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Abstract: Among the existing estimation schemes of a battery state of charge, most deal with an
assumption that the faults will never occur in the system. Nevertheless, faults may have a crucial
impact on the state of charge estimation accuracy. The paper proposes a novel observer design to
estimate the state of charge and the remaining useful life of a Li-ion battery system under voltage
and current measurement faults. The approach starts with converting the battery system into the
descriptor Takagi–Sugeno form, where the state includes the original states along with the voltage and
current measurement faults. Moreover, external disturbances are bounded by an ellipsoid based on
the so-called Quadratic Boundedness approach, which ensures the system stability. The second-order
Resistor-Capacitor equivalent circuit model is considered to verify the performance and correctness
of the proposed observer. Subsequently, a real battery model is designed with experimental data of
the Li-ion 18650 battery delivered from the NASA benchmark. Another experiment deals with an
automated guided vehicle fed with a battery of which the remaining useful life is estimated. Finally,
the results are compared with another estimation scheme based on the same benchmark.

Keywords: remaining useful life; Takagi–Sugeno fuzzy system; voltage and current measurement
faults; observer design

1. Introduction

Nowadays, industrial companies are permanently increasing their productivity due to Industry
4.0. Consequently, a number of sensors and actuators have risen as well as intelligent warehouses
by using Automated Guided Vehicles (AGVs). It is obvious that those vehicles mostly use battery
systems, which need to be always recharged. Moreover, batteries sometimes should be replaced by
fresh ones when their State Of Health (SOH) is low. Otherwise, the AGVs might stop in the middle of
a task and consequently might breakdown the whole production cycle. This is why the Remaining
Useful Life (RUL) estimation of a battery system is especially attractive.

In the recent literature, there are a lot of schemes that propose a State of Charge (SOC) estimation
along with the assumption that the system is not occupied by any faults [1–3]. However, if these faults
occur in the system, it will have a significant impact on the SOC estimation quality. There are, of course,
schemes that deal with RUL estimation, for example, in [4] a data-driven hybrid RUL method for a real
satellite Li-ion battery using an autoregressive model and a particle filter. Moreover, a satellite Li-ion
battery RUL estimation was also presented in [5], where a Kalman Filter (KF) and relevance vector
machine were used. Wu et al. [6], presented an online RUL estimation method for a Li-ion battery based
on importance sampling and neural networks. However, Li et al. [7], described an RUL estimation
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method for a Li-ion battery of an electric vehicle based on a support vector machine algorithm. A RUL
prediction was made, as described in [8], which was based on a backward smoothing square root
cubature KF. Moreover, a multiscale hybrid KF was used for the SOC estimation. Liu et al. [9] proposed
a predicting method for RUL of Li-ion battery based on the framework of improved particle learning.
Zhao et al. [10] presented a hybrid method for RUL estimation of a Li-ion battery along with a capacity
regeneration. On the other hand, Guha et al. [11] proposed an electrochemical impedance spectrum
and an RUL online estimation for a Li-ion battery. This method was based on a fractional-order
equivalent circuit model. Yang et al. [12], described a prediction method based on an extreme learning
machine for an RUL estimation of a Li-ion battery. Zhang et al. [13] presented a Li-ion battery
online RUL estimation, which is based on thermal dynamics. Zhou et al. [14] proposed a Li-ion cells
RUL estimation based on a nearest neighbor regression with a differential evolution optimization.
Wei et al. [15] described a SOH diagnosis and RUL prediction for a Li-ion battery based on a support
vector regression and particle filter. Wang et al. [16] presented an adaptive RUL estimation of a battery
using a nonlinear degradation model. On the other side, in Ren et al. [17] a deep learning approach
for a Li-ion battery RUL prediction was proposed. The proposed method was used with a real Li-ion
battery data set from NASA. Ma et al. [18] described a prediction method for an RUL estimation based
on a Gauss–Hermite particle filter for Li-ion batteries. Rauh et al. [19] introduced a nonlinear state
observer based on extended KF for a finite-dimensional battery model. It should be also pointed out
that such RUL estimation methods can form the base of a fault-tolerant control scheme for battery
systems [20,21].

