x10° 370x10°  9.56 x 108
Worst  892x10° 377x10%2 205x10° 1.07x1010 402 x10° 1.49 x 1010
Mean 807 x10°  3.62x10% 158x10° 392x10° 372x10°  2.69 x 10°
Std 543x 102 843 x10° 230x10° 326x10° 272x10°  3.84 x 10°
p-value 610x107° 610x107° 610x107° 610x107° 6.10x107° 6.10 x 107°

(Sign) (=) (=) (+) (+) (+) (+)
BBPSOjumpG Best 6.78 x10° 350 x 10> 127 x10° 146 x10°  334x10°®  9.52 x 108
Median = 7.89 x10®  3.67 x 102 156 x10° 329x10°  3.66 x10°  2.10 x 10°
Worst = 8.85x10%  389x10%2 1.86x10° 1.85x100  430x10° 3.87 x 101
Mean = 7.85x10% 368x102 158x10° 429x10° 370x10°  7.95x 10°
Std 534 x 10>  1.19x 100  1.74x10° 413x10° 227x10° 1.13 x 1010
p-value 6.10x107° 610x107> 6.10x107° 6.10x10™° 610x107° 6.10x 1072

(Sign) (-) (=) (+) (+) (+) (+)
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Table 6. Cont.

1.36 x 10* 1.20 x 100

Best

3.32 x 1010

5.39 x 10°

455 x 1010

Worst 120x 104 397 x 102  2.38 x 10*
Mean 115 x 10* 397 x 102  2.07 x 10*
Std 430x 102 397 x10°!  237x10°

p-value 720x10"! 3.02x1072 427 x107*

(Sign) (~) (+) (+)
Best 1.06 x 10*  3.96 x 10?
Median 1.16 x 10*  3.96 x 102

3.97 x 102
3.96 x 102

Worst  1.23 x 10*
Mean  1.15 x 10*
Std 4.93 x 102
3/2/1

3/0/3 6/0/0

4.00 x 103

446 x 107!
(~)

1.28 x 103

7.71 x 10°

1.00 x 109
(~)

5.29 x 10°
6.46 x 103 1.06 x 100

1.62 x 10°

5/1/0

5/1/0

Median  1.37 x 10* 141 x10°  3.92x100 585x10°  5.61x 100
Worst  1.39 x 10* 155 x 10° 454 x 1010 654 x10°  6.16 x 1010
Mean  1.37 x 10* 139 x10° 390 x 1010 586 x10° 554 x 1010

Std 128 x 101 971 x10*  414x10° 3.12x10° 451 x 10°
p-value 610x107° 610x107> 610x107° 6.10x107° 6.10x107> 6.10 x 107>
(Sign) () (=) (H) () (+) (+)

Best 1.34 x 10*  4.06 x 10>  2.86x10° 1.52x 102  1.00 x 10  1.58 x 1012

Median 141 x10*  4.08x 102 320x10° 178 x102 133 x107 1.94 x 102
Worst 149 x 10*  412x 102  377x10° 212x102 230x 107  2.35x 10'2
Mean  1.41x10*  4.09x 10> 323x10° 1.76x102  1.40x107 1.98 x 10'2

Std 421x102  1.89x10° 270x10° 156x 10!  4.03x10°  1.97 x 101
p-value 610x107° 610x107> 610x107° 6.10x107° 6.10x107> 6.10 x 107>
(Sign) (+) (+) (+) (+) (+) (+)

Best 1.07 x10* 396 x 10> 159 x 10*  2.24 x 103 1.49 x 10°
Median 116 x 10* 397 x 102  210x10* 391x10° 792 x10°

2.07 x 10°
1.74 x 103
1.64 x 102
1.88 x 1071

(~)

1.70 x 103

5/1/0

16 of 20
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4.3. The Results of Simulations Using the HCBBPSO-]G Algorithm for the CEC 2010 Benchmark Functions

Table 7 include the simulation results of the best algorithm, the HCBBPSO-JG algorithm. The best,
median, worst, mean, and standard deviation of the 25 runs when the NFEs counter reached
1.2 x 10°, 6.0 x 10°, and 3.0 x 10° are reported. This information ws used in the CEC 2010 LSGO
Challenge scoring system, and the CEC 2010 LSGO Challenge included a rule stating that this
information must be opened with the single convergence curves for several functions that were
specified in advance. Figure 3 show the convergence curves for the designated functions, f5, f5, fs,
f10, f13, f15, f1s, and fao. For each function, the curve has been graphed using the average of the
results of all 25 runs. As mentioned previously, the HCBBPSO-JG algorithm converged prematurely
for the functions f,, f5, f19, and fi5, which were related to Rastrigin’s function. For the other functions,
there were improvements until the maximum NFEs was reached, which helped the HCBBPSO-]G
algorithm perform well.