Finally, the above-listed approaches can be divided into two main groups:

• Analytical: they are based on the analytical RC models of the battery system. Most of these
approaches inherit a common drawback that the underlying RC parameters are constant. Thus,
it is beneficial to develop an approach that is able to settle the above problem assuming that RC
parameters can vary in a given feasible set.

• Data-driven: they are based on soft computing techniques like fuzzy logic [22] and neural
networks [23] or a combination of them. They also inherit a common drawback that a large
amount of training and validation data is required. Indeed, the quality of such methods relies
solely on the quality of data. Another drawback is that the models valid for a given battery
system cannot be directly used for another one. This is caused by the fact that the models being
using model merely the observed input–output relation while their parameters do not have any
physical meaning.

To settle the above-mentioned difficulties it is proposed to use the Takagi–Sugeno model of the
battery system [24–26]. Such models have proved to be very useful both for modeling and control of
possibly time-varying and/or nonlinear systems [24]. Indeed, there is a large number of approaches
that propose state and fault estimation techniques for T-S [27,28].

The novelty of the proposed RUL estimation scheme is that the system was transformed into
Takagi–Sugeno form, where the state super-vector includes the original states as well as the voltage
and current measurement faults. The appealing feature of the proposed approach is that it removes
the problem of the so-called bounded current measurement fault rate of change as well as the one-step
fault prediction, which is encountered in most fault estimation schemes. Subsequently, the so-called
Quadratic Boundedness (QB) approach was considered to guarantee the system stability, where
external disturbances are bounded by an ellipsoid. Moreover, the Takagi–Sugeno fuzzy battery
system based on a second-order Resistor-Capacitor (RC) equivalent circuit model, was considered.
Additionally, the proposed system is parameter-varying due to the fact that the parameters of the
second-order RC model depend on the battery SOC.

The paper is organized as follows: Section 2 presents the battery system based on the second-order
RC equivalent circuit model. Subsequently, the battery system was converted into the Takagi–Sugeno
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(T-S) fuzzy one. In Section 3, the robust observer design of a proposed T-S fuzzy system is described.
Additionally, the remaining useful life estimation scheme was considered for a battery system under
voltage and current measurement faults. In Section 4, the response of the T-S fuzzy system was
compared with an experimental data of the Li-ion battery. Consequently, results of the battery RUL
estimation under faults were presented. Finally, the article was concluded in Section 5.

2. Battery System

The aim of the paper is to estimate an RUL of a battery system. Accordingly, the following
second-order RC equivalent circuit model is considered:

U̇1 = − U1
R1C1

+ Ib
C1

,

U̇2 = − U2
R2C2

+ Ib
C2

,
˙SOC = Ib

3600Cb
,

(1)

where U1,R1,C1 and U2,R2,C2 are the voltage, resistance and capacity vectors of the first and second
RC network, respectively. Furthermore, Ib indicates the battery current vector, where Cb signifies the
nominal battery capacity, which is Cb ≈ 2Ah in this paper. Additionally, the graphical diagram of the
second-order RC model is presented in Figure 1.

R1 R2

C1 C2

Uoc (SOC)

R0

Ub

Ib

Figure 1. Second-order Resistor-Capacitor (RC) equivalent circuit model.

The following ninth-order polynomial method was used to characterize a nonlinearity between
battery voltage and state of charge based on experimental data

Usoc = −10.72 · SOC9 + 33.43 · SOC8 − 49.08 · SOC7 + 63.62 · SOC6 − 73.59 · SOC5

+ 51.05 · SOC4 − 15.21 · SOC3 + 0.1379 · SOC2 + 0.9428 · SOC + 3.617,
(2)

which is also illustrated in Figure 2.
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Figure 2. Nonlinear relationship of a battery state of charge and voltage.

Consequently, the battery voltage Ub can be obtained by

Ub = Usoc + U1 + U2 + Ri
0 Ib, (3)

where R0 is the resistance vector. The proposed system is parameter varying based on the resistance as
well as capacity parameters in Equations (3) and (4). These parameters depend on the battery SOC,
as illustrated in Table 1. Using parameters contained in Table 1 along with the approach presented
in [29], the system described by Equation (1) can be parameterized as follows:

Ai =


− 1

Ri
1Ci

1
0 0

0 − 1
Ri

2Ci
2

0

0 0 0

 , Bi =


1

Ci
1

1
Ci

2
1

3600Cb

 , C =

[
1 0 0
0 1 0

]
, (4)

where i corresponds to the ith row of Table 1. Note that there is a single cell only. While its parameters
R0, R1, C1, R2, C2 may vary in time. That is why they are divided into 13 representative values Ri

0,
Ri

1, Ci
1, Ri

2, Ci
2 while the current operating condition depends on SOC. Moreover, the above model

is simplified, and hence, it does not take into account a possibly time-varying temperature [30].
In other words, the system is operating in a constant room temperature. Subsequently, the Gaussian
membership functions µi,k were used to form the Takagi–Sugeno system, with means equal to the SOC
values given in Table 1 and standard deviations equal to the distance between consecutive SOC values.
As a result, the following models were obtained:

xk+1 =
M

∑
i=1

hi (qk)
[

Aixk + Bi Ib,k

]
, (5)

yk = Cxk, (6)

where qk = SOCk. Note that matrices in Equation (4) simply form TS model Equation (5) and

hi (qk) =
µi,k

∑M
j=1 µj,k

. (7)

Note that all matrices shaping the above model are described in Appendix A. Having the above
model, it is possible to proceed to the SOC estimator design.
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Table 1. Parameters of the second-order RC model.

SOC R0[Ω] R1[Ω] R2[Ω] C1[F] C2[F]

0 0.18777 0.016782 0.10044 574.2 935.5
0.083 0.15643 0.019272 0.041271 492.44 2225.1
0.167 0.15797 0.018844 0.040802 494.31 2226
0.25 0.16243 0.018733 0.040952 487.87 2272.6
0.33 0.16355 0.018036 0.040065 512.41 2209.8
0.417 0.15656 0.018058 0.039243 519.19 2190.4

0.5 0.16255 0.01858 0.039791 498.86 2189.8
0.583 0.15325 0.018479 0.039945 498.46 2239.7
0.667 0.16402 0.018512 0.040019 489.93 2294.8
0.75 0.15714 0.019181 0.039949 500.61 2424.3
0.833 0.15489 0.019026 0.040046 502.43 2420
0.917 0.15324 0.019026 0.040046 502.43 2420

1 0.15996 0.016109 0.043569 593.18 2224.4

3. Observer Design

Firstly, using (5) and (6), let us formulate a discrete-time Takagi–Sugeno fuzzy system, which can
be affected by faults and disturbances:

xk+1 =
M

∑
i=1

hi (qk)
[

Aixk + Bi Ib,k + Bi
f f̄ a,k

]
+ W1w1,k, (8)

yk = Cxk + C f f s,k + W2w2,k, (9)

with

hi(qk) ≥ 0, ∀i = 1, . . . , M,
M

∑
i=1

hi(qk) = 1, (10)

where k indicates a discrete time as well as xk = [U1 U2 SOC]T ∈ X ⊂ Rn, Ib,k ∈ Rr and yk =

[U1 U2]
T ∈ Rm signify state, input and output vectors, respectively. Subsequently, f s,k ∈ Fs ⊂ Rns

and f̄ a,k ∈ Fa ⊂ Rna describe the voltage (e.g., a broken wire) and current measurement fault
vectors, while ns and na indicate the number of voltage and current measurement faults, respectively.
Moreover, the voltage measurement fault distribution matrix is denoted by C f , while rank(C f ) =

ns and rank(B f (qk)) = na. Additionally, the inequality na + ns ≤ m is satisfied, which means
that there is no possibility that the number of reconstructed faults is greater than the number of
measured outputs. Furthermore, the disturbance distribution matrices are indicated by W1 and W2,
where exogenous disturbance vectors for measurement and process uncertainties are denoted by
w1,k and w2,k, respectively. Additionally, let us use the following notation throughout the paper
X i = ∑M

i=1 hi (qk) X i. Let us first transform the state Equation (8) into an equivalent form

xk+1 =
M

∑
i=1

hi
i

[
Aixk + Bi Ib,k

]
+ B f f a,k + W1w1,k, (11)

where B f indicates an auxiliary matrix, which satisfy rank(B f ) = na as well as f a,k states for an
auxiliary current measurement fault vector. Consequently, by comparing Equations (8) and (11), it can
be easily seen that