Table 7. The results of simulations using the best algorithm, the HCBBPSO-JG algorithm: the best,
median, worst, mean, and standard deviation of the 25 runs when the NFEs counter reached 1.2 x 10,
6.0 x 10°, and 3.0 x 10° are reported.

1000D fi f2 f3 fa fs fe fr
1.2 x 105 Best 7.15 x 10 3.47 x 10° 7.28 x 10° 735 %1012 421x108 195x107  7.55x 10°
Median 1.36 x 10° 3.84 x 10° 8.34 x 10° 178 x 10 558 x 108 198 x 107  1.06 x 10%°
Worst 2.35 x 10° 3.98 x 10° 9.12 x 10° 217 x10%  734x 108  1.99x107 176 x 10°
Mean 1.33 x 10° 3.79 x 10° 8.26 x 10° 158 x 108 557 %108 197 x107  1.11 x 10%°
Std 3.87 x 108 148 x 102  562x1071  512x102  1.04x10° 9.64 x10*  2.84 x 10°
6.0 x 10° Best 5.69 x 10 2.51 x 10° 2.08 x 10° 132x 102 421x10° 195x107  1.38 x 108
Median  2.03 x 102 2.80 x 103 3.40 x 10° 3.61x102  558x108 198x107  2.89x 108
Worst 3.94 x 10° 3.04 x 10° 5.18 x 10° 566 x 102 734x10%8 199 x107 5.9 x 108
Mean 4.44 x 102 2.78 x 10 3.47 % 10° 3.67x1012  557x108 197 x107  3.00 x 10°
Std 9.77 x 102 1.62x 102  855x1071  1.38x102  1.04x10° 979 x10*  1.11 x 108
3.0 x 10° Best 416 x 1070 251 x 10° 2.08 x 10° 293 x 100 421 x108 195x107 3.71 x 10*
Median  7.76 x 107 2.80 x 103 3.40 x 10° 8.84 x 10" 558 x 108 198 x107  1.66 x 10°
Worst 263 x 10716 3.04 x 10° 5.18 x 10° 1.38x 102 730x10° 199 x107 245 x 10°
Mean  281x10°7 277 x10° 3.47 x 10° 7.82x 10" 554x 108 197x107  145x10°
Std 6.88 x 10717 1.63 x 102  855x 107" 323 x 10"  9.93x107 1.08x10°  7.32x 10*
1000D fs fo f1o fu fi2 fis fia
1.2 x 10° Best 6.32 x 107 9.32 x 108 7.64 x 10° 218 x 102 7.09x10° 2.04x10° 240 x 10°
Median 1.63 x 10° 1.10 x 10° 8.38 x 10° 219 %102 867 x10° 396 x10° 275 x 10°
Worst 7.10 x 10° 1.60 x 10° 8.85 x 10° 220102 979 x10° 747 x10°  3.09 x 10°
Mean 1.24 x 10° 1.13 x 10° 8.25 x 10° 219 %102 880 x10° 4.05x10° 276 x 10°
Std 2.38 x 10° 1.51 x 108 342x 102 385x107'  755x10* 177 x10° 231 x 108
6.0 x 10° Best 1.29 x 10° 1.24 x 108 6.59 x 10° 217 x 102 150 x10° 1.67 x 10> 4.86 x 10
Median 6.85 x 107 1.65 x 108 7.27 x 10° 218x 102 1.72x10° 539x10% 537 x 108
Worst 2.26 x 108 1.98 x 108 7.79 x 10° 218x 102 196 x10° 154x10* 623 x 108
Mean 7.48 x 107 1.64 x 108 7.21 x 10 218x 102  1.72x10° 576 x10° 541 x 108
Std 6.83 x 107 1.82 x 107 353x 102 341 x107" 144 x10* 408 x10°  4.43 x 107
3.0 x 10° Best 8.08 x 10* 2.08 x 107 6.59 x 10° 217 x 102 224 x10° 696 x 102 8.66 x 107
Median 1.68 x 107 2.97 x 107 7.23 x 10° 218 x 102 269 x10° 141 x10®  9.60 x 107
Worst 1.58 x 108 3.67 x 107 7.79 x 10 218 %102 330x10° 335x10®  1.10 x 10
Mean 3.97 x 107 3.00 x 107 7.21 x 10° 218 x 102 274x10°  158x10°  9.65 x 107
Std 5.30 x 107 415 x 106 353x 102  342x107'  282x102 792x102  6.88 x 10°
1000D fis §it3 fiz fis f1o S0
1.2 x 10° Best 1.11 x 10* 4.00 x 102 1.65 x 10° 822x10° 537 x10° 8.05x 108
Median 1.21 x 10* 4.01 x 102 1.82 x 106 112x10° 716 x10°  1.05 x 10°
Worst 1.28 x 10* 4.02 x 102 2.03 x 106 1.73x10° 844 x10°  1.76 x 10°
Mean 1.20 x 10* 4.01 x 102 1.84 x 10° 113 x10°  7.02x10°  1.14 x 10°
Std 5.03 x 10% 7.48 x 107! 1.16 x 10° 286 x 108  8.69 x10° 239 x 108
6.0 x 10° Best 1.06 x 10* 3.96 x 102 4.02 x 10° 213 x 104 240 x10°  3.14 x 10°
Median 1.16 x 10* 3.96 x 102 4.69 x 10° 398 x 10 279 x10°  3.55 x 10°
Worst 1.23 x 10* 3.97 x 102 5.25 x 10° 612 x10*  355x10° 452 x10°
Mean 1.15 x 10* 3.96 x 102 4.66 x 10° 410 x 10*  2.86x10°  3.63 x 10°
Std 4.93 x 102 3.87x10°1  3.38x10* 117 x10* 339 x10°  3.71 x 102
3.0 x 10° Best 1.06 x 10* 3.96 x 102 1.37 x 10* 190 x10° 529 x 105  1.40 x 10°
Median 1.16 x 10* 3.96 x 102 1.77 x 10* 3.69x10°  714x10° 170 x 10°
Worst 1.23 x 10* 3.97 x 102 212 x 10* 646 x 10° 106 x10°  1.92 x 10°
Mean 1.15 x 10* 3.96 x 102 1.77 x 10* 361 x10°  7.60x10°  1.69 x 10°
Std 493 x 102 387 %1071 197 x 10 128 x10°  1.62x10° 157 x 102
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Figure 3. Single convergence curves of HCBBPSO-JG for the functions f», fs, fs, fi0, f13, f15, f1s, and
f20: The curves have been graphed using the average of the results of all 25 runs.
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5. Conclusions