B f (qk) f̄ a,k = B f f a,k. (12)

Hence, the following original fault vector can be defined

f̄ a,k = (B f (qk))
†B f f a,k. (13)



Electronics 2020, 9, 1537 6 of 18

where † indicates the pseudo inverse operator. Furthermore, let us describe a novel observer able for
estimating xk, f a,k and f s,k simultaneously, which is the purpose of further considerations. Additionally,
it can be observed that B f =

1
M ∑M

i=1 Bi
f as well as rank(B f ) = na, which means that the selected B f

is not critical. The proposed scheme begins with converting Equations (9)–(11) into an equivalent,
descriptor-like form, where the state variable is given as

x̄k =
[

xT
k f T

a,k−1 f T
s,k

]T
. (14)

Based on Equation (14), the system Equations (9)–(11) can be described as follow:

Ex̄k+1 = Āi x̄k + B̄i Ib,k + W̄1w̄k, (15)

yk = C̄xk + W̄2w̄k, (16)

where:

E =

In −B f 0
0 0 0
0 0 0

 , Āi
=

Ai 0 0
0 0 0
0 0 0

 , B̄i
=

Bi

0
0

 ,

W̄1 =

W1 0
0 0
0 0

 , W̄2 =
[
0 W2

]
, w̄k =

[
wT

1,k wT
2,k

]T
, C̄ =

CT

0
CT

f


T

.

That means, the state super-vector x̄k includes the original state of the system as well as voltage
and current measurement faults. Consequently, let us propose the following observer:

zk+1 = H izk + Mi Ib,k + F iyk, (17)
ˆ̄xk = zk + T2yk, (18)

where ˆ̄xk ∈ Rn+na+ns indicates the estimate of x̄k as well as zk ∈ Rn+na+ns denotes the internal state of
the estimator. Note that the typical assumption in the recent literature respecting a bounded rate of
change of occurred faults was removed by proposing this novel scheme.

Accordingly, let it be assumed that there are existing matrices T1 and T2 such that

T1E + T2C̄ = I, (19)

or in simpler form

[
T1 T2

] [E
C̄

]
= I, (20)

which gives Equations (17) and (18) the following design condition

rank

([
E
C̄

])
= n + na + ns. (21)

Based on the above assumption and Equation (18), the state estimation error is given as

ek = x̄k − ˆ̄xk = x̄k − zk − T2yk =
(

I − T2C̄
)

x̄k − zk − T2W̄2w̄k, (22)
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which, according to Equation (19), is reduced to

ek = T1Ex̄k − zk − T2W̄2w̄k. (23)

Additionally, the state estimation error dynamics can be defined by substituting
Equations (15)–(17)

ek+1 = T1Ex̄k+1 − zk+1 − T2W̄2w̄k+1 = T1 Āi x̄k + T1B̄i Ib,k

+ T1W̄1w̄k − H izk −Mi Ib,k − F iC̄x̄k − F iW̄2w̄k − T2W̄2w̄k+1

=
(
T1 Āi − F iC̄−i T1E

)
x̄k +

(
T1B̄i −Mi

)
Ib,k

+ H iek +
(
T1W̄1 − F iW̄2 + H iT2W̄2

)
w̄k − T2W̄2w̄k+1.

(24)

Based on Equation (24), it is obvious that the following conditions should be considered:

T1 Āi − H iT1E− F iC̄ = 0, (25)

T1B̄i −Mi = 0. (26)

Accordingly, by satisfying above Equations (25) and (26), the term concerned x̄k is removed
from Equation (24) as well as Equation (25) is from now independent of the system input vector Ib,k.
Moreover, substituting Equation (19) into Equation (25) provides

T1 Āi − H i (I − T2C̄
)
− F iC̄ = 0, (27)

or in simpler form
H i = T1 Āi −

(
F i − H iT2

)
C̄. (28)

Consequently, by determining
Ki = F i − H iT2, (29)

Equation (28) is reduced to
H i = T1 Āi − KiC̄, (30)

which modifies Equation (24) into

ek+1 = H iek +
(
T1W̄1 − F iW̄2 + H iT2W̄2

)
w̄k − T2W̄2w̄k+1

=
(
T1 Āi − KiC̄

)
ek + T1W̄1w̄k − KiW̄2w̄k − H iT2W̄2w̄k

+ H iT2W̄2w̄k − T2W̄2w̄k+1 =
(
T1 Āi − KiC̄

)
ek

+ T1W̄1w̄k − KiW̄2w̄k − T2W̄2w̄k+1.

(31)

Furthermore, let the state super-vector be defined as follows

w̃k =

[
w̄k

w̄k+1

]
, (32)

and consequently, Equation (31) can be replaced by its simpler form

ek+1 = X iek + Ziw̃k, (33)
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with:

X i = Ãi − KiC̄, Zi = W̃1 − KiW̃2,

where:

W̃ i
1 =

[
T1W̄1 −T2W̄2

]
, W̃2 =

[
W̄2 0

]
, Ãi

= T1 Āi.

Taking into account the above considerations, let us recall the following Lemma [31]:

Lemma 1. The following statements are equivalent:

1. There exist X � 0 and W � 0 such that

V i,TXV i −W ≺ 0, (34)

where X ≺ 0 means that matrix X is negative definite whilst X � means that matrix X is positive definite.

2. There exist X � 0, W � 0 and U such that[
−W V i,TUT

UV i X −U −UT

]
≺ 0. (35)

Let the Lyapunov function be described as follows

Vk = eT
k Rek, (36)

with R � 0. The convergence of the proposed observer is to be determined with the so-called
Quadratic Boundedness (QB) approach [32]. This technique can be perceived as an extension of the
usual Lyapunov approach towards the systems with external bounded disturbances. The usefulness
of the QB approach was proven in many papers while in [33] it was proven that the standard H∞

framework can be perceived as a special case of QB. To use the QB approach, it is necessary to assume
that w̃k is bounded by the following ellipsoid:

Ew = {w̃k : w̃T
k Qww̃k ≤ 1}, (37)

with Qw � 0. Based upon the above assumptions, let us recall the following definition:

Definition 1. The system Equation (33) is strictly quadratically bounded for all w̃k ∈ Ew, k ≥ 0, if Vk >

1 =⇒ Vk+1 −Vk < 0 for any w̃k ∈ Ew.

As it was described in [32,33], the stability condition is associated with

Vk+1 − (1− α)Vk − αw̃T
k Qww̃k < 0, (38)

with 0 < α < 1. Taking into account the above deliberations, the following theorem is stated:
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Theorem 1. The observer-based system Equation (33) is strictly quadratically bounded for all w̃k ∈ Ew if there
exist matrices R � 0, U, Ñ as well as α ∈ (0, 1) such that the following holds: αR− R 0 Ãi,TUT − C̄T Ñ i,T

0 −αQw W̃ T
1 UT − W̃ T

2 Ñ i,T

U Ãi − Ñ iC̄ UW̃1 − Ñ iW̃2 R−U −UT

 ≺ 0. (39)

Proof. The stability condition (38) leads to

eT
k+1Rek − eT

k Rek + αeT
k Rek − αw̃T

k Qww̃k < 0. (40)

Using (33) it can be shown that (40) can be equivalently rewritten as

eT
k

(
X i,T RX i + αR− R

)
ek + eT

k

(
X i,T RZ

)
w̃k + w̃T

k

(
ZT RX i

)
ek

+ w̃T
k

(
ZT RZ− αQw

)
w̃k ≺ 0.