This paper proposed heterogeneous cooperative BBPSO algorithms that used a jumping strategy,
which was strengthened for use with high-dimensional optimization problems by combining an
improved exploration ability, which was introduced by means of heterogeneous cooperation and the
jumping strategy, with the merits of BBPSO, which is simple but robust because it does not need to
consider the selection of controllable parameters for the PSO algorithm and because its performance is
not affected by the values of these parameters.

In the comparative simulations based on the 20 qualified benchmark functions and the evaluation
system used in the CEC 2010 LSGO Challenge, the HCBBPSO-Jx algorithms provided improved results
for most of the functions; notably, the HCBBPSO-JG algorithm performed the best according to the
overall evaluation criteria. Although the proposed algorithms converged prematurely for several
benchmark functions that were related to Rastrigin’s function, they will be improved in future work.
Therefore, the results of this study lead us to conclude that the proposed HCBBPSO-JG algorithm is
useful as an optimizer for solving high-dimensional problems. In future work, the proposed algorithm
will be improved for Rastrigin’s function, tested with additional benchmark functions and compared
with other state-of-the-art optimizers. We will also study the parameter split factor K, because it
is very hard to select K depending on the problem. In particular, the problems to solve with the
algorithms proposed in this paper are high-dimensional problems with high complexity. In addition,
the further study will also be conducted on other parameters to improve the performance of the
proposed algorithm.
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