(41)

By setting

vk =

[
ek
w̃k

]
, (42)

formula (41) can be rephrased into the following form

vT
k

[
X i,T RX + αR− R X i,T RZ

ZT RX i ZT RZ− αQw

]
vk ≺ 0, (43)

or an alternative one [
X i,T

ZT

]
R
[

X i Z
]
+

[
αR− R 0

0 −αQw

]
≺ 0. (44)

then, applying Lemma (1) to (44) results inR + αR 0 X i,TUT

0 −αQw ZTUT

UX i UZ R−U −UT

 ≺ 0. (45)

Finally, substituting

UX i = U
(

Ãi − KiC̄
)
= U Ãi − Ñ iC̄, (46)

UZi = U
(

W̃1 − KiW̃2

)
= UW̃1 − Ñ iW̃2, (47)

into Equation (45) proves the theorem.

Note that Theorem 1 is devoted to a particular battery system of Equations (15) and (16). However,
it can be generalized to any system, which can be written in the form of Equations (15) and (16).
Consequently, the offline design procedure reduces to:

Step 0: Solve Equation (19) to acquire T1 and T2.
Step 1: Solve Equation (39) with setting α, 0 < α < 1 to achieve Ñ i,U.
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Step 2: Calculate:

Ki = U−1Ñ i, (48)

H i = T1 Ãi − KiC̄, (49)

Mi = T1B̄i, (50)

F i = Ki + H iT2. (51)

Whilst the online application procedure boils down to:

Step 0: Set the internal state of the observer initial conditions z0, while k = 0.
Step 1: Determinate zk+1 and x̂k based on Equations (17) and (18).
Step 2: Set k = k + 1 and move to Step 1.

4. Illustrative Example

This section proposes a pulsed discharge example of the battery system to validate the correctness
and performance of the proposed observer. Firstly, the state vector is defined as:

x =
[
U1 U2 SOC

]T
, (52)

where Ts = 1 as well as the input vector Ib is the pulsed discharge current, which operates in range
(−1, 0) A and has been illustrated in Figure 3a. The distribution matrices of exogenous disturbance
vectors for the process and measurement uncertainties are defined as follow:

W1 = 1 · 10−6 I, W2 = 1 · 10−2 I. (53)

Moreover, let us consider the following fault scenarios to validate the accuracy of the
proposed observer:

f a,k =


−0.3 · Ib,k 3000 ≤ k ≤ 6500
0.3 · Ib,k 8000 ≤ k ≤ 11000

0 otherwise,
(54)

f s,k =

{
yk − 0.4 4500 ≤ k ≤ 9500

0 otherwise,
(55)

along with the current and voltage measurement fault distribution matrices:

B f =
1

Mm

Mm

∑
i=1

Bi
f =

 1.856086
0.4853711
0.1389095

 · 10−3, C f =

[
0
1

]
. (56)

Note that the voltage fault distribution matrix is composed of either zeros or ones. One means
that the fault affects a given measurement while zero means a contradictory situation. Moreover,
the disturbance distribution matrices are obtained using the experimental data and the general
approach proposed in [34]. Accordingly, the voltage measurement fault fs,k corresponds to the possible
significant measurement inaccuracies. Similarly, the current measurement fault fa,k corresponds to
the significant loss of battery performance related to its current-based behavior. It can be clearly
viewed that the voltage measurement fault distribution matrix is acquired from the system matrix
C (Equation (4)) and the fault f s,k occurred in the state U2. It can be easily seen that, based on
Equations (54) and (55), the voltage and current measurement faults occurred, simultaneously.
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Consequently, a response of the T-S fuzzy system was compared with experimental data of the
Li-ion 18650 battery from the NASA benchmark [35]. The comparison has been made for battery
voltage and was illustrated in Figure 3b, where the blue dash-dotted line indicates the T-S fuzzy system
response along with the experimental data depicted by a black dashed line. It can be easily seen that
the response of the T-S fuzzy system is very close to the experimental data.
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Figure 3. Input vector (a) and comparison between experimental data and the T-S system for the
battery voltage Ub (b).

Figure 4a,b illustrate the terminal voltage U1 and U2 of the first and second RC network,
respectively. The state’s response is given by blue dash-dotted lines, while their estimates are presented
with red dashed lines as well as measured outputs indicated as light green solid lines. Figure 5a
presents the battery state of charge with a blue dash-dotted line as well as its estimate depicted with a
red dashed line. As can be observed, the states are properly estimated under the voltage and current
measurement faults as well as the measurement uncertainties. Consequently, battery voltage Ub has
been estimated with very good accuracy as presented in Figure 4b, where the state is indicated by a
blue dash-dotted line along with its estimate given with a red dashed line. Moreover, Figures 6a and 7b
illustrate an evolution of the state estimation error for the U1, U2, SOC as well as the battery voltage Ub.

(a) (b)

Figure 4. State variables U1 (a) and U2 (b).
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Figure 5. State variable Usoc (a) and battery voltage Ub (b).
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Figure 6. Evolution of the state estimation error for the U1 (a) and U2 (b).
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Figure 7. Evolution of the state estimation error for the SOC (a) and Ub (b).

Additionally, a slowly developing fault is introduced and illustrated with Figure 8.
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Figure 8. Slowly developing voltage measurement fault (a) and the response of the faulty system (b).

Moreover, these results can be compared with another scheme based on the same NASA
benchmark, for example, a Lyapunov-based observer [36]. Weit et al. described the observer for the
SOC estimation along with the similar pulsed discharge current. However, these authors have assumed
that the system is not occupied by any faults. The estimation Root Mean Square Errors (RMSEs) for
the Lyapunov-based observer were compared with the estimation RMSEs for the proposed observer
in Table 2. It can be easily seen that the novel observer has a better accuracy under the exogenous
disturbances describing the process and measurement uncertainties. Additionally, the system has been
occupied by the current and voltage measurement faults, simultaneously. Finally, these results confirm
the performance and correctness of the proposed RUL estimation scheme for the battery system.

Table 2. The estimation errors (RMSEs) comparison between the proposed novel observer and the
Lyapunov-based observer [36].

Proposed Novel Observer Lyapunov-Based Observer

Ub (mV) 2.4 5.2
USOC (mV) 0.319 26.8

SOC (%) 0.058 4.6

Furthermore, the proposed observer can form the base for RUL estimation. For that purpose a
battery feeding Automated Guided Vehicles (AGVs) is considered. Indeed, the SOC for the AGV is
modeled as

SOCk = p1,kt + p2,k, (57)

where t = kTs and pk = [p1,k p2,k]
T is the parameter vector relating the time t with SOC. Indeed, their

values are strictly correlated with the AGV electronic equipment and DC motors fed by the batteries.
Note that the model Equation (57) can be used to predict RUL t̄ of the batteries. It is defined as

the time from SOCk to the minimum SOC, ¯SOC. This one can be written as

¯SOC = p1,k t̄ + p2,k. (58)

This forms a prediction equation under current k, which leads to

t̄ =
¯SOC− p2,k

p1,k
. (59)
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Note that the parameters p1,k and p1,k can be obtained with any recursive parameter estimation
technique [37]. In this paper, the celebrated Recursive Least Squares (RLS) [38] algorithm is used.
Hence, Equation (57) can be written in an alternative form

SOCk = rT
k Rk, (60)

where rk = [t 1]T .
Thus, the RLS algorithm can be formulated as follows:

Step 0: Set covariance matrix R0 = σI, where σ > 0 is a sufficiently large positive contort. Moreover,
set initial parameter vector p0 and k = 1.

Step 1: Calculate:

Kk =
Rk−1rk

1 + rT
k Rk−1rk

, (61)

Rk =
(

I − KkrT
k

)
Rk−1. (62)

Step 2: Update parameter vector

p̂k = p̂k−1 + Kk

(
SOCk − r̂T

k pk−1

)
(63)

Set k = k + 1 and move to Step 1.

Finally, the critical SOC is selected as ¯SOC = 0.1, which pertains to 10% of SOC. Hence,
the proposed algorithm was used to estimate the remaining use of the AGV presented in Figure 9a.
Moreover, Figure 9b presents the SOC denoted by Equation (57) and its critical SOC given by
Equation (58). The AGV was employed to deal with a specific task and it was considered that
the AGV starts with a 90% SOC. Additionally, the AGV has repeated this task until its battery has
discharged until 10%. Furthermore, the estimated parameters p1,k and p2,k of the Equation (57) are
presented in Figure 10a,b, respectively. Consequently, it was estimated that the AGV will deal with the
task for 3013.7 seconds as it is illustrated in Figure 11.
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Figure 9. Automated Guided Vehicle (a) and its State of Charge (b).
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Figure 10. Parameter variables p1 (a) and p2 (b).
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Figure 11. Time of the AGV remaining use.

5. Concluding Remarks

The paper dealt with the problem of the battery remaining useful life estimation under voltage
and current measurement faults. The considered system was transformed into Takagi–Sugeno form,
where the state super-vector includes the states as well as current and voltage measurement faults.
External disturbances were bounded by an ellipsoid based on a so-called Quadratic Boundedness
approach, which guarantees the system stability. Moreover, the Takagi–Sugeno fuzzy battery system
based on a second-order RC model was considered. The proposed system is a parameter-varying
one due to the fact that the parameters of the second-order RC model depend on the battery state of
charge. Additionally, the response of the proposed Takagi–Sugeno fuzzy battery system was compared
with the Li-ion 18650 battery experimental data. Finally, the results have confirmed the performance
and accuracy of the proposed remaining useful life estimation scheme. The system states have been
correctly reconstructed even in the case of simultaneous voltage and current measurement faults.
Consequently, the battery voltage has been properly estimated. Moreover, the results were compared
with the other scheme based on the same experimental data, which confirmed the accuracy of the
proposed novel observer. In future work, the proposed scheme will be the base for the remaining
useful life fault-tolerant control for a Takagi–Sugeno fuzzy system.
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Appendix A

A1 =

0.9006406 0 0
0 0.9897348 0
0 0 1

 , A2 =

0.9006746 0 0
0 0.9897346 0
0 0 1

 , (A1)

A3 =

0.9006746 0 0
0 0.9897346 0
0 0 1

 , A4 =

0.9010958 0 0
0 0.9897277 0
0 0 1

 , (A2)

A5 =

0.8956012 0 0
0 0.9891699 0
0 0 1

 , A6 =

0.8971199 0 0
0 0.9888847 0
0 0 1

 , (A3)

A7 =

0.8977275 0 0
0 0.9885887 0
0 0 1

 , A8 =

0.8988283 0 0
0 0.9884339 0
0 0 1

 , (A4)

A9 =

0.8974476 0 0
0 0.9887685 0
0 0 1

 , A10 =

0.8963523 0 0
0 0.9893128 0
0 0 1

 , (A5)

A11 =

0.8982049 0 0
0 0.9890503 0
0 0 1

 , A12 =

0.8999915 0 0
0 0.9891698 0
0 0 1

 , (A6)

A13 =

0.9014272 0 0
0 0.9739134 0
0 0 1

 , (A7)

B1 =

 1.600604
0.4472455
0.1389095

 · 10−3, B2 =

 1.889744
0.4110915
0.1389095

 · 10−3, B3 =

 1.889744
0.4110915
0.1389095

 · 10−3, (A8)

B4 =

 1.897063
0.4103706
0.1389095

 · 10−3, B5 =

 1.932620
0.4334059
0.1389095

 · 10−3, B6 =

 1.901132
0.4440006
0.1389095

 · 10−3, (A9)

B7 =

 1.900210
0.4540602
0.1389095

 · 10−3, B8 =

 1.826928
0.4538913
0.1389095

 · 10−3, B9 =

 1.849684
0.4499863
0.1389095

 · 10−3, (A10)

B10 =

 1.941584
0.4376601
0.1389095

 · 10−3, B11 =

 1.918196
0.4467765
0.1389095

 · 10−3, B12 =

 1.927376
0.4469707
0.1389095

 · 10−3, (A11)

B13 =

 1.654240
1.054938

0.1389095

 · 10−3. (A12)
